

SamsTeachYourself

All
in One

HTML, CSS,
and JavaScript
Third Edition

Jennifer Kyrnin
Julie Meloni

Editor-in-Chief

Mark Taub

Editor

Mark Taber

Managing Editor

Sandra Schroeder

Senior Project

Editor

Lori Lyons

Copy Editor

Kitty Wilson

Project Manager

Suganya Karuppasamy

Indexer

Ken Johnson

Proofreader

Abigail Manheim

Technical Editor

Julie Meloni

Editorial Assistant

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

codemantra

Sams Teach Yourself HTML, CSS, and JavaScript All in One, Third Edition
Copyright © 2019 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33808-3

ISBN-10: 0-672-33808-4

Library of Congress Control Number: 2018953965

01 18

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance

Part I: Getting Started on the Web

 LESSON 1 Understanding How the Web Works . 1

 2 Structuring an HTML Document . 23

 3 Understanding Cascading Style Sheets . 55

 4 Understanding JavaScript . 79

 5 Validating and Debugging Your Code. 97

Part II: Building Blocks of Practical Web Design

 LESSON 6 Working with Fonts, Text Blocks, Lists, and Tables . 121

 7 Using External and Internal Links . 167

 8 Working with Colors, Images, and Multimedia . 191

Part III: Advanced Web Page Design with CSS

 LESSON 9 Working with Margins, Padding, Alignment, and Floating 249

 10 Understanding the CSS Box Model and Positioning . 271

 11 Using CSS to Do More with Lists, Text, and Navigation . 289

 12 Creating Layouts Using Modern CSS Techniques . 317

 13 Taking Control of Backgrounds and Borders . 353

 14 Using CSS Transformations and Transitions . 383

 15 Animating with CSS and the Canvas . 401

Part IV: Responsive Web Design

 LESSON 16 Understanding the Importance of Responsive Web Design 427

 17 Designing for Mobile Devices . 443

 18 Using Media Queries and Breakpoints . 471

iv Sams Teach Yourself HTML, CSS, and JavaScript All in One

Part V: Getting Started with Dynamic Sites

 LESSON 19 Understanding Dynamic Websites and HTML5 Applications 487

 20 Getting Started with JavaScript Programming . 507

 21 Working with the Document Object Model (DOM) . 523

 22 Using JavaScript Variables, Strings, and Arrays . 551

 23 Controlling Flow with Conditions and Loops . 595

 24 Responding to Events and Using Windows . 617

 25 JavaScript Best Practices . 655

 26 Using Third-Party JavaScript Libraries and Frameworks 681

Part VI: Advanced Website Functionality and Management

 LESSON 27 Working with Web-Based Forms. 695

 28 Organizing and Managing a Website . 729

Index . 751

Table of Contents

Part I: Getting Started on the Web

LESSON 1: Understanding How the Web Works 1

A Brief History of HTML and the World Wide Web . 2

Creating Web Content . 2

Understanding Web Content Delivery . 3

Selecting a Web Hosting Provider . 6

Testing with Multiple Web Browsers and Devices . 8

Creating a Sample File . 9

Using FTP to Transfer Files . 10

Understanding Where to Place Files on the Web Server . 14

Distributing Content Without a Web Server . 17

Tips for Testing Web Content . 18

Summary . 19

Q&A . 20

Workshop . 20

Exercises . 22

LESSON 2: Structuring an HTML Document 23

Getting Prepared . 24

Getting Started with a Simple Web Page . 25

HTML Tags Every Web Page Must Have . 28

Organizing a Page with Paragraphs and Line Breaks . 31

Organizing Your Content with Headings . 33

Understanding Semantic Elements . 36

Using <header> in Multiple Ways . 42

Understanding the <section> Element . 44

Using <article> . 45

vi Sams Teach Yourself HTML, CSS, and JavaScript All in One

Implementing the <nav> Element . 45

When to Use <aside> . 47

Using <footer> Effectively . 48

Summary . 49

Q&A . 50

Workshop . 51

Exercises . 53

LESSON 3: Understanding Cascading Style Sheets 55

How CSS Works. 56

A Basic Style Sheet . 57

A CSS Style Primer . 63

Using Style Classes . 68

Using Style IDs . 70

Internal Style Sheets and Inline Styles . 71

Summary . 74

Q&A . 75

Workshop . 75

Exercises . 77

LESSON 4: Understanding JavaScript 79

Learning Web Scripting Basics . 80

How JavaScript Fits into a Web Page . 81

Exploring JavaScript’s Capabilities . 84

Displaying Time with JavaScript . 85

Testing the Script . 89

Summary . 93

Q&A . 93

Workshop . 94

Exercises . 96

LESSON 5: Validating and Debugging Your Code 97

Validating Your Web Content . 97

Debugging HTML and CSS Using Developer Tools . 99

Debugging JavaScript Using Developer Tools . 112

Table of Contents vii

Summary . 118

Q&A . 118

Workshop . 118

Exercises . 120

Part II: Building Blocks of Practical Web Design

LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables 121

Working with Special Characters . 122

Boldface, Italic, and Special Text Formatting . 126

Tweaking the Font . 129

Using Web Fonts . 133

Aligning Text on a Page . 136

The Three Types of HTML Lists . 139

Placing Lists Within Lists . 142

Creating a Simple Table . 147

Controlling Table Sizes . 151

Alignment and Spanning Within Tables . 154

Page Layout with Tables . 157

Using CSS Columns . 158

Summary . 162

Q&A . 164

Workshop . 165

Exercises . 166

LESSON 7: Using External and Internal Links 167

Using Web Addresses . 167

Linking Within a Page Using Anchors . 170

Linking Between Your Own Web Content . 174

Linking to Non-HTML Files . 177

Linking to External Web Content . 178

Linking to an Email Address . 179

Opening a Link in a New Browser Window . 180

Giving Titles to Links . 181

viii Sams Teach Yourself HTML, CSS, and JavaScript All in One

Using CSS to Style Hyperlinks . 182

Using Links Effectively . 186

Summary . 187

Q&A . 188

Workshop . 189

Exercises . 190

LESSON 8: Working with Colors, Images, and Multimedia 191

Best Practices for Choosing Colors . 192

Understanding Web Colors . 194

Using Hexadecimal Values for Colors . 196

Using RGB and RGBa Values for Colors . 197

Using CSS to Set Background, Text, and Border Colors . 199

Choosing Graphics Software . 201

The Least You Need to Know About Graphics . 202

Preparing Photographic Images . 203

Creating Banners and Buttons . 210

Optimizing Images by Reducing or Removing Colors . 211

Creating Tiled Background Images. 212

Placing Images on a Web Page . 214

Describing Images with Text. 217

Specifying Image Height and Width . 218

Aligning Images . 219

Turning Images into Links . 223

Using Background Images. 226

Using Image Maps . 227

Linking to Multimedia Files . 233

Embedding Multimedia Files . 237

Additional Tips for Using Multimedia . 242

Summary . 242

Q&A . 245

Workshop . 246

Exercises . 248

Table of Contents ix

Part III: Advanced Web Page Design with CSS

LESSON 9: Working with Margins, Padding, Alignment, and Floating 249

Using Margins . 249

Padding Elements . 257

Keeping Everything Aligned . 261

Centering Blocks of Content . 262

Understanding the float Property . 263

Summary . 267

Q&A . 267

Workshop . 267

Exercises . 270

LESSON 10: Understanding the CSS Box Model and Positioning 271

The CSS Box Model . 271

Changing the Box Model . 275

The Whole Scoop on Positioning . 276

Controlling the Way Things Stack Up . 281

Managing the Flow of Text . 284

Summary . 285

Q&A . 285

Workshop . 286

Exercises . 288

LESSON 11: Using CSS to Do More with Lists, Text, and Navigation 289

HTML List Refresher . 290

How the CSS Box Model Affects Lists . 290

Placing List Item Indicators . 294

Creating Image Maps with List Items and CSS . 296

How Navigation Lists Differ from Regular Lists . 299

Creating Vertical Navigation with CSS . 300

Creating Horizontal Navigation with CSS . 310

Summary . 314

Q&A . 314

Workshop . 315

Exercises . 316

x Sams Teach Yourself HTML, CSS, and JavaScript All in One

LESSON 12: Creating Layouts Using Modern CSS Techniques 317

Getting Ready to Do Page Layout . 318

The Importance of Putting Mobile Devices First . 319

Understanding Fixed Layouts . 319

Understanding Liquid Layouts . 322

Creating a Fixed/Liquid Hybrid Layout . 324

Using Modern CSS Layout Techniques . 335

Summary . 349

Q&A . 350

Workshop . 350

Exercises . 352

LESSON 13: Taking Control of Backgrounds and Borders 353

Reviewing Background and Border Basics . 353

Using Multiple Borders and Backgrounds . 355

Using Forgotten Background Properties . 359

Using Gradients as Backgrounds . 365

Rounding the Corners of HTML Elements . 371

Using Images as Borders . 373

Understanding CSS Outlines . 378

Summary . 379

Q&A . 379

Workshop . 379

Exercises . 381

LESSON 14: Using CSS Transformations and Transitions 383

Understanding CSS 2D Transformations . 383

Transforming Elements in Three Dimensions . 392

Working with CSS Transitions . 393

Using JavaScript to Trigger Transitions . 397

Summary . 398

Q&A . 399

Workshop . 399

Exercises . 400

Table of Contents xi

LESSON 15: Animating with CSS and the Canvas 401

Understanding CSS Animation . 401

Using the CSS Canvas . 410

Choosing Between CSS Animation and Canvas Animation . 423

Summary . 424

Q&A . 424

Workshop . 424

Exercises . 426

Part IV: Responsive Web Design

LESSON 16: Understanding the Importance of Responsive Web Design 427

What Is Responsive Web Design? . 427

What Is Progressive Enhancement? . 431

Writing HTML for Responsive Web Design . 435

Validating HTML, CSS, and JavaScript . 438

Summary . 439

Q&A . 440

Workshop . 440

Exercises . 442

LESSON 17: Designing for Mobile Devices 443

Designing for Mobile Devices . 443

Understanding Mobile First Design . 451

Using Responsive Tables and Images . 455

Creating Responsive Layouts Without Media Queries . 464

Alternatives for Mobile Design Besides RWD . 466

Summary . 468

Q&A . 469

Workshop . 469

Exercise . 470

LESSON 18: Using Media Queries and Breakpoints 471

What Is a Media Query? . 471

Using Media Query Expressions . 476

What Is a Breakpoint? . 477

xii Sams Teach Yourself HTML, CSS, and JavaScript All in One

How to Define Breakpoints in Your CSS . 477

Optimal Breakpoints . 483

Summary . 484

Q&A . 484

Workshop . 485

Exercises . 486

Part V: Getting Started with Dynamic Sites

LESSON 19: Understanding Dynamic Websites and HTML5 Applications 487

Understanding the Different Types of Scripting . 487

Including JavaScript in HTML . 488

Displaying Random Content . 491

Understanding the Document Object Model . 495

Changing Images Based on User Interaction . 498

Thinking Ahead to Developing HTML5 Applications . 501

Summary . 501

Q&A . 502

Workshop . 502

Exercises . 506

LESSON 20: Getting Started with JavaScript Programming 507

Basic Concepts . 507

JavaScript Syntax Rules . 514

Using Comments . 515

Best Practices for JavaScript . 516

Understanding JSON . 517

Summary . 518

Q&A . 518

Workshop . 519

Exercises . 522

LESSON 21: Working with the Document Object Model (DOM) 523

Understanding the Document Object Model . 523

Using window Objects . 524

Working with the document Object . 525

Table of Contents xiii

Accessing Browser History . 528

Working with the location Object . 530

More About the DOM Structure . 531

Working with DOM Nodes . 534

Creating Positionable Elements (Layers) . 536

Hiding and Showing Objects . 541

Modifying Text in a Page . 543

Adding Text to a Page . 545

Summary . 547

Q&A . 547

Workshop . 548

Exercises . 550

LESSON 22: Using JavaScript Variables, Strings, and Arrays 551

Using Variables. 552

Understanding Expressions and Operators . 555

Data Types in JavaScript . 556

Converting Between Data Types. 557

Using String Objects . 558

Working with Substrings . 562

Using Numeric Arrays . 564

Using String Arrays . 565

Sorting a Numeric Array . 567

Using Functions . 570

Introducing Objects . 575

Using Objects to Simplify Scripting . 577

Extending Built-in Objects . 582

Using the Math Object . 583

Working with Math Methods . 585

Working with Dates. 587

Summary . 590

Q&A . 590

Workshop . 591

Exercises . 594

xiv Sams Teach Yourself HTML, CSS, and JavaScript All in One

LESSON 23: Controlling Flow with Conditions and Loops 595

The if Statement . 595

Using Shorthand Conditional Expressions . 599

Testing Multiple Conditions with if and else . 600

Using Multiple Conditions with switch . 602

Using for Loops . 604

Using while Loops . 606

Using do...while Loops . 607

Working with Loops . 607

Looping Through Object Properties . 609

Summary . 612

Q&A . 612

Workshop . 613

Exercises . 615

LESSON 24: Responding to Events and Using Windows 617

Understanding Event Handlers . 618

Using Mouse Events . 623

Using Keyboard Events . 627

Using the load and unload Events . 630

Using click to Change the Appearance of a <div> . 631

Controlling Windows with Objects . 638

Moving and Resizing Windows . 643

Using Timeouts . 645

Displaying Dialog Boxes . 648

Summary . 650

Q&A . 650

Workshop . 651

Exercises . 654

LESSON 25: JavaScript Best Practices 655

Scripting Best Practices . 655

Reading Browser Information . 666

Cross-Browser Scripting. 669

Table of Contents xv

Supporting Non-JavaScript-Enabled Browsers . 671

Creating an Unobtrusive Script . 674

Summary . 677

Q&A . 677

Workshop . 677

Exercises . 680

LESSON 26: Using Third-Party JavaScript Libraries and Frameworks 681

Using Third-Party JavaScript Libraries. 681

Adding JavaScript Effects by Using a Third-Party Library . 686

Using JavaScript Frameworks . 689

Summary . 691

Q&A . 691

Workshop . 692

Exercises . 694

Part VI: Advanced Website Functionality and Management

LESSON 27: Working with Web-Based Forms 695

How HTML Forms Work . 695

Creating a Form . 696

Accepting Text Input . 702

Naming Each Piece of Form Data. 703

Labeling Each Piece of Form Data . 703

Grouping Form Elements . 705

Exploring Form Input Controls . 706

Using HTML5 Form Validation . 716

Submitting Form Data . 718

Accessing Form Elements with JavaScript . 720

Summary . 723

Q&A . 725

Workshop . 725

Exercises . 728

xvi Sams Teach Yourself HTML, CSS, and JavaScript All in One

LESSON 28: Organizing and Managing a Website 729

When One Page Is Enough . 730

Organizing a Simple Site . 732

Organizing a Larger Site . 735

Optimizing Your Site for Search Engines . 738

Writing Maintainable Code . 740

Thinking About Version Control . 743

Using HTML and CSS Frameworks . 745

Summary . 746

Q&A . 746

Workshop . 747

Exercises . 750

Index 751

About the Authors

Jennifer Kyrnin consults professionally on web design and web development. She has built

and maintained websites of all sizes, from small single-page sites to large million-page

database-driven sites for international audiences. She has taught HTML, XML, and web

design online since 1997 and is the author of Sams Teach Yourself HTML5 Mobile Application
Development, Sams Teach Yourself Responsive Web Design, and Sams Teach Yourself Bootstrap.

Julie Meloni is a software development manager and technical consultant living in

Washington, DC. She has written several books and articles on web-based programming

languages and database topics, including the bestselling Sams Teach Yourself PHP, MySQL, and
Apache All in One.

Dedication

To Mark and Jaryth. As usual, you inspired me and kept me writing.

Acknowledgments

I would like to thank Mark Taber for thinking of me when this new edition came out. I couldn’t

have had a good-looking book without Kitty Wilson, my extraordinary copy editor. Any errors

are not her fault. And thanks also go to Julie Meloni for believing that I could take over her

book effectively. I hope I live up to her reputation.

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the

corresponding Web Edition, which provides several special features to help you learn:

 N The complete text of the book online

 N Interactive quizzes and exercises to test your understanding of the material

 N Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any

modern web browser that supports HTML5.

To get access to the Web Edition of Sams Teach Yourself HTML, CSS, and JavaScript All in One,

Third Edition, all you need to do is register this book:

 1. Go to www.informit.com/register.

 2. Sign in or create a new account.

 3. Enter the ISBN: 9780672338083.

 4. Answer the questions as proof of purchase.

The Web Edition will appear under the Digital Purchases tab on your Account page.

Click the Launch link to access the product.

http://www.informit.com/register

Reader Services

Register your copy of Sams Teach Yourself HTML, CSS, and JavaScript All in One at informit.com

for convenient access to downloads, updates, and corrections as they become available. To

start the registration process, go to informit.com/register and log in or create an account.*

Enter the product ISBN, 9780672338083, and click Submit. Once the process is complete, you

will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive

discounts on future editions of this product.

http://informit.com
http://informit.com/register

LESSON 1
Understanding

How the Web Works

What You’ll Learn in This Lesson:

 N A very brief history of the World Wide Web

 N What is meant by the term web page and why this term doesn’t always reflect all the content
involved

 N How content gets from your personal computer to someone else’s web browser

 N How to select a web hosting provider

 N How different web browsers and device types can affect your content

 N How to transfer files to your web server by using FTP

 N Where files should be placed on a web server

 N How to distribute web content without a web server

 N How to use other publishing methods, such as blogs

 N Tips for testing the appearance and functionality of web content

Before you learn the intricacies of HTML (Hypertext Markup Language), CSS (Cascading Style

Sheets), and JavaScript, it is important to gain a solid understanding of the technologies that

help transform these plain-text files to the rich multimedia displays you see on your computer or

 handheld device when browsing the World Wide Web.

For example, a file containing HTML and CSS is useless without a web browser to view it, and no

one besides yourself will see your content unless a web server is involved. Web servers make your

content available to others, who, in turn, use their web browsers and other devices to navigate to

an address and wait for the server to send information to them. You will be intimately involved in

this publishing process because you must create files and then put them on a server to make them

available in the first place, and you must ensure that your content will appear to the end user as

you intended, whether the user has a screen the size of a watch face or a billboard.

2 LESSON 1: Understanding How the Web Works

A Brief History of HTML and
the World Wide Web
Once upon a time, back when there weren’t any footprints on the Moon, some farsighted folks

decided to see whether they could connect several major computer networks. We’ll spare you

the names and stories (there are plenty of both), but the eventual result was the “mother of all

networks,” which we now call the Internet.

Until 1990, accessing information through the Internet was a rather technical affair. It was so

hard, in fact, that even Ph.D.-holding physicists were often frustrated when trying to swap data.

One such physicist, the now-famous (and knighted) Sir Tim Berners-Lee, cooked up a way to easily

cross-reference text on the Internet through hypertext links.

This wasn’t a new idea, but his simple Hypertext Markup Language (HTML) managed to thrive

while more ambitious hypertext projects floundered. Hypertext originally meant text stored in

electronic form with cross-reference links between pages. It is now a broader term that refers to

just about any object (text, images, files, and so on) that can be linked to other objects. Hypertext
Markup Language is a language for describing how text, graphics, and files containing other

 information are organized and linked.

By 1993, only 100 or so computers throughout the world were equipped to serve up HTML

pages. Those interlinked pages were dubbed the World Wide Web (WWW), and several web

browser programs had been written to enable people to view web pages. Because of the growing

 popularity of the Web, a few programmers soon wrote web browsers that could view graphical

images along with text. From that point forward, the continued development of web browser

 software and the standardization of HTML has led us to the world we live in today, one in which

more than a billion websites serve billions of text and multimedia files.

NOTE

For more information on the history of the World Wide Web, see the Wikipedia article on this topic:
http://en.wikipedia.org/wiki/History_of_the_Web.

These few paragraphs provide a very brief history of what has been a remarkable period. Today’s

college students have never known a time in which the World Wide Web didn’t exist, and the

idea of always-on information and ubiquitous computing will shape all aspects of our lives moving

 forward. Instead of seeing web content creation and management as a set of skills possessed by only

a few technically oriented folks (okay, call them geeks, if you will), by the end of these lessons, you

will see that these are skills that anyone can master, regardless of inherent geekiness.

Creating Web Content
You might have noticed the use of the term web content rather than web pages; that was

 intentional. Although we talk of “visiting a web page,” what we really mean is something like

http://en.wikipedia.org/wiki/History_of_the_Web

Understanding Web Content Delivery 3

“looking at all the text and the images at one address on our computer.” The text that we

read and the images that we see are rendered by our web browsers, which are given certain

instructions found in individual files.

Those files contain text that is marked up with, or surrounded by, HTML codes that tell the browser

the structure of the text—as a heading, as a paragraph, as a quotation, and so on. Some HTML

markup tells the browser to display an image or video file rather than plain text, which brings us

back to this point: Different types of content are sent to your web browser, so simply saying web
page doesn’t begin to cover it. Here we use the term web content instead, to cover the full range of

text, image, audio, video, and other media found online.

Other files contain CSS that tells the browser how a page should look—bold text, with a blue

 border, red color, and so on. CSS defines how the browser should display the content structure

that is defined in the HTML.

In addition, JavaScript tells the browser how a page should interact with the user—changing

 colors when clicked, making a sound when the page loads, and so on. Whereas HTML describes

the structure and CSS the design, JavaScript defines the behavior of the content, or how it

responds to different conditions.

In later lessons, you’ll learn the basics of linking to or creating the various types of multimedia

web content found in websites. You will also learn how to style that content with CSS and how

to make it interactive with JavaScript. All you need to remember at this point is that you are in

control of the content a user sees when visiting your website. Beginning with the file that contains

text to display or codes that tell the server to send a graphic along to the user’s web browser,

you have to plan, design, and implement all the pieces that will eventually make up your web

 presence. As you will learn throughout these lessons, it is not a difficult process as long as you

understand all the little steps along the way.

In its most fundamental form, web content begins with a simple text file containing HTML

markup. In these lessons, you’ll learn about and compose standards-compliant HTML5 markup.

You will then learn how to decorate it with CSS and modern style properties and how to affect

the page behavior with unobtrusive JavaScript and modern JavaScript frameworks. One of the

many benefits of writing modern, standards-compliant code is that, in the future, you will not

have to worry about having to go back to your code to fundamentally alter it. Instead, your code

will (likely) always work for as long as web browsers adhere to standards (hopefully a long time),

and your code will work on any device that runs a standards-compliant browser (hopefully most

of them).

Understanding Web Content Delivery
Several processes occur, in many different locations, to eventually produce web content that you

can see. These processes occur very quickly—on the order of milliseconds—and occur behind the

4 LESSON 1: Understanding How the Web Works

scenes. In other words, although we might think all we are doing is opening a web browser, typ-

ing in a web address, and instantaneously seeing the content we requested, technology in the

background is working hard on our behalf. Figure 1.1 shows the basic interaction between a

browser and a server.

FIGURE 1.1
A browser request and a server response.

However, the process involves several steps—and potentially several trips between the browser and

the server—before you see the entire content of the site you requested.

Suppose you want to do a Google search, so you dutifully type www.google.com in the address

bar or select the Google bookmark from your bookmarks list. Almost immediately, your browser

shows you something like what’s shown in Figure 1.2.

FIGURE 1.2
Visiting www.google.com.

http://www.google.com
http://www.google.com

Understanding Web Content Delivery 5

Figure 1.2 shows a website that contains text plus one image (the Google logo). A simple version

of the processes that occurred to retrieve that text and image from a web server and display it on

your screen follows:

 1. Your web browser sends a request for the index.html file located at the

http://www.google.com address. The index.html file does not have to be part of the

address that you type in the address bar; you’ll learn more about the index.html file

further along in this lesson.

 2. After receiving the request for a specific file, the web server process looks in its directory

contents for the specific file, opens it, and sends the content of that file back to your web

browser.

 3. The web browser receives the content of the index.html file, which is text marked up with

HTML codes, and renders the content based on these HTML codes. While rendering the

 content, the browser happens upon the HTML code for the Google logo, which you can see

in Figure 1.2. The HTML code looks something like this:

<img alt="Google" src="/images/srpr/logo4w.png"
 width="275" height="95">

The tag provides attributes that tell the browser the file source location (src),

 alternate text (alt), width (width), and height (height) necessary to display the logo.

(You’ll learn more about attributes throughout later lessons.)

 4. The browser looks at the src attribute in the tag to find the source location. In

this case, the image logo4w.png can be found in the images directory at the same

web address (www.google.com) from which the browser retrieved the HTML file.

 5. The browser requests the file at the web address http://www.google.com/images/srpr/

logo4w.png.

 6. The web server interprets that request, finds the file, and sends the contents of that file to

the web browser that requested it.

 7. The web browser displays the image on your monitor.

As you can see in the description of the web content delivery process, web browsers do more than

simply act as picture frames through which you can view content. Browsers assemble the web

 content components and arrange those parts according to the HTML commands in the file.

It is possible to view web content locally—that is, on your own hard drive—without the need for

a web server. The process of content retrieval and display is the same as the process listed in

the previous steps, in that a browser looks for and interprets the codes and content of an HTML

file. However, the trip is shorter: The browser looks for files on your own computer’s hard drive

 rather than on a remote machine. A web server would be needed to interpret any server-based

http://www.google.com
http://www.google.com
http://www.google.com/images/srpr/logo4w.png
http://www.google.com/images/srpr/logo4w.png

6 LESSON 1: Understanding How the Web Works

programming language embedded in the files, but that is beyond the scope of these lessons. In

fact, you could work through all the lessons without having a web server to call your own, but

then nobody but you could view your masterpieces.

Selecting a Web Hosting Provider
Despite my just telling you that you can work through all these lessons without having a web

server, having a web server is the recommended method for continuing. Don’t worry; obtaining

a hosting provider is usually a quick, painless, and relatively inexpensive process. In fact, you can

get your own domain name and a year of web hosting for just slightly more than the cost of the

lessons you are reading now.

If you type web hosting provider in your search engine of choice, you will get millions of hits and

an endless list of sponsored search results (also known as ads). Even if you are looking at a man-

aged list of hosting providers, it can be overwhelming—especially if all you are looking for is a

place to host a simple website for yourself or your company or organization.

You’ll want to narrow your search when looking for a provider and choose one that best meets

your needs. Some selection criteria for a web hosting provider follow:

 N Reliability/server “uptime”—If you have an online presence, you want to make sure people

can actually get there consistently.

 N Customer service—Look for multiple methods for contacting customer service (phone,

email, chat), as well as online documentation for common issues.

 N Server space—Does the hosting package include enough server space to hold all the

 multimedia files (images, audio, video) you plan to include in your website (if any)?

 N Bandwidth—Does the hosting package include enough bandwidth that all the people

 visiting your site and downloading files can do so without your having to pay extra?

 N Domain name purchase and management—Does the package include a custom domain

name, or must you purchase and maintain your domain name separately from your hosting

account?

 N Price—Do not overpay for hosting. You will see a wide range of prices offered and should

immediately wonder, “What’s the difference?” Often the difference has little to do with the

quality of the service and everything to do with company overhead and what the company

thinks it can get away with charging people. A good rule of thumb is that if you are paying

more than $75 per year for a basic hosting package and domain name, you are probably

paying too much.

Here are three reliable web hosting providers whose basic packages contain plenty of server space

and bandwidth (as well as domain names and extra benefits) at a relatively low cost:

Selecting a Web Hosting Provider 7

NOTE

The authors have used all these providers (and then some) over the years and have no problem
 recommending any of them. Julie predominantly uses DailyRazor as a web hosting provider,
 especially for advanced development environments, while Jennifer tends to use Bluehost.

 N A Small Orange (www.asmallorange.com)—The Tiny and Small shared hosting packages

are perfect starting places for a new web content publisher.

 N DailyRazor (www.dailyrazor.com)—Its website hosting package is full featured and reliable.

 N Bluehost (www.bluehost.com)—The Basic shared hosting package is suitable for many per-

sonal and small business websites.

If you don’t go with any of these web hosting providers, you can at least use their basic package

descriptions as a guideline as you shop around.

One feature of a good hosting provider is that it provides a “control panel” for you to manage

aspects of your account. Figure 1.3 shows the control panel for a hosting account at DailyRazor.

Many web hosting providers offer this particular control panel software (called cPanel) or another

control panel that is similar in design—with clearly labeled icons leading to tasks you can perform

to configure and manage your account.

FIGURE 1.3
A sample control panel.

http://www.asmallorange.com
http://www.dailyrazor.com
http://www.bluehost.com

8 LESSON 1: Understanding How the Web Works

You might never need to use your control panel, but having it available to you simplifies the

installation of databases and other software, the viewing of web statistics, and the addition of

email addresses (among many other features). If you can follow instructions, you can manage

your own web server—no special training required.

Testing with Multiple Web Browsers and
Devices
Now that we’ve just discussed the process of web content delivery and the acquisition of a web

server, it might seem a little strange to step back and talk about testing your websites with mul-

tiple web browsers and devices. However, before you go off and learn all about creating websites

with HTML and CSS, do so with this very important statement in mind: Every visitor to your web-

site will potentially use hardware and software configurations that are different from your own,

including their device types (desktop, laptop, tablet, phone), operating systems (Windows, Mac,

Android, iOS), screen resolutions, browser types, browser window sizes, and connection speeds.

Remember that you cannot control any aspect of what your visitors use when they view your site.

So just as you’re setting up your web hosting environment and getting ready to work, think about

downloading several web browsers so that you have a local test suite of tools available to you.

Let us explain why this is important.

Although all web browsers process and handle information in the same general way, some specific

differences among them result in things not always looking the same in different browsers. Even

users of the same version of the same web browser can alter how a page appears by choosing

 different display options and/or changing the size of their viewing windows. All the major web

browsers allow users to override the background colors and fonts the web page author specifies

with those of their own choosing. Screen resolution, window size, and optional toolbars can also

change how much of a page someone sees when it first appears on their screens. You can ensure

only that you write standards-compliant HTML and CSS.

NOTE

In Part IV, “Responsive Web Design,” you’ll learn about the concept of responsive web design, in
which the design of a site shifts and changes automatically depending on the user’s behavior and
viewing environment (screen size, device, and so on).

Do not, under any circumstances, spend hours on end designing something that looks perfect

only on your own computer—unless you are willing to be disappointed when you look at it on your

friend’s computer, on the computer in the coffee shop down the street, or on your iPhone.

You should always test your websites with as many of these web browsers as possible:

 N Apple Safari (https://www.apple.com/safari/) for Mac

 N Google Chrome (https://www.google.com/chrome/) for Mac, Windows, and Linux/UNIX

https://www.apple.com/safari/
https://www.google.com/chrome/

Creating a Sample File 9

 N Mozilla Firefox (https://www.mozilla.com/firefox/) for Mac, Windows, and Linux/UNIX

 N Microsoft Edge (https://www.microsoft.com/edge/) for Windows

 N Opera (https://www.opera.com) for Mac, Windows, and Linux/UNIX

Now that you have a development environment set up, or at least some idea of the type you’d like

to set up in the future, let’s move on to creating a test file.

Creating a Sample File
Before you actually create a file, take a look at Listing 1.1. This listing represents a simple piece

of web content—a few lines of HTML that print "Hello World! Welcome to My Web
Server." in large bold letters on two lines centered within the browser window. You’ll learn

more about the HTML and CSS used within this file as you read future lessons.

LISTING 1.1 Our Sample HTML File

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hello World!</title>
 </head>
 <body>
 <h1 style="text-align: center;">Hello World!

 Welcome to My Web Server.</h1>
 </body>
</html>

To make use of this content, open a text editor of your choice, such as Notepad (on Windows) or

TextEdit (on a Mac). Do not use WordPad, Microsoft Word, or other full-featured word processing

software because those programs create different sorts of files from the plain-text files we use for

web content.

Most web designers don’t use Notepad or TextEdit for writing web pages. Instead, they use editors

designed specifically for the purpose. These editors give you more features to make it easy to write

and design web pages. The following are some of the most popular editors:

 N Coda (https://panic.com/coda/)—A text editor for Mac made specifically for editing

web pages.

 N HTML-Kit (https://www.htmlkit.com)—A popular text editor for Windows. The older

 versions are free.

https://www.mozilla.com/firefox/
https://www.microsoft.com/edge/
https://www.opera.com
https://panic.com/coda/
https://www.htmlkit.com

10 LESSON 1: Understanding How the Web Works

 N Komodo Edit (https://www.activestate.com/komodo-edit)—A free, open-source version of

the popular Komodo IDE. It runs on Windows, Mac, and Linux.

 N Notepad++ (https://notepad-plus-plus.org)—A free, open-source editor for Windows.

 N Sublime Text (https://sublimetext.com)—A popular editor for all platforms that also has a

healthy ecosystem of free plug-ins.

Once you’ve decided on the editor you want to use, type the content that you see in Listing 1.1

and then save the file, using sample.html as the filename. The .html extension tells the web

server that your file is written in HTML. When the file contents are sent to the web browser that

requests it, the browser will also know that it is HTML and will render it appropriately.

Now that you have a sample HTML file to use—and hopefully somewhere to put it, such as a web

hosting account—let’s get to publishing your web content.

Using FTP to Transfer Files
As you’ve learned so far, you have to put your web content on a web server to make it accessible

to others. This process typically occurs by using File Transfer Protocol (FTP). To use FTP, you need an

FTP client—a program used to transfer files from your computer to a web server.

FTP clients require three pieces of information to connect to your web server; this information will

have been sent to you by your hosting provider after you set up your account:

 N The hostname, or address, to which you will connect

 N Your account username

 N Your account password

When you have this information, you are ready to use an FTP client to transfer content to your

web server.

Selecting an FTP Client
All FTP clients generally use the same type of interface. Figure 1.4 shows an example of FireFTP,

which is an FTP client used with the Firefox web browser. The directory listing of the local machine

(your computer) appears on the left of the screen, and the directory listing of the remote machine

(the web server) appears on the right. Typically, you see right arrow and left arrow buttons, as

shown in Figure 1.4. The right arrow sends selected files from your computer to your web server;

the left arrow sends files from the web server to your computer. Many FTP clients also enable you

to simply select files and then drag and drop them to the target machines.

https://www.activestate.com/komodo-edit
https://notepad-plus-plus.org
https://sublimetext.com

11Using FTP to Transfer Files

FIGURE 1.4
The FireFTP interface.

NOTE

Many web editing programs include a built-in FTP client. If you are planning on using a web editing
 program, find out if it does before you download (or purchase) another FTP client.

Many FTP clients are freely available to you, but you can also transfer files via the web-based File

Manager tool that is likely part of your web server’s control panel. However, that method of file

transfer typically introduces more steps into the process and isn’t nearly as streamlined (or simple)

as the process of installing an FTP client on your own machine.

Here are some popular free FTP clients:

 N Classic FTP (https://www.nchsoftware.com/classic/) for Mac and Windows

 N Cyberduck (https://cyberduck.io) for Mac

 N FileZilla (https://filezilla-project.org) for all platforms

 N Transmit (https://panic.com/transmit) for Mac

When you have selected an FTP client and installed it on your computer, you are ready to upload

and download files from your web server. In the next section, you’ll see how this process works,

using the sample file from Listing 1.1.

https://www.nchsoftware.com/classic/
https://cyberduck.io
https://filezilla-project.org
https://panic.com/transmit

12 LESSON 1: Understanding How the Web Works

Using an FTP Client
The following steps show how to use Transmit to connect to your web server and transfer a file.

However, all FTP clients use similar interfaces, so if you understand the following steps, you should

be able to use any FTP client.

Remember that you first need the hostname, the account username, and the account password.

When you have them, follow these steps:

 1. Start the Transmit program and click the FTP tab. You are prompted to fill out information

for the site to which you want to connect, as shown in Figure 1.5.

FIGURE 1.5
Connecting to a new site in Transmit.

 2. Fill in each of the items shown in Figure 1.5, as described here:

 N The Server is the FTP address of the web server to which you need to send your

web pages. Your hosting provider will have given you this address. It probably is

 yourdomain.com, but check the information you received when you signed up for

 service.

 N Complete the User Name field and the Password field using the information your

hosting provider gave you.

http://yourdomain.com

13Using FTP to Transfer Files

 N Leave the Initial Path field blank for now. You learn more about this later in the

 lesson.

 N Leave the Port field set to 21 and choose FTP unless your hosting provider specified to

use SSL or TLS/SSL.

 N When you’re finished with the settings, click Connect to go to the FTP server. You can

click the plus icon if you want to add this server to your favorites.

You now see a countdown timer in the lower right, indicating that Transmit is attempting to

connect to the web server. Upon successful connection, you see an interface like the one in

Figure 1.6, showing the contents of the local directory on the left and the contents of your

web server on the right.

FIGURE 1.6
A successful connection to a remote web server via Transmit.

You are now almost ready to transfer files to your web server. All that remains is to change

directories to what is called the document root of your web server. The document root of

your web server is the directory that is designated as the top-level directory for your web

content—the starting point of the directory structure, which you’ll learn more about later

in this lesson. Often, this directory is named public_html, www (because www has been

created as an alias for public_html), or htdocs. You do not have to create this directory;

your hosting provider will have created it for you.

14 LESSON 1: Understanding How the Web Works

 3. Double-click the document root directory name to open it. The display shown on the right

of the FTP client interface changes to show the contents of this directory. (It will probably

be empty at this point, unless your web hosting provider has put placeholder files in that

 directory on your behalf.)

 4. The goal is to transfer the sample.html file you created earlier from your computer to

the web server, so find the file in the directory listing on the left of the FTP client interface

 (navigate if you have to).

 5. Click the file and drag it to the right side of the window to send the file to the web server.

(Alternatively, you can double-click the file to transfer it.) When the file transfer completes,

the right side of the client interface refreshes to show you that the file has made it to its

 destination.

 6. Go to the File menu and choose Disconnect to close the connection and then exit the

Transmit program.

These steps are conceptually similar to the steps you take anytime you want to send files to your

web server via FTP. You can also use your FTP client to create subdirectories on the remote web

server. To create a subdirectory using Transmit, right-click in the directory you want the folder to

be in and choose New Folder. Different FTP clients have different interface options for achieving

the same goal.

Understanding Where to Place Files on the
Web Server
An important aspect of maintaining web content is determining how you will organize that

content—not only for the user to find but also for you to maintain on your server. Putting files in

directories helps you manage those files.

How you name and organize directories on your web server and whether you develop rules for

file maintenance are completely up to you. Maintaining a well-organized server makes your

 management of its content more efficient in the long run.

Basic File Management
As you browse the Web, you might have noticed that URLs change as you navigate through web-

sites. For instance, if you’re looking at a company’s website and you click on graphical navigation

leading to the company’s products or services, the URL probably changes from

http://www.companyname.com/

to

http://www.companyname.com/products/

http://sample.html
http://www.companyname.com/
http://www.companyname.com/products/

Understanding Where to Place Files on the Web Server 15

or

http://www.companyname.com/services/

In the preceding section, we used the term document root without really explaining what that is

all about. The document root of a web server is essentially the trailing slash in the full URL. For

instance, if your domain is yourdomain.com and your URL is http://www.yourdomain.com/, the

document root is the directory represented by the trailing slash (/). The document root is the start-

ing point of the directory structure you create on your web server; it is the place where the web

server begins looking for files requested by the web browser.

If you put the sample.html file in your document root as previously directed, you will be able to

access it via a web browser at the following URL:

http://www.yourdomain.com/sample.html

If you entered this URL into your web browser, you would see the rendered sample.html file, as

shown in Figure 1.7.

FIGURE 1.7
The sample.html file, accessed via a web browser.

However, if you created a new directory within the document root and put the sample.html file

in that directory, the file would be accessed at this URL:

http://www.yourdomain.com/newdirectory/sample.html

If you put the sample.html file in the directory you originally saw upon connecting to your

server—that is, if you did not change directories and place the file in the document root—the

sample.html file would not be accessible from your web server at any URL. The file would still

http://yourdomain.com
http://sample.html
http://sample.html
http://sample.html
http://sample.html
http://sample.html
http://sample.html
http://www.companyname.com/services/
http://www.yourdomain.com/
http://www.yourdomain.com/sample.html
http://www.yourdomain.com/newdirectory/sample.html

16 LESSON 1: Understanding How the Web Works

be on the machine that you know as your web server, but because the file is not in the document

root—where the server software knows to start looking for files—it will never be accessible to

 anyone via a web browser.

The bottom line? Always navigate to the document root of your web server before you start

 transferring files. And if your FTP client allows, change the default starting directory to your

 document root, just to be extra careful.

This is especially true with graphics and other multimedia files. A common directory on web servers

is called images, where, as you can imagine, all the image assets are placed for retrieval. Other

popular directories include css for style sheet files (if you are using more than one) and js for

external JavaScript files. Alternatively, if you know that you will have an area on your website where

visitors can download many types of files, you might simply call that directory downloads.

Whether it’s a ZIP file containing your art portfolio or an Excel spreadsheet with sales numbers,

it’s often useful to publish files on the Internet that aren’t simply web pages. To make available

on the Web a file that isn’t an HTML file, just upload the file to your website as if it were an HTML

file, following the instructions earlier in this lesson for uploading. After the file is uploaded to the

web server, you can create a link to it (as you’ll learn in Lesson 7, “Using External and Internal

Links”). In other words, your web server can serve much more than HTML.

Here’s a sample of the HTML code that you will learn more about later in these lessons. The

 following code would be used for a file named artfolio.zip, located in the downloads

 directory of your website, and with link text that reads Download my art portfolio!:

Download my art portfolio!

Using an Index Page
When you think of an index, you probably think of the section in the back of a book that tells

where to look for various keywords and topics. The index file in a web server directory can serve a

similar purpose—if you design it that way. In fact, that’s where the name originates.

The index.html file (or just index file, as it’s usually referred to) is the name you give to the

page you want people to see as the default file when they navigate to a specific directory in your

website.

Another function of the index page is that users who visit a directory on your site that has an

index page but who do not specify that page will still land on the main page for that section of

your site—or for the site itself.

For instance, you can type either of the following URLs and land on Apple’s iPhone informational

page:

http://www.apple.com/iphone/

http://www.apple.com/iphone/index.html

http://index.html
http://www.apple.com/iphone/
http://www.apple.com/iphone/index.html

Distributing Content Without a Web Server 17

If there were no index.html page in the iphone directory, the results would depend on the

configuration of the web server. If the server is configured to disallow directory browsing, the

user would see a “Directory Listing Denied” message when attempting to access the URL without

a specified page name. However, if the server is configured to allow directory browsing, the user

would see a list of the files in that directory.

Your hosting provider will already have determined these server configuration options. If your

hosting provider enables you to modify server settings via a control panel, you can change these

settings so that your server responds to requests based on your own requirements.

Not only is the index file used in subdirectories, but it’s used in the top-level directory (or docu-

ment root) of your website as well. The first page of your website—or home page or main page,

or however you like to refer to the web content you want users to see when they first visit your

domain—should be named index.html and placed in the document root of your web server.

This ensures that when users type http://www.yourdomain.com/ into their web browsers, the

server responds with the content you intended them to see (instead of “Directory Listing Denied”

or some other unintended consequence).

Distributing Content Without a Web Server
Publishing HTML and multimedia files online is obviously the primary reason to learn HTML and

create web content. However, there are also situations in which other forms of publishing may

be useful? For example, you might want to distribute CD-ROMs, DVD-ROMs, or USB drives at a

trade show with marketing materials designed as web content—that is, hyperlinked text viewable

through a web browser but without a web server involved. You might also want to include HTML-

based instructional manuals on removable media for students at a training seminar. These are

just two examples of how HTML pages can be used in publishing scenarios that don’t involve the

Internet.

This process is called creating local sites; even though no web server is involved, these bundles

of hypertext content are still called sites. The local term comes into play because your files are

accessed locally and not remotely (via a web server).

Publishing Content Locally
Let’s assume that you need to create a local site that you want to distribute on a USB drive. Even

the cheapest USB drives hold so much data these days—and basic hypertext files are quite small—

that you can distribute an entire site and a fully functioning web browser all on one little drive.

http://index.html
http://index.html
http://www.yourdomain.com/

18 LESSON 1: Understanding How the Web Works

NOTE

Distributing a web browser isn’t required when you are creating and distributing a local site, although
it’s a nice touch. You can reasonably assume that users have their own web browsers and will open
the index.html file in a directory to start browsing the hyperlinked content. However, if you want
to distribute a web browser on the USB drive, go to https://portableapps.com/ and look for Portable
Firefox or Portable Chrome.

You can think of the directory structure of your USB drive just as you would the directory structure

of your web server. The top level of the USB drive directory structure can be your document root.

Or if you are distributing a web browser along with the content, you might have two directories—

for example, one named browser and one named content. In that case, the content directo-

ry would be your document root. Within the document root, you could have additional subfolders

in which you place content and other multimedia assets.

It’s as important to maintain good organization with a local site as it is with a remote website so

that you avoid broken links in your HTML files. You’ll learn more about the specifics of linking

files in Lesson 7.

Publishing Content on a Blog
You might have a blog hosted by a third party, such as WordPress, Tumblr, or Blogger, and thus

have already published content without having a dedicated web server or even knowing any

HTML. These services offer visual editors in addition to source editors, meaning that you can type

your words and add presentational formatting such as bold, italics, or font colors without know-

ing the HTML for these actions. The content becomes actual HTML when you click the Publish but-

ton in these editors.

However, with the knowledge you will acquire from these lessons, your blogging will be enhanced

because you will be able to use the source editor for your blog post content and blog templates,

and this will afford you more control over the look and feel of that content. These actions occur

differently from the process you learned for creating an HTML file and uploading it via FTP to

your own dedicated web server, but we would be remiss if we did not note that blogging is, in fact,

a form of web publishing.

Tips for Testing Web Content
Whenever you transfer files to your web server or place them on removable media for local brows-

ing, you should test every page thoroughly. The following list helps you ensure that your web con-

tent behaves the way you expect. Note that some of the terms might be unfamiliar to you at this

point, but come back to this list as you progress through these lessons and create larger projects:

 N Before you transfer your files, test them locally on your machine to ensure that the links

work and the content reflects the visual design you intended. After you transfer the pages to

a web server or removable device, test them all again.

http://index.html
https://portableapps.com/

Summary 19

 N Perform these tests with as many browsers and devices as you can—Chrome, Firefox,

Microsoft Edge, Opera, and Safari is a good list—and on both Mac and Windows platforms,

as well as mobile devices like phones and tablets. If possible, check at low resolution

(800 × 600) and high resolution (1920 × 1080).

 N Turn off auto image loading in your web browser before you start testing so that you can see

what each page looks like without the graphics. Check your alt text and then turn image

loading back on to load the graphics and carefully review the page again.

 N Use your browser’s font size settings to look at each page in various font sizes to ensure that

your layout doesn’t fall to pieces if users override your font specifications with their own.

 N Wait for each page to completely finish loading and then scroll all the way down to make

sure all images appear where they should.

 N Time how long it takes each page to load. Use a tool like Google Page Speed

(https://developers.google.com/speed/) to make sure it isn’t too slow. Slow pages annoy

users and can get your site penalized by search engines.

If your pages pass all those tests, you can rest easy: Your site is ready for public viewing.

Summary
This lesson introduced you to the concept of using HTML to mark up text files to produce web con-

tent. You learned that HTML generates the structure, while CSS creates the look, and JavaScript

controls the behavior of the pages. You also learned that there is more to web content than just

the “page”; web content also includes image, audio, and video files. All this content lives on a

web server—a remote machine often far from your own computer. On your computer or other

device, you use a web browser to request, retrieve, and eventually display web content onscreen.

You learned the criteria to consider when determining whether a web hosting provider fits your

needs. After you have selected a web hosting provider, you can begin to transfer files to your web

server by using an FTP client, which you also learned how to do. You also learned a bit about web

server directory structures and file management, as well as the very important purpose of the

index.html file in a given web server directory. In addition, you learned that you can distrib-

ute web content on removable media, and you learned how to go about structuring the files and

directories to achieve the goal of viewing content without using a remote web server.

Finally, you learned the importance of testing your work in multiple browsers after you’ve placed

it on a web server. Writing valid, standards-compliant HTML and CSS helps ensure that your site

looks reasonably similar for all visitors, but you still shouldn’t design without receiving input from

potential users outside your development team; it is especially important to get input from others

when you are a design team of one!

https://developers.google.com/speed/
http://index.html

20 LESSON 1: Understanding How the Web Works

Q&A
 Q. I’ve looked at the HTML source of some web pages on the Internet, and it looks frighteningly

difficult to learn. Do I have to think like a computer programmer to learn this stuff?

 A. Although complex HTML pages can indeed look daunting, learning HTML is much easier
than learning actual software programming languages (such as C++ or Java). HTML is
a markup language rather than a programming language; you mark up text so that the
 browser can render the text a certain way. It requires a completely different set of thought
processes than developing a computer program. You really don’t need any experience or
skill as a computer programmer to be a web content author.

 Q. Running all the tests you recommend would take longer than creating my pages! Can’t I get

away with less testing?

 A. If your pages aren’t intended to make money or provide an important service, it’s probably
not a big deal if they look funny to some users or produce errors once in a while. In that
case, just test each page with a couple different browsers and call it a day. However, if you
need to project a professional image, there is no substitute for rigorous testing.

 Q. Seriously, who cares how I organize my web content?

 A. Believe it or not, the organization of your web content does matter to search engines and
potential visitors to your site. But overall, having an organized web server directory structure
helps you keep track of content that you are likely to update frequently. For instance, if you
have a dedicated directory for images or multimedia, you know exactly where to look for a
file you want to update—no need to hunt through directories containing other content.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. How many files would you need to store on a web server to produce a single web page with

some text and two images on it?

 2. How many requests to the server would a browser make to display a web page with some
text and two images on it?

 3. What are some of the features to look for in a web hosting provider?

 4. How many browsers should you use to test your web pages?

 5. What type of editor should you use to create web pages?

 6. What three pieces of information do you need in order to connect to your web server
via FTP?

Workshop 21

 7. What is the document root?

 8. Is it possible to publish web pages to a USB drive?

 9. What is the purpose of the index.html file?

 10. Does your website have to include a directory structure?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book:
If you go to www.informit.com/register and register this book (using ISBN 9780672338083), you
can receive free access to an online Web Edition that not only contains the complete text of this
book, but also features an interactive version of this quiz.

Answers
 1. You would need three: one for the web page itself, which includes the text and the HTML

markup, and one for each of the two images.

 2. There would be three requests to the server: one for the HTML itself and one for each of
the two images.

 3. Look for reliability, customer service, web space and bandwidth, domain name service,
 site-management extras, and price.

 4. You should test your website in as many browsers and on as many devices as possible.

 5. You should use a text editor such as Notepad or TextEdit. You can also use an editor
 specifically for writing HTML, such as Komodo Edit or Coda.

 6. You need the hostname, your account username, and your account password.

 7. The document root is the top-level directory on a web server—the trailing slash after the
domain name.

 8. Yes. This is called publishing content locally.

 9. The index.html file is typically the default file for a directory in a web server. It enables
users to access http://www.yourdomain.com/somedirectory/ without using a trailing
 filename and still end up in the appropriate place.

 10. No. Using a directory structure for file organization is completely up to you, although using
one is highly recommended because it simplifies content maintenance.

http://index.html
http://www.informit.com/register
http://index.html
http://www.yourdomain.com/somedirectory/

22 LESSON 1: Understanding How the Web Works

Exercises
 N Get your web hosting in order: Are you going to move through the lessons by viewing

files locally on your own computer, or are you going to use a web hosting provider? Note
that most web hosting providers will have you up and running the same day you pur-
chase your hosting plan. Name three possible hosting providers.

 N If you are using an external hosting provider, then use your FTP client to create a sub-
directory within the document root of your website. Paste the contents of the sample.
html file into another file named index.html, change the text between the <title>
and </title> tags to something new, and change the text between the <h1> and
</h1> tags to something new. Save the file and upload it to the new subdirectory. Use
your web browser to navigate to the new directory on your web server and ensure that
the content in the index.html file appears. Then, using your FTP client, delete the
index.html file from the remote subdirectory. Return to that URL with your web
browser, reload the page, and see how the server responds without the index.html
file in place. Name two FTP clients.

 N Using the same set of files created in the preceding exercise, place these files on a
removable media device—a CD-ROM or a USB drive, for example. Use your browser to
navigate this local version of your sample website and think about the instructions you
would have to distribute with this removable media so that others could use it.

http://sample.html
http://sample.html
http://index.html
http://index.html
http://index.html
http://index.html

LESSON 2
Structuring an HTML Document

What You’ll Learn in This Lesson:

 N How to create a simple web page in HTML

 N How to include all the HTML tags that every web page must have

 N How to organize a page with paragraphs and line breaks

 N How to organize your content with headings

 N How to use the semantic elements of HTML5

 N How to use semantic tags to indicate header and footer content

 N How to use semantic tags to indicate navigational and secondary content

 N How to use semantic tags to better structure body content

In the first lesson, you got a basic idea of the process behind creating web content and viewing

it online (or locally, if you do not yet have a web hosting provider). In this lesson, we get down

to the business of explaining the various elements that must appear in an HTML file so that it is

 displayed appropriately in your web browser.

In general, this lesson provides a summary of HTML basics and gives some practical tips to help

you make the most of your time as a web page developer. You’ll begin to dive a bit deeper into

the theory behind it all as you learn about the HTML5 elements that enable you to enhance the

semantics—the meaning—of the information that you provide in your marked-up text. You’ll

take a closer look at six elements that are fundamental to solid semantic structuring of your

 documents: <header>, <section>, <article>, <nav>, <aside>, and <footer>.

Throughout the remainder of these lessons, you will see these tags used appropriately in the

code samples, so this lesson makes sure that you have a good grasp of their meaning before you

 continue.

24 LESSON 2: Structuring an HTML Document

Getting Prepared
Here’s a review of what you need to do before you’re ready to move on in this lesson:

 1. Get a computer. We used a Mac computer to test the sample web content and capture the

figures shown in these lessons, but you can use any Windows, Mac, or Linux/UNIX machine

to create and view your web content. You can even use a tablet or smartphone, but that is

more difficult. For the purposes of these lessons, it’s best to get a computer or laptop.

 2. Get a connection to the Internet. Whether you have a dial-up, wireless, or broadband con-

nection doesn’t matter for the creation and viewing of your web content, but the faster the

connection, the better for the overall experience. The Internet service provider (ISP), school,

or business that provides your Internet connection can help you with the details of setting it

up properly. In addition, many public spaces such as coffee shops, bookstores, and libraries

offer free wireless Internet service that you can use if you have a laptop computer with Wi-Fi

network support.

 3. Get web browser software. This is the software your computer needs in order to retrieve

and display web content. As you learned in the first lesson, the most popular browsers (in

alphabetical order) are Apple Safari, Google Chrome, Microsoft Edge, Mozilla Firefox, and

Opera. It’s a good idea to install several of these browsers so that you can experiment and

make sure your content looks consistent across them all; you can’t make assumptions about

the browsers other people are using.

 4. Explore! Use a web browser to look around the Internet for websites that are similar in

content or appearance to those you’d like to create. Note what frustrates you about

some pages, what attracts you and keeps you reading others, and what makes you come

back to some pages over and over again. If a particular topic interests you, consider

searching for it using a popular search engine such as Google (www.google.com) or Bing

(www.bing.com).

CAUTION

Although all web browsers process and handle information in the same general way, some
 specific differences among them mean that things do not always look the same in differ-
ent browsers. Be sure to check your web pages in multiple browsers to make sure they look
 reasonably consistent.

This is doubly true for mobile devices. More and more people use mobile devices such as phones
and tablets to access web pages, and the browsers on those devices can display your pages in
surprising ways. Always test your pages in as many different devices and screen sizes as possible,
along with the different web browsers.

http://www.google.com
http://www.bing.com

Getting Started with a Simple Web Page 25

NOTE

As discussed in the first lesson, if you plan to put your web content on the Internet (as opposed to
publishing it on CD-ROM or a local intranet), you need to transfer it to a computer that is connected
to the Internet 24 hours a day. The same company or school that provides you with Internet access
might also provide web space; if not, you might need to pay a hosting provider for the service.

Getting Started with a Simple Web Page
In the first lesson, you learned that a web page is just a text file that is marked up by (or

 surrounded by) HTML codes that tell the browser how to display the text. To create these text files,

use a text editor such as Notepad (on Windows), TextEdit (on a Mac), or any of the other suggested

editors; do not use WordPad, Microsoft Word, or other full-featured word-processing software

because those create different sorts of files from the plain-text files we use for web content.

CAUTION

We reiterate this point because it is very important to both the outcome and the learning process
itself: Do not create your first HTML file with Microsoft Word or any other HTML-compatible word
processor; most of these programs attempt to rewrite your HTML for you in strange ways, potentially
leaving you totally confused. The same holds true when you use Microsoft Word and “Save As”
HTML: You are likely to get a verbose and noncompliant file full of HTML that will not validate and
will cause you headaches to edit.

In addition, we recommend that you not use a graphical, what-you-see-is-what-you-get (WYSIWYG)
 editor, such Adobe Dreamweaver. You’ll likely find it easier and more educational to start with a
simple text editor while you’re starting to learn HTML.

NOTE

As mentioned in the first lesson, most professional web developers use a web page editor designed
specifically for building web pages and web applications. We prefer to use Coda (for Mac) but
Komodo Edit (https://www.activestate.com/komodo-edit) is a free editor that has a lot of useful
features for writing HTML, CSS, and JavaScript. And it’s available for Windows, Mac, and Linux/UNIX.
These are both text editors and do not have the drawbacks of WYSIWYG editors that are mentioned
in the previous Caution.

Before you begin working, you should start with some text that you want to put on a web page:

 1. Find (or write) a few paragraphs of text about yourself, your family, your company, your

softball team, or some other subject in which you’re interested.

 2. Save this text as plain, standard ASCII text. Notepad (on Windows) and most other simple

text editors automatically save files as plain text, but if you’re using another program, you

might need to choose this file type as an option (after selecting File, Save As).

https://www.activestate.com/komodo-edit

26 LESSON 2: Structuring an HTML Document

CAUTION

If you’ve chosen to use TextEdit on a Mac computer, you need to go into the Preferences dialog
box and choose Plain Text in the New Document pane. It’s also a good idea to turn off smart copy/
paste, smart quotes, and smart dashes so that your web page files are written correctly.

As you go through this lesson, you will add HTML markup (called tags) to the text file, thus

 making it into web content.

When you save files containing HTML tags, always give them a name ending in .html. This is

important; if you forget to type the .html at the end of the filename when you save the file, most

text editors will give it some other extension (such as .txt). If that happens, you might not be

able to find the file when you try to look at it with a web browser; if you find it, it certainly won’t

display properly. In other words, web browsers expect a web page file to have the file extension

.html and to be in plain-text format.

When visiting websites, you might also encounter pages with the file extension .htm, which is

an acceptable file extension to use. You might find other file extensions used on the Web, such

as .jsp (Java Server Pages), .asp (Microsoft Active Server Pages), or .php (PHP: Hypertext

Preprocessor), but these file types use server-side technologies that are beyond the scope of HTML

and these lessons. However, those files also contain HTML in addition to the programming lan-

guage. The programming code in those files is compiled on the server side, and all you would see

if you viewed the source in a web browser would be the HTML output. If you looked at the source

files, you would likely see some intricate weaving of programming and markup codes.

Listing 2.1 shows an example of text you can type and save to create a simple HTML page. If you

opened this file with Chrome, you would see the page shown in Figure 2.1. Every web page you

create must include a <!doctype> declaration, as well as <html></html>, <head></head>,

<title></title>, and <body></body> tag pairs.

LISTING 2.1 The <html>, <head>, <title>, and <body> Tags

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>The First Web Page</title>
 </head>
 <body>
 <p>
 In the beginning, Tim created the HyperText Markup Language.
 The Internet was without form and void, and text was upon the
 face of the monitor and the Hands of Tim were moving over the
 face of the keyboard. And Tim said, Let there be links; and
 there were links. And Tim saw that the links were good; and
 Tim separated the links from the text. Tim called the links

http://.html
http://.html
http://.html

Getting Started with a Simple Web Page 27

 Anchors, and the text He called Other Stuff. And the whole
 thing together was the first Web Page.
 </p>
 </body>
</html>

FIGURE 2.1
When you save the text in Listing 2.1 as an HTML file and view it with a web browser, only the actual title and
body text are displayed.

In Listing 2.1, as in every HTML page, the words starting with < and ending with > are actually

coded commands. These coded commands are called HTML tags because they “tag” pieces of text

and tell the web browser what kind of text it is. This allows the web browser to display the text

appropriately. HTML tags can be written in uppercase, lowercase, or a combination of both. But

best practices say you should use all lowercase letters for your tags.

The first line in the document is the document type declaration; you are declaring that it is

html (specifically, HTML5) because html is the value used to declare a document as HTML5

in the <!doctype> tag. We have written this tag in all lowercase, but many people write it

<!DOCTYPE> to differentiate it from the actual HTML in the document.

TRY IT YOURSELF

Creating and Viewing a Basic Web Page

Before you learn the meaning of the HTML tags used in Listing 2.1, you might want to see exactly
how we went about creating and viewing the document itself. Follow these steps:

 1. Type all the text in Listing 2.1, including the HTML tags, in Windows Notepad (or use
TextEdit on a Mac or another text editor of your choice).

 2. Select File, Save As. Be sure to select plain text (or ASCII text) as the file type.

28 LESSON 2: Structuring an HTML Document

If you have obtained a web hosting account, you could use FTP at this point to transfer the

firstpage.html file to the web server. In fact, from this lesson forward, the instructions assume

that you have a hosting provider and are comfortable sending files back and forth via FTP; if

that is not the case, you should review the first lesson before moving on. Alternatively, if you are

 consciously choosing to work with files locally (without a web host), be prepared to adjust the

instructions to suit your particular needs (such as ignoring the instructions “transfer the files” and

“type in the URL”).

NOTE

You don’t need to be connected to the Internet to view a web page stored on your own computer. By
default, your web browser tries to connect to the Internet every time you start it, which makes sense
most of the time. However, this can be a hassle if you’re developing pages locally on your hard drive
(offline), and you keep getting errors about a page not being found. If you have a full-time web con-
nection via a LAN, a cable modem, Wi-Fi, or DSL, this is a moot point because the browser will never
complain about being offline. Otherwise, the appropriate action depends on your breed of browser;
check the options under your browser’s Tools menu.

HTML Tags Every Web Page Must Have
The time has come for the secret language of HTML tags to be revealed to you. When you under-

stand this language, you will have creative powers far beyond those of other humans. Don’t tell

the other humans, but it’s really pretty easy.

The first line of code is the document type declaration; in HTML5, this is simply

<!doctype html>

This declaration identifies the document as being HTML5, which then ensures that web browsers

know what to expect and prepare in order to render content in HTML5.

 3. Name the file firstpage.html.

 4. Choose the folder on your hard drive where you want to keep your web pages—and
 remember which folder you choose! Click the Save or OK button to save the file.

 5. Now start your favorite web browser. (Leave your text editor running, too, so you can easily
switch between viewing and editing your page.)

 In Microsoft Edge, select File, Open and click Browse. If you’re using Firefox or Safari, select
File, Open File. Navigate to the appropriate folder and select the firstpage.html file.
Some browsers and operating systems also enable you to drag and drop the firstpage.
html file onto the browser window to view it.

Voilà! You should see the page shown in Figure 2.1.

http://firstpage.html
http://firstpage.html
http://firstpage.html
http://firstpage.html
http://firstpage.html

HTML Tags Every Web Page Must Have 29

Many HTML tags have two parts: an opening tag, which indicates where a piece of text begins,

and a closing tag, which indicates where the piece of text ends. A closing tag starts with

a / (forward slash) just after the < symbol.

Another type of tag is the empty tag, which is different in that it doesn’t include a pair of matching

opening and closing tags. Instead, an empty tag consists of a single tag that starts with < and can

end with / just before the > symbol. Although the ending slash is no longer explicitly required in

HTML5, it does aid in compatibility with XHTML: If you have a pile of old XHTML in your website,

it will not break while you’re in the process of upgrading it. In these lessons, we will be leaving the

/ out of empty tags unless there is an explicit need for it.

Following is a quick summary of these three tags, just to make sure you understand the role each

plays:

 N An opening tag is an HTML tag that indicates the start of an HTML command; the text

affected by the command appears after the opening tag. Opening tags always begin with

< and end with >, as in <html>.

 N A closing tag is an HTML tag that indicates the end of an HTML command; the text affected

by the command appears before the closing tag. Closing tags always begin with </ and end

with >, as in </html>.

 N An empty tag is an HTML tag that issues an HTML command without enclosing any text in

the page. Empty tags always begin with < and end with > and have no closing tag, as in

<meta>. Some designers add a closing /> to empty tags, as in <meta />, but this is not

required in HTML5.

NOTE

You no doubt noticed in Listing 2.1 that there is some extra code associated with the <html> tag.
This code consists of the language attribute (lang), which is used to specify additional information
related to the tag. In this case, it specifies that the language of the text within the HTML is English.
If you are writing in a different language, replace the en (for English) with the language identifier
 relevant to you. The <meta> tag also has an attribute (charset) with a value (utf-8).

For example, the <body> tag in Listing 2.1 tells the web browser where the actual body con-

tent of the page begins, and </body> indicates where it ends. Everything between the <body>

and </body> tags appears in the main display area of the web browser window, as shown in

Figure 2.1.

The very top of the browser window (refer to Figure 2.1) shows title text, which is any text that is

located between <title> and </title>. The title text also identifies the page on the browser’s

Bookmarks or Favorites menu, depending on which browser you use. It’s important to provide

titles for your pages so that visitors to the page can properly bookmark them for future reference;

search engines also use titles to provide links to search results.

30 LESSON 2: Structuring an HTML Document

You define the character set used by the page with the tag <meta charset="utf-8">. This tag

defines the character set the page will be written in—in this case UTF-8. This tag should always

come right after the opening <head> tag in your HTML documents. Without it, your pages could

become vulnerable to hackers. Most of the web pages you will create in these lessons would be

secure without this line, but it’s a good habit to always include it. Then when you start creating

web applications that could be vulnerable, you won’t forget it.

You will use the <body> and <title> tag pairs in every HTML page you create because every

web page needs a title and body text. You will also use the <html> and <head> tag pairs, which

are the other two tags shown in Listing 2.1. Putting <html> at the very beginning of a document

simply indicates that the document is a web page. The </html> at the end indicates the end of

the web page.

NOTE

Most web browsers attempt to display anything that appears after the opening <body> tag—even if
it comes after the closing </html> tag. Don’t assume that you can hide content by placing it out-
side the <html> tag pair. You will learn how to hide content from being displayed in later lessons.

Within a page, there is a head section and a body section. Each section is identified by <head>

and <body> tags. The idea is that information in the head of the page somehow describes the

page but isn’t actually displayed by a web browser. Information placed in the body, however, is

displayed by a web browser. The <head> tag always appears near the beginning of the HTML

code for a page, just after the opening <html> tag.

NOTE

You might find it convenient to create and save a bare-bones page (also known as a skeleton page,
or template) with just the doctype, character set and opening and closing <html>, <head>,
<title>, and <body> tags, similar to the document in Listing 2.1. You can then open that docu-
ment as a starting point whenever you want to make a new web page and save yourself the trouble
of typing all those obligatory tags every time.

The <title> tag pair used to identify the title of a page appears within the head of the page,

which means it is placed after the opening <head> tag and before the closing </head> tag. In

the upcoming lessons, you’ll learn about some other advanced header information that can go

between <head> and </head>, such as style sheet rules for formatting the page.

The <p> tag in Listing 2.1 encloses a paragraph of text. You should enclose your chunks of text

in the appropriate container elements whenever possible; you’ll learn more about container

 elements in future lessons.

Organizing a Page with Paragraphs and Line Breaks 31

Organizing a Page with Paragraphs
and Line Breaks
When a web browser displays HTML pages, it pays no attention to line endings or the number

of spaces between words. For example, the top version of the poem in Figure 2.2 appears with a

single space after each word, even though that’s not how it’s entered in Listing 2.2. This is because

extra whitespace in HTML code is automatically reduced to a single space. In addition, when the

text reaches the edge of the browser window, it automatically wraps to the next line, no matter

where the line breaks were in the original HTML file.

FIGURE 2.2
When the HTML in Listing 2.2 is viewed as a web page, line and paragraph breaks appear only where there
are
 and <p> tags.

LISTING 2.2 HTML Containing Paragraph and Line Breaks

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>The Advertising Agency Song</title>
 </head>
 <body>
 <p>
 When your client's hopping mad,
 put his picture in the ad.

 If he still should prove refractory,
 add a picture of his factory.
 </p>

32 LESSON 2: Structuring an HTML Document

 <hr>
 <p>
 When your client's hopping mad,

 put his picture in the ad.
 </p>
 <p>
 If he still should prove refractory,

 add a picture of his factory.
 </p>
 </body>
</html>

You must use HTML tags if you want to control where line and paragraph breaks actually appear.

When text is enclosed within the <p></p> container tags, a line break is assumed after the clos-

ing tag. In later lessons, you’ll learn to control the height of the line break by using CSS. The

tag forces a line break within a paragraph. Unlike the other tags you’ve seen so far,
 doesn’t

require a closing </br> tag; this is one of those empty tags discussed earlier.

NOTE

If a closing slash isn’t required for empty elements, you might ask why many people still include
it. One reason is that over the years, closing tags went from being not required, to required, to not
required (again), and many people are used to using the perfectly valid but no longer required closing
slash. Another reason is that because that middle period was relatively long, a lot of code editors,
code generators, and templates use the closing slash, so you will see it used more often than not.
It doesn’t matter which way you choose to write because both ways are valid; just be sure that what-
ever coding style you follow, you are consistent in its use.

The poem in Listing 2.2 and Figure 2.2 shows the
 and <p> tags used to separate the lines

and verses of an advertising agency song. You might have also noticed the <hr> tag in the list-

ing, which causes a horizontal line (or “rule,” in design terminology) to appear on the page (refer

to Figure 2.2). Inserting a horizontal rule with the <hr> tag also causes a line break, even if you

don’t include a
 tag along with it. Like
, the <hr> horizontal rule tag is an empty tag

and, therefore, never gets a closing </hr> tag.

NOTE

In HTML5 it is no longer required to including the closing </p> tag on your paragraphs. The closing
tag is assumed based on the appearance of another opening <p> tag or other block-level element.
But just as with the closing slash in empty tags, many people prefer to include the closing </p>
on their paragraphs. It doesn’t matter which way you choose to write your paragraphs because both
ways are valid. In these lessons, we close the paragraphs so that we have a visual reminder in the
HTML of where any applied styles should end.

Organizing Your Content with Headings 33

Organizing Your Content with Headings
When you browse web pages on the Internet, you’ll notice that many of them have a heading

at the top that appears larger and bolder than the rest of the text. Listing 2.3 is sample code

and text for a simple web page containing an example of a heading as compared to normal

paragraph text. Any text between the <h1> and </h1> tags will appear as a large heading. In

 addition, <h2> and <h3> and so on, as far down as <h6>, make progressively smaller headings.

Formatting Text in HTML

Try your hand at formatting a passage of text as proper HTML:

 1. Add <html><head><meta charset="utf-8"><title>My Title</title>
</head><body> to the beginning of the text (using your own title for your page instead of
My Title). Also include the document type declaration at the top of the page that takes
care of meeting the requirements of standard HTML.

 2. Add </body></html> to the very end of the text.

 3. Add a <p> tag at the beginning of each paragraph and a </p> tag at the end of each
 paragraph.

 4. Use
 tags anywhere you want single-spaced line breaks.

 5. Use <hr> to draw horizontal rules separating major sections of text or wherever you’d like
to see a line across the page.

 6. Save the file as mypage.html (using your own filename instead of mypage).

 CAUTION

If you are using a word processor to create the web page, be sure to save the HTML file in plain-text
or ASCII format. But as we’ve reiterated several times, you should really be using a text editor such
as Notepad or TextEdit or a web page editor such as Komodo Edit or Coda.

 7. Open the file in a web browser to see your web content. (Send the file via FTP to your web
hosting account, if you have one.)

 8. If something doesn’t look right, go back to the text editor to make corrections and save the
file again (and send it to your web hosting account, if applicable). Click Reload/Refresh in
the browser to see the changes you made.

TRY IT YOURSELF

http://mypage.html

34 LESSON 2: Structuring an HTML Document

LISTING 2.3 Heading Tags

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My Widgets</title>
 </head>
 <body>
 <h1>My Widgets</h1>
 <p>My widgets are the best in the land. Continue reading to
 learn more about my widgets.</p>

 <h2>Widget Features</h2>
 <p>If I had any features to discuss, you can bet I'd do
 it here.</p>

 <h3>Pricing</h3>
 <p>Here, I would talk about my widget pricing.</p>

 <h3>Comparisons</h3>
 <p>Here, I would talk about how my widgets compare to my
 competitor's widgets.</p>
 </body>
</html>

NOTE

By now, you’ve probably caught on to the fact that HTML code is often indented by its author to reveal
the relationships between different parts of the HTML document, as well as for simple ease of read-
ing. This indentation is entirely optional; you could just as easily run all the tags together with no
spaces or line breaks, and they would still look fine when viewed in a browser. You will often see this
condensed style used on pages that have been optimized for speed. The indentations are for you
and other human editors so that you can quickly look at a page full of code and understand how it
fits together. Indenting your code is another good web design habit and ultimately makes your pages
easier to maintain, both for yourself and for anyone else who might pick up where you leave off.

As you can see in Figure 2.3, the HTML that creates headings couldn’t be simpler. In this exam-

ple, the phrase “My Widgets” is prominently displayed using the <h1> tag. To create the first

(level 1) heading, just put an <h1> tag at the beginning and an </h1> tag at the end of the

text you want to use as a heading. For a second-level (level 2) heading—for information that is

of lesser importance than the title—use the <h2> and </h2> tags around your text. For content

that should appear even less prominently than a level 2 heading, use the <h3> and </h3> tags

around your text.

Organizing Your Content with Headings 35

NOTE

Most people think of the heading tags in terms of how large or small they are: The level 1 headings
are bigger than level 2, which are bigger than level 3, and so on. But it’s better to think of them as
you might an outline of a page. The level 1 heading defines the entire page. Level 2 headings define
sections within the page. Level 3 headings define areas within the level 2 sections. You can go even
deeper with level 4, 5, and 6 headings as well. These use the <h4>, <h5>, and <h6> tags, respec-
tively. By thinking of what the HTML represents, rather than just what it looks like on the page, you
will be prepared to make them look however you want with CSS. And you will learn how to use CSS
for just this purpose in later lessons.

FIGURE 2.3
Using three levels of headings shows the hierarchy of content on this sample product page.

However, bear in mind that your headings should follow a content hierarchy; use only one level 1

heading, have one (or more) level 2 headings after the level 1 heading, use level 3 headings

directly after level 2 headings, and so on. Do not fall into the trap of assigning headings to con-

tent just to make that content display a certain way. Instead, ensure that you are categorizing

your content appropriately (as a main heading, a secondary heading, and so on), while using

 display styles to make that text render a particular way in a web browser.

Theoretically, you can also use <h4>, <h5>, and <h6> tags to make progressively less important

headings, but these aren’t used very often. Web browsers seldom show a significant difference

between these headings and the <h3> headings anyway—although you can control that with

your own CSS—and content usually isn’t displayed in such a manner that you’d need six levels of

 headings to show the content hierarchy.

36 LESSON 2: Structuring an HTML Document

It’s important to remember the difference between a title and a heading. These two words are

often interchangeable in day-to-day English, but when you’re talking HTML, <title> gives the

entire page an identifying name that isn’t displayed on the page itself; it’s displayed only on the

browser window’s title bar and in bookmarks and sometimes search engine results. The heading

tags, on the other hand, are displayed on the page and often have some type of visual emphasis

outside CSS. There can be only one <title> per page, and it must appear within the <head>

and </head> tags; on the other hand, you can have as many <h1>, <h2>, and <h3> headings

as you want, in any order that suits your fancy. However, as we mentioned before, you should

use the heading tags to keep tight control over content hierarchy; do not use headings as a way

to achieve a particular look because that’s what CSS is for. HTML tags define what the content is

rather than how it looks.

CAUTION

Don’t forget that anything placed in the head of a web page is not intended to be viewed on the
page, whereas everything in the body of the page is intended for viewing.

Peeking at Other Designers’ Pages
Given the visual and sometimes audio pizzazz present in many popular web pages, you probably real-
ize that the simple pages described in this lesson are only the tip of the HTML iceberg. Now that
you know the basics, you might surprise yourself with how much of the rest you can pick up just by
looking at other people’s pages on the Internet. You can see the HTML for any page by right-clicking
and selecting View Source in any web browser.

Don’t worry if you aren’t yet able to decipher what some HTML tags do or exactly how to use them
yourself. You’ll find out about all those things in future lessons. However, sneaking a preview now
will show you the tags that you do know in action and give you a taste of what you’ll soon be able to
do with your web pages.

Understanding Semantic Elements
HTML5 includes tags that enable you to describe the semantics—the meaning—of the informa-

tion that you provide in your marked-up text. Instead of simply using HTML as a presentation

language, as was the practice in the very early days when for bold and <i> for italic was

the norm, modern HTML has as one of its goals the separation of presentation, meaning, and

 behavior. While using CSS to provide guidelines for presentation, composers of HTML can provide

meaningful names within their markup for individual elements—not only through the use of IDs

and class names (which you’ll learn about in subsequent lessons) but also through the use of

semantic elements.

Understanding Semantic Elements 37

Some of the semantic elements available in HTML5 follow:

 N <header></header>—This might seem counterintuitive, but you can use multiple

<header> tags within a single page. The <header> tag should be used as a container for

introductory information, so it might appear only once in your page (likely at the top)—but

you also might use it several times if your page content is broken into sections. Any con-

tainer element can have a <header> element; just make sure that you’re using it to include

introductory information about the element it is contained within.

 N <footer></footer>—The <footer> tag is used to contain additional information about

its containing element (page or section), such as copyright and author information or links

to related resources. Just as with the <header> tag, you can define footers in any section of

the page, as well as for the page as a whole.

 N <nav></nav>—If your site has navigational elements, such as links to other sections within

a site or even within the page itself, these links go in a <nav> tag. A <nav> tag typically is

found in the first instance of a <header> tag, just because people tend to put navigation

at the top and consider it introductory information, but that is not a requirement. You can

put your <nav> element anywhere (as long as it includes navigation), and you can have as

many on a page as you need.

 N <section></section>—The <section> tag contains anything that relates themati-

cally; it can also contain a <header> tag for introductory information and possibly a

<footer> tag for other related information. You can think of a <section> as carrying

more meaning than a standard <p> (paragraph) or <div> (division) tag, which typically

conveys no meaning at all; the use of <section> conveys a relationship between the con-

tent elements it contains.

 N <article></article>—An <article> tag is like a <section> tag, in that it can

contain a <header>, a <footer>, and other container elements such as paragraphs and

divisions. But the additional meaning carried with the <article> tag is that it is, well, like

an article in a newspaper or some other publication. Use this tag around blog posts, news

articles, reviews, and other items that fit this description. One key difference between an

<article> and a <section> is that an <article> is a standalone body of work, where-

as a <section> is a thematic grouping of information.

 N <aside></aside>—Use the <aside> tag to indicate secondary information; if the

<aside> tag is within a <section> or an <article>, the relationship will be to those

containers; otherwise, the secondary relationship will be to the overall page or site itself. It

might make sense to think of the <aside> as a sidebar—either for all the content on the

page or for an article or other thematic container of information.

These semantic elements will become clearer as you practice using them. In general, using

semantic elements is a good idea because they provide additional meaning for not only you and

other designers and programmers reading and working with your markup but also for machines.

38 LESSON 2: Structuring an HTML Document

Web browsers and screen readers will respond to your semantic elements by using these elements

to determine the structure of your document; screen readers will report a deeper meaning to

users, thus increasing the accessibility of your material. But for the most part, browsers do not

change how a semantic element is displayed on a page. As we’ve mentioned previously, this is

part of the design and is controlled by CSS.

One of the best ways to understand the HTML5 semantic elements is to see them in action, but

that can be a little difficult when the primary purpose of these elements is to provide meaning

rather than design. That’s not to say that you can’t add design to these elements; you most

certainly can, and you will in later lessons. But the “action” of the semantic elements is to hold

content and provide meaning through doing so, as in Figure 2.4, which shows a common use of

semantic elements for a basic web page.

FIGURE 2.4
Showing basic semantic elements in a web page.

Initially, you might think, “Of course, that makes total sense, with the header at the top and the

footer at the bottom” and feel quite good about yourself for understanding semantic elements at

first glance—and you should! A second glance should then raise some questions: What if you want

your navigation to be horizontal under your header? Does an aside have to be (literally) on the

side? What if you don’t want any asides? What’s with the use of <header> and <footer> again

within the main body section? And that’s just to name a few! Another question you might ask is

where the <article> element fits in; it isn’t shown in this example but is part of this lesson.

This is the time when conceptualizing the page—and specifically the page you want to create—

comes into play. If you understand the content you want to mark up and you understand that you

can use any, all, or none of the semantic elements and still create a valid HTML document, then

you can begin to organize the content of your page in the way that makes the most sense for it

and for you (and, hopefully, for your readers).

Understanding Semantic Elements 39

NOTE

Although you do not need to use semantic elements to create a valid HTML document, even
a minimal set is recommended so that web browsers and screen readers can determine the
structure of your document. Screen readers are capable of reporting a deeper meaning to users,
thus increasing the accessibility of your material.

(If this note were marked up in an HTML document, it would use the <aside> element.)

Let’s take a look at the elements used in Figure 2.4 before moving on to a second example and

then a deeper exploration of the individual elements themselves. In Figure 2.4, you see a

<header> at the top of the page and a <footer> at the bottom—straightforward, as already

mentioned. The use of a <nav> element on the left side of the page matches a common display

area for navigation, and the <aside> element on the right side of the page matches a com-

mon display area for secondary notes, pull quotes, helper text, and “for more information” links

about the content. In Figure 2.5, you’ll see some of these elements shifted around, so don’t worry;

Figure 2.4 is not some immutable example of semantic markup.

Something you might be surprised to see in Figure 2.5 is the <header> and <footer> inside the

<section> element. In Figure 2.4, you see a <header> at the top of the page and a <footer>

at the bottom—straightforward, as already mentioned. The use of a <nav> element on the left

side of the page matches the content that comes after it, and the <header> element itself does

not convey any level in a document outline. Therefore, you can use as many <header> elements

as you need to mark up your content appropriately; a <header> at the beginning of the page

might contain introductory information about the page as a whole, and a <header> element

within the <section> element might just as easily and appropriately contain introductory infor-

mation about the content within it. The same is true for the multiple appearances of the

<footer> element in this example.

FIGURE 2.5
Using nested semantic elements to add more meaning to the content.

40 LESSON 2: Structuring an HTML Document

Let’s move on to Figure 2.5, which shifts around the <nav> element and also introduces use of the

<article> element.

In Figure 2.5, the <header> and <nav> elements at the beginning of the page and the

<footer> element at the bottom of the page should make perfect sense to you. And, although

we haven’t talked about the <article> element yet, if you think about it as a container element

that has sections (that use the <section> tag, even!), with each of those sections having its own

heading, then the chunk of semantic elements in the middle of the figure should make sense, too.

As you can see, there’s no single way to conceptualize page content; you should, however, be able

to conceptualize each individual page’s content.

If you marked up some content in the structure shown in Figure 2.5, it might look like the markup

in Listing 2.4.

LISTING 2.4 Semantic Markup of Basic Content

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Semantic Example</title>
 </head>
 <body>
 <header>
 <h1>SITE OR PAGE LOGO GOES HERE</h1>
 </header>
 <nav>
 SITE OR PAGE NAVIGATION GOES HERE.
 </nav>
 <article>
 <header>
 <h2>Article Heading</h2>
 </header>
 <section>
 <header>
 <h3>Section 1 Heading</h3>
 </header>
 <p>Section 1 content here.</p>
 </section>
 <section>
 <header>
 <h3>Section 2 Heading</h3>
 </header>
 <p>Section 2 content here.</p>
 </section>
 <footer>

Understanding Semantic Elements 41

 <p>Article footer goes here.</p>
 </footer>
 </article>
 <footer>
 SITE OR PAGE FOOTER HERE
 </footer>
 </body>
</html>

If you opened this HTML document in your web browser, you would see something like what’s

shown in Figure 2.6—a completely unstyled document but one that has semantic meaning (even if

no one can “see” it).

FIGURE 2.6
The output of Listing 2.4.

Just because there is no visible styling doesn’t mean the meaning is lost; as noted earlier in this

section, machines can interpret the structure of the document as provided for through the

semantic elements. You can see the outline of this basic document in Figure 2.7, which shows the

output of this file after examination by the HTML5 Outliner tool, available at http://gsnedders.

html5.org/outliner/.

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/

42 LESSON 2: Structuring an HTML Document

FIGURE 2.7
The outline of this document follows the semantic markup.

NOTE

Using the HTML5 Outliner tool is a good way to check that you’ve created your headers, footers, and
sections; if you examine your document and see “untitled section” anywhere, and those untitled sec-
tions do not match up with a <nav> or an <aside> element (which have more relaxed guidelines
about containing headers), then you have some additional work to do.

Now that you’ve seen some examples of conceptualizing the information represented in your

documents, you’re better prepared to start marking up those documents. The sections that follow

take a look at the semantic elements individually.

Using <header> in Multiple Ways
At the most basic level, the <header> element contains introductory information. That informa-

tion might take the form of an actual <h1> (or other level) element, or it might simply be a logo

image or text contained within a <p> or <div> element. The meaning of the content should be

introductory in nature, to warrant its inclusion within a <header></header> tag pair.

NOTE

Information in the <header> element does not have to come first in the section it is introducing.
That is the most common place to see it, but it can be displayed anywhere on your page that makes
sense. The display location is defined by the CSS.

As you’ve seen in the examples so far in this lesson, a common placement of a <header> element

is at the beginning of a page. When it’s used in this way, containing a logo or an <h1>-level title

makes sense, such as here:

<header>

</header>

43Using <header> in Multiple Ways

Or even this:

<header>

 <h1>The finest widgets are made here!</h1>
</header>

Both of these snippets are valid uses of <header> because the information contained within

them is introductory to the page overall.

As you’ve also seen in this lesson, you are not limited to only one <header>. You can go crazy

with <header> elements, as long as they are acting as containers for introductory information.

Listing 2.4 showed the use of <header> elements for several <section> elements within an

<article>, and this is a perfectly valid use of the element:

<section>
 <header>
 <h3>Section 1 Heading</h3>
 </header>
 <p>Section 1 content here.</p>
</section>
<section>
 <header>
 <h3>Section 2 Heading</h3>
 </header>
 <p>Section 2 content here.</p>
</section>

The <header> element can contain any other element in the flow content category (one of the

HTML5 content models) of which it is also a member. This means that a <header> could contain

a <section> element, if you wanted, and be perfectly valid markup. However, when you are

 conceptualizing your content, think about whether that sort of nesting makes sense before you go

off and do it.

NOTE

In general, flow content elements are elements that contain text, images, or other multimedia
embedded content; HTML elements fall into multiple categories.

If you want to learn more about the categorization of elements into content models, see
http://www.w3.org/TR/2011/WD-html5-20110525/content-models.html.

The only exceptions to the permitted content within <header> are that the <header> element

cannot contain other <header> elements, and it cannot contain a <footer> element. Similarly,

the <header> element cannot be contained within an <address> or a <footer> element.

http://www.w3.org/TR/2011/WD-html5-20110525/content-models.html

44 LESSON 2: Structuring an HTML Document

Understanding the <section> Element
The <section> element has a simple definition: It is “a generic section of a document” that is

also “a thematic grouping of content, typically with a heading.” That sounds pretty simple to us

and probably does to you as well. So you might be surprised to find that if you type difference

between section and article in HTML5 in your search engine of choice, you’ll find tens of thou-

sands of entries talking about the differences because the definitions trip people up all the time.

We first discuss the <section> element and then cover the <article> element—and hopefully

avoid any of the misunderstandings that seem to plague new web developers.

In Listing 2.4, you saw a straightforward example of using <section> within an <article>

(repeated here); in this example, you can easily imagine that the <section> elements contain a

“thematic grouping of content,” which is supported by the fact that they each have a heading:

<article>
 <header>
 <h2>Article Heading</h2>
 </header>
 <section>
 <header>
 <h3>Section 1 Heading</h3>
 </header>
 <p>Section 1 content here.</p>
 </section>
 <section>
 <header>
 <h3>Section 2 Heading</h3>
 </header>
 <p>Section 2 content here.</p>
 </section>
 <footer>
 <p>Article footer goes here.</p>
 </footer>
</article>

But here’s an example of a perfectly valid use of <section> with no <article> element in

sight:

<section>
 <header>
 <h1>Super Heading</h1>
 </header>
 <p>Super content!</p>
</section>

45Implementing the <nav> Element

So what’s a developer to do? Let’s say you have some generic content that you know you want

to divide into sections with their own headings. In that case, use <section>. If you need to

only visually delineate chunks of content (such as with paragraph breaks) that do not require

 additional headings, then <section> isn’t for you; use <p> or <div> instead.

Because the <section> element can contain any other flow content element and can be con-

tained within any other flow content element (except the <address> element), it’s easy to see

why, without other limitations and with generic guidelines for use, the <section> element is

sometimes misunderstood.

Using <article>
We believe that a lot of the misunderstanding regarding the use of <section> versus

<article> has to do with the name of the <article> element. When we think of an article,

we think specifically about an article in a newspaper or a magazine. We don’t naturally think

“any standalone body of work,” which is how the <article> element is commonly defined. The

HTML5 recommended specification defines it as “a complete, or self-contained, composition in

a document, page, application, or site and that is, in principle, independently distributable or

reusable,” such as “a forum post, a magazine or newspaper article, a blog entry, a user-submitted

comment, an interactive widget or gadget, or any other independent item of content.”

In other words, an <article> element could be used to contain the entire page of a website

(whether or not it is an article in a publication), an actual article in a publication, a blog post

anywhere and everywhere, part of a threaded discussion in a forum, or a comment on a blog

post, or it could be used as a container that displays the current weather in your city. It’s no

 wonder there are tens of thousands of results for a search on “difference between section and

article in HTML5.”

A good rule of thumb when you’re trying to figure out when to use <article> and when to use

<section> is simply to answer the following question: Does this content make sense on its own?

If so, then no matter what the content seems to be to you (for example, a static web page, not an

article in the New York Times), start by using the <article> element. If you find yourself break-

ing it up, do so in <section> elements. And if you find yourself thinking that your “article”

is, in fact, part of a greater whole, then change the <article> tags to <section> tags, find

the beginning of the document, and surround it from there with the more appropriately placed

<article> tag at a higher level.

Implementing the <nav> Element
The <nav> element seems so simple (<nav> implies navigation), and it ultimately is—but it is

often used incorrectly. In this section, you’ll learn some basic uses and also some incorrect uses to

46 LESSON 2: Structuring an HTML Document

avoid. If your site has any navigational elements at all, either sitewide or within a long page of

content, you have a valid use for the <nav> element.

For that sitewide navigation, you typically find a <nav> element within the primary <header>

element. If you want your navigational content to be introductory (and omnipresent in your tem-

plate), you can easily make a case for your primary <nav> element to appear within the primary

<header>, though you are not required to have it there. It is more important that your HTML be

valid (as is <nav> outside a <header>) than that your <header> element contain everything

allowed in it. A <nav> element can appear within any flow content, and it can also contain any

flow content.

The following code snippet shows the main navigational links of a website, placed within a

<header> element:

<header>

 <h1>The finest widgets are made here!</h1>
 <nav>

 About Us
 Products
 Support
 Press

 </nav>
</header>

You are not limited to a single <nav> element in your documents, which is good for site develop-

ers who create templates that include both primary and secondary navigation. For example,

you might see horizontal primary navigation at the top of a page (often contained within a

<header> element) and then vertical navigation in the left column of a page, representing the

secondary pages within the main section. In that case, you simply use a second <nav> element,

not contained within the <header>, placed and styled differently to delineate the two types

visually in addition to semantically.

Remember that the <nav> element is used for major navigational content; primary and second-

ary navigation both count, as does the inclusion of tables of contents within a page. For good and

useful semantic use of the <nav> element, do not simply apply it to every link that allows a user

to navigate anywhere. Note that we said “good and useful” semantic use, not necessarily “valid”

use; it’s true that you could apply <nav> to any list of links, and it would be valid according to

the HTML specification because links are flow content. But it wouldn’t be particularly useful to

surround a list of links to social media sharing tools with the <nav> element as it wouldn’t add

accurate or useful meaning.

47When to Use <aside>

When to Use <aside>
As you’ll have guessed based on the number of notes and sidebars in these lessons, we’re big

fans of the type of content that is most appropriately marked up within the <aside> element.

The <aside> element is meant to contain any content that is tangentially related to the content

around it—additional explanation, links to related resources, pull quotes, helper text, and so on.

You might think of the <aside> element as a sidebar, but be careful not to think of it only as a

visual sidebar or a column on the side of a page where you can stick anything and everything you

want, whether or not it’s related to the content or site at hand.

In Figure 2.8, you can see how content in an <aside> is used to create a pull quote, or a content

excerpt that is specifically set aside to call attention to it. The <aside>, in this case, is used to

highlight an important section of the text, but it could also be used to define a term or link to

related documents.

FIGURE 2.8
Using <aside> to create meaningful pull quotes.

48 LESSON 2: Structuring an HTML Document

When determining whether to use the <aside> element, think about the content you want to

add. Is it related directly to the content in which the <aside> would be contained, but not abso-

lutely critical to understanding the content, such as a definition of terms used in an article or a

list of related links for the article? If your answer is an easy yes, that’s great! Use <aside> to your

heart’s content. If you’re thinking of including an <aside> outside a containing element that is

itself full of content, just make sure that the content of the <aside> is reasonably related to your

site overall and that you’re not just using the <aside> element for visual effect.

Using <footer> Effectively
The counterpart to the <header> element, the <footer> element contains additional informa-

tion about its containing element. The most common use of the <footer> element is to contain

copyright information at the bottom of a page, as shown here:

<footer>
 <p>© 2014 Acme Widgets, LLC. All Rights Reserved.</p>
</footer>

Much like the <header> element, the <footer> element can contain any other element in

the flow content category of which it is also a member, with the exception of other <footer>

or <header> elements. In addition, a <footer> element cannot be contained within an

<address> element, but a <footer> element can contain an <address> element; in fact, a

<footer> element is a common location for an <address> element to reside.

Placing useful <address> content within a <footer> element is one of the most effective uses

of the <footer> element (not to mention the <address> element) because it provides specific

contextual information about the page or section of the page to which it refers. The following

snippet shows a use of <address> within <footer>:

<footer>
 <p>© 2014-2018 Acme Widgets, LLC. All Rights Reserved.</p>
 <p>Copyright Issues? Contact:</p>
 <address>
 Our Lawyer

 123 Main Street

 Somewhere, CA 95128

 lawyer@richperson.com
 </address>
</footer>

As with the <header> element, you are not limited to only one <footer>, and these elements

don’t all have to be displayed below the content they are modifying. You can use as many

<footer> elements as you need, as long as they are containers for additional information about

Summary 49

the containing element. Listing 2.4 shows the use of <footer> elements for both the page and

an <article>, both of which are valid.

Summary
This lesson introduced the basics of what web pages are and how they work. You learned that

coded HTML commands are included in a text file, and you saw that typing HTML text yourself

is better than using a graphical editor that creates HTML commands for you—especially when

you’re learning HTML.

You were introduced to the most basic and important HTML tags. By adding these coded com-

mands to any plain-text document, you can quickly transform it into a bona fide web page. You

learned that the first step in creating a web page is to put a few obligatory HTML tags at the

beginning and end, including adding a title for the page. You can then mark where paragraphs

and lines end and add horizontal rules and headings, if you want them. You also got a taste of

some of the semantic tags in HTML5, which are used to provide additional meaning by delineat-

ing the types of content your pages contain (not just the content itself). Table 2.1 summarizes all

the tags introduced in this lesson.

TABLE 2.1 HTML Tags Covered in Lesson 2

Tag Function

<html>…</html> Encloses the entire HTML document.

<head>…</head> Encloses the head of the HTML document. Used within the
<html> tag pair.

<meta charset="utf-8"> Defines the character set for the document as UTF-8. Used
within the <head> tag pair, immediately after the opening
<head> tag.

<title>…</title> Indicates the title of the document. Used within the <head>
tag pair.

<body>…</body> Encloses the body of the HTML document. Used within the
<html> tag pair.

<p>…</p> Encloses a paragraph; skips a line between paragraphs.

 Indicates a line break.

<hr> Displays a horizontal rule.

<h1>…</h1> Encloses a first-level heading.

<h2>…</h2> Encloses a second-level heading.

<h3>…</h3> Encloses a third-level heading.

<h4>…</h4> Encloses a fourth-level heading (seldom used).

50 LESSON 2: Structuring an HTML Document

Tag Function

<h5>…</h5> Encloses a fifth-level heading (seldom used).

<h6>…</h6> Encloses a sixth-level heading (seldom used).

<header>…</header> Contains introductory information.

<footer>…</footer> Contains supplementary material for its containing element
(commonly a copyright notice or author information).

<nav>…</nav> Contains navigational elements.

<section>…</section> Contains thematically similar content, such as a chapter of
a book or a section of a page.

<article>…</article> Contains content that is a standalone body of work,
such as a news article.

<aside>…</aside> Contains secondary information for its containing element.

<address>…</address> Contains address information related to its nearest
<article> or <body> element, often contained within a
<footer> element.

Q&A
 Q. I’ve created a web page, but when I open the file in my web browser, I see all the text,

including the HTML tags. Sometimes I even see weird gobbledygook characters at the top of

the page. What did I do wrong?

 A. You didn’t save the file as plain text. Try saving the file again, being careful to save it as
Text Only or ASCII Text. If you can’t quite figure out how to get your word processor to do
that, don’t stress. Just type your HTML files in Notepad or TextEdit instead, and everything
should work just fine. Also, always make sure that the filename of your web page ends
in .html or .htm. Some text editors will add .txt after you save, giving you a filename
that is something like filename.html.txt. If this happens, you should rename the file,
 removing the .txt extension.

 Q. Do I have to use semantic markup at all? Didn’t you say throughout this lesson that pages

are valid with or without it?

 A. True, none of these elements is required for a valid HTML document. You don’t have to use
any of them, but I urge you to think beyond the use of markup for visual display only and
think about it for semantic meaning as well. Visual display is meaningless to screen read-
ers, but semantic elements convey a ton of information to these applications.

http://.html
http://filename.html.txt

Workshop 51

 Q. I’m still completely befuddled about when to use <section> and when to use <aside>.

Can you make it clearer?

 A. We don’t blame you. There’s a resource available at the HTML5 Doctor website that is
one of the best we’ve seen to help eliminate the confusion. It’s a flowchart for HTML5
sectioning, found at http://html5doctor.com/downloads/h5d-sectioning-flowchart.png. This
flowchart asks the right questions about your content and helps you determine the correct
container element to use.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. What six tags does every HTML page require?

 2. Why is the <meta charset> tag important, and where should it be placed in an HTML
document?

 3. What HTML tags and text do you use to produce the following body content:

 N A heading with the words We are Proud to Present...

 N A secondary heading with the one word Orbit

 N A heading of lesser importance with the words The Geometric Juggler

 4. What code would you use to create a complete HTML web page with the title Foo Bar, a
heading at the top that reads Happy Hour at the Foo Bar, and then the words Come
on down! in regular type? Try to use some of the semantic elements you just learned.

 5. Which of the semantic elements discussed in this lesson is appropriate for containing the
definition of a word used in an article?

 6. What makes an element semantic?

 7. Do you have to use an <h1>, <h2>, <h3>, <h4>, <h5>, or <h6> element within
a <header> element?

 8. Where must the contents of the <footer> for the document appear on the page?

 9. How many different <nav> elements can you have in a single page?

 10. What types of things might be enclosed in an <article> element?

http://html5doctor.com/downloads/h5d-sectioning-flowchart.png

52 LESSON 2: Structuring an HTML Document

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. Every HTML page requires <html>, <head>, <title>, and <body> (along with their clos-

ing tags, </html>, </head>, </title>, and </body>), plus <!doctype html> on
the very first line and <meta charset> after the opening <head> tag. Technically, the
<!doctype html> is not a tag, but rather a declaration, so if you said there were only
five required tags, you’d be correct.

 2. The <meta charset> tag defines the character set that the page uses, and it should
always come immediately after the opening <head> tag in your document.

 3. The code within the body would look like this:

<h1>We are Proud to Present...</h1>
<h2>Orbit</h2>
<h3>The Geometric Juggler</h3>

 4. Your code could look like this:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Foo Bar</title>
 </head>
 <body>
 <header>
 <h1>Happy Hour at the Foo Bar</h1>
 </header>
 <section>
 <p>Come on Down!</p>
 </section>
 </body>
</html>

 5. The <aside> element is appropriate for this.

 6. A semantic element is an HTML element that describes the meaning of the information
 contained in that element.

 7. No. The <header> element can contain any other flow content besides another <header>
element or a <footer> element. However, a heading element (<h1> through <h6>) is not
required in a <header> element.

http://www.informit.com/register

Exercises 53

 8. The contents of the <footer> tag can appear wherever it makes sense to have it appear
on the page. While most designers place footer content at the end or bottom of the page,
there is no requirement that it be displayed there.

 9. You can have as many <nav> elements as you need. The trick is to “need” only a few
(perhaps for primary and secondary navigation only); otherwise, the meaning is lost.

 10. The <article> element encloses any content that is complete or self-contained and is
independently distributable or reusable. This could include a blog entry, a magazine or
newspaper article, a forum post, a user-submitted comment, an interactive widget, or any
other independent item of content.

Exercises
 N Even if your main goal in reading these lessons is to create web content for your

 business, you might want to make a personal web page just for practice. Type a few
paragraphs to introduce yourself to the world and use the HTML tags you learned in this
lesson to make them into a web page.

 N Throughout the lessons, you’ll be following along with the code examples and making
pages of your own. Take a moment now to set up a basic document template containing
the document type declaration and tags for the core HTML document structure. That way,
you can be ready to copy and paste that information whenever you need it.

 N Building off a single page template, create a few more related pieces of content.
Remember that some of your pages might contain <article> elements with no
sections, but others might contain <section> elements with <header> and
<footer> elements as well.

This page intentionally left blank

LESSON 3
Understanding Cascading

Style Sheets

What You'll Learn in This Lesson:

 N How to create a basic style sheet

 N How to use style classes

 N How to use style IDs

 N How to construct internal style sheets and inline styles

In the preceding lesson, you learned the basics of HTML, including how to set up a basic HTML

template for all your web content. In this lesson, you’ll learn how to fine-tune the display of your

web content by using Cascading Style Sheets (CSS).

The concept behind style sheets is simple: You create a style sheet document that specifies the

fonts, colors, spacing, and other characteristics that establish a unique look for a website. You

then link every page that should have that look to the style sheet instead of specifying all those

styles repeatedly in each separate document. Then, when you decide to change your official

 corporate typeface or color scheme, you can modify all your web pages at once just by changing

one or two entries in your style sheet; you don’t have to change them in all your static web files.

So, a style sheet is a grouping of formatting instructions that control the appearance of several

HTML pages at once.

Style sheets enable you to set a great number of formatting characteristics, including exact

 typeface controls, letter and line spacing, and margins and page borders, to name just a few.

Style sheets also enable you to specify sizes and other measurements in familiar units, such as

inches, millimeters, points, and picas. In addition, you can use style sheets to precisely position

graphics and text anywhere on a web page, either at specific coordinates or relative to other

items on the page.

In short, style sheets bring a sophisticated level of display to the Web. And they do so, if you’ll

pardon the expression, with style.

56 LESSON 3: Understanding Cascading Style Sheets

How CSS Works
The technology behind style sheets is called CSS, or Cascading Style Sheets. CSS is a language that

defines style constructs such as fonts, colors, and positioning, which describe how information on

a web page is formatted and displayed. CSS styles can be stored directly in an HTML web page

or in a separate style sheet file. Either way, style sheets contain style rules that apply styles to

 elements of a given type. When used externally, style sheet rules are placed in an external style

sheet document with the file extension .css.

A style rule is a formatting instruction that can be applied to an element on a web page, such

as a paragraph of text or a link. A style rule consists of one or more style properties and their

 associated values. An internal style sheet is placed directly within a web page, whereas an external
style sheet exists in a separate document and is linked to a web page via a special tag; you’ll learn

more about this tag in a moment.

The cascading part of the name CSS refers to the manner in which style sheet rules are applied to

elements in an HTML document. More specifically, styles in a CSS style sheet form a hierarchy in

which more specific styles override more general styles. It is the responsibility of CSS to determine

the precedence of style rules according to this hierarchy, which establishes a cascading effect.

If that sounds a bit confusing, just think of the cascading mechanism in CSS as being similar to

genetic inheritance, in which general traits are passed from parents to a child, but more specific

traits are entirely unique to the child. Base style rules are applied throughout a style sheet but can

be overridden by more specific style rules.

NOTE

You might notice that we use the term element a fair amount in this lesson (and we also do in the
rest of the course). An element is simply a piece of information (content) in a web page, such as
an image, a paragraph, or a link. Tags are used to mark up elements, and you can think of an ele-
ment as a tag, complete with descriptive information (attributes, text, images, and so on) within
the tag.

A quick example should clear things up. Take a look at the following code to see whether you can

tell what’s going on with the color of the text:

<div style="color:green;">
 This text is green.
 <p style="color:blue;">This text is blue.</p>
 <p>This text is still green.</p>
</div>

In this example, the color green is applied to the <div> tag via the color style property.

Therefore, the text in the <div> tag is colored green. Because both <p> tags are children of the

A Basic Style Sheet 57

<div> tag, the green text style cascades down to them. However, the first <p> tag overrides the

color style and changes it to blue. The end result is that the first line (not surrounded by a para-

graph tag) is green, the first official paragraph is blue, and the second official paragraph retains

the cascaded green color.

If you made it through that description on your own and came out on the other end unscathed,

congratulations—that’s half the battle. Understanding CSS isn’t difficult, and the more you prac-

tice, the more it will become clear. The real trick is developing an aesthetic design sense that you

can then apply to your online presence through CSS.

Like many other web technologies, CSS has evolved over the years. The original version of

CSS, known as Cascading Style Sheets Level 1 (CSS1), was created in 1996. The later CSS2 stan-

dard, created in 1998, is still in use today. The latest version of CSS is CSS3, and it builds on

the strong foundation laid by its predecessors but adds advanced functionality to enhance

the online experience. Modern web browsers support all of CSS2 and a majority of CSS3.

Throughout this series of lessons, you’ll learn core CSS, including new elements of CSS3 that

are applicable to the basic design and functionality that this text covers. So, when we talk

about CSS, we’re referring to CSS3.

You can find a complete reference guide to CSS at www.w3.org/Style/CSS/. The rest of this lesson

explains the basics of putting CSS to good use.

A Basic Style Sheet
Despite their intimidating power, style sheets are simple to create. Consider the web pages shown

in Figures 3.1 and 3.2. These pages share several visual properties that can be put into a common

style sheet:

 N They use a large, bold Verdana font for the headings and a normal-size and -weight

Verdana font for the body text.

 N They use an image named logo.gif floating within the content and on the right side of

the page.

 N All text is black except for subheadings, which are purple.

 N They have margins on the left side and at the top.

 N They include vertical space between lines of text.

 N They include a footer that is centered and in small print.

http://www.w3.org/Style/CSS/

58 LESSON 3: Understanding Cascading Style Sheets

FIGURE 3.1
This page uses a style sheet to fine-tune the appearance and spacing of the text and images.

FIGURE 3.2
This page uses the same style sheet as the one in Figure 3.1, thus maintaining a consistent look and feel.

A Basic Style Sheet 59

Listing 3.1 shows CSS used in a style sheet to specify these types of properties.

LISTING 3.1 A Single External Style Sheet

body {
 font-size: 10pt;
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 color: black;
 line-height: 14pt;
 padding-left: 5pt;
 padding-right: 5pt;
 padding-top: 5pt;
}

h1 {
 font: 14pt Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-weight: bold;
 line-height: 20pt;
}

p.subheader {
 font-weight: bold;
 color: #593d87;
}

img {
 padding: 3pt;
 float: right;
}

a {
 text-decoration: none;
}

a:link, a:visited {
 color: #8094d6;
}

a:hover, a:active {
 color: #FF9933;
}

footer {
 font-size: 9pt;
 font-style: italic;
 line-height: 12pt;
 text-align: center;
 padding-top: 30pt;
}

60 LESSON 3: Understanding Cascading Style Sheets

This might initially appear to be a lot of code, but if you look closely, you’ll see that there isn’t a

lot of information on each line of code. It’s fairly standard to place each individual style rule on

its own line to help make style sheets more readable, but that is a personal preference; you could

put all the rules on one line as long as you kept using the semicolon to separate each rule; you’ll

learn more on this in a bit. Speaking of code readability, perhaps the first thing you noticed about

this style sheet code is that it doesn’t look anything like normal HTML code. CSS uses a syntax all

its own to specify style sheets.

Of course, the listing includes some familiar HTML tags (although not all tags require an entry in

the style sheet). As you might guess, body, h1, p, img, a, and footer in the style sheet refer to

the corresponding tags in the HTML documents to which the style sheet will be applied. These are

called the selectors. The curly braces after each tag name describe how all content within that tag

should appear—using the style rules.

In this case, the style sheet says that all body text should be rendered at a size of 10 points, in

the Verdana font (if possible), and with the color black, with 14 points between lines. If the user

does not have the Verdana font installed, the list of fonts in the style sheet represents the order

in which the browser should search for fonts to use: Geneva, then Arial, and then Helvetica. If

the user has none of those fonts, the browser uses whatever default sans-serif font is available. In

addition, the page should have left, right, and top padding of 5 points each.

Any text within an <h1> tag should be rendered in boldface Verdana at a size of 14 points.

Moving on, any paragraph that uses only the <p> tag inherits all the styles indicated by the body

element. However, if the <p> tag uses a special class named subheader, the text appears bold

and in the color #593d87 (a purple color).

The pt after each measurement in Listing 3.1 means points (there are 72 points in an inch). If you

prefer, you can specify any style sheet measurement in inches (in), centimeters (cm), pixels (px),

or “widths of a letter m,” which are called ems (em) or rems (rem). There are also units for sizes

relative to the width of the number 0 (ch), relative to 1% of the viewport width or height (vw or

vh), and relative to the container (%). Length measurements in CSS are defined as fixed or rela-

tive. Fixed lengths—such as inches, pixels, or points—do not change size, while relative lengths—

such as ems, ch, or percentages—can change.

NOTE

In CSS, the rem measurement is sized relative to the width of the letter m, but it is relative to the
initial font size rather than any changed font sizes that might apply. Best practices recommend
that you use relative font sizes (such as rem or em) rather than fixed font sizes (such as inches or
points) so that your designs scale more gracefully. Whether you choose rem or em depends mostly
on whether you need your type to scale across the whole page (use rem) or you need more explicit
control over sections of the document (use em).

A Basic Style Sheet 61

You might have noticed that each style rule in the listing ends with a semicolon (;). Semicolons

are used to separate style rules from each other. It is therefore customary to end each style rule

with a semicolon so that you can easily add another style rule after it. Review the remainder of

the style sheet in Listing 3.1 to see the presentation formatting applied to additional tags. Don’t

worry: You’ll learn more about each of these types of entries throughout the lessons in this course.

NOTE

Bear in mind that 10pt is a small font size. Not everyone viewing your page will find such a small
font size legible or easy to read. You can specify font sizes as large or small as you like with style
sheets, although some older display devices and printers do not correctly handle fonts larger than
200 points. Always test your pages in as many browsers and devices as possible.

To link this style sheet to HTML documents, include a <link> tag in the <head> section of each

document. Listing 3.2 shows HTML code for a page that contains the following <link> tag:

<link rel="stylesheet" href="styles.css">

This assumes that the style sheet is stored under the name styles.css in the same folder as the

HTML document. As long as the web browser supports style sheets—and all modern browsers do—

the properties specified in the style sheet will apply to the content in the page without the need

for any special HTML formatting code. This meets one of the goals of HTML, which is to provide a

separation between the content in a web page and the specific formatting required to display that

content.

LISTING 3.2 HTML Code for a Page Using an External Style Sheet

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>About BAWSI</title>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <section>
 <header>
 <h1>About BAWSI</h1>
 </header>

 <p>The Bay Area Women's
 Sports Initiative (BAWSI) is a public benefit, nonprofit
 corporation with a mission to create programs and
 partnerships through which women athletes bring health, hope
 and wholeness to our community. Founded in 2005 by Olympic

62 LESSON 3: Understanding Cascading Style Sheets

 and World Cup soccer stars Brandi Chastain and Julie Foudy
 and Marlene Bjornsrud, former general manager of the San Jose
 CyberRays women's professional soccer team, BAWSI provides a
 meaningful path for women athletes to become a more visible
 and valued part of the Bay Area sports culture.</p>

 <p class="subheader">BAWSI's History</p>

 <p>The concept of BAWSI was inspired by one of the most
 spectacular achievements in women's sports history and born out
 of one its biggest disappointments...</p>

 <p>[continue reading]</p>
 </section>

 <footer>
 Copyright © 2005-2013 BAWSI (www.bawsi.org).
 All rights reserved. Used with permission.
 </footer>
 </body>
</html>

NOTE

In most web browsers, you can view the style rules in a style sheet by right-clicking on the page
and choosing Inspect or Inspect Element. There you see the HTML and the specific styles associ-
ated with the highlighted element. You can even make temporary edits to see how the page might
change. To edit your own style sheets, just use a text editor; most designers use the same editor for
CSS that they use for HTML.

The code in Listing 3.2 is interesting because it contains no style formatting of any kind. In other

words, nothing in the HTML code dictates how the text and images are to be displayed—no colors,

no fonts, nothing. Yet the page is carefully formatted and rendered to the screen, thanks to the

link to the external style sheet, styles.css. The real benefit to this approach is that you can

easily create a site with multiple pages that maintains a consistent look and feel. And you have

the benefit of isolating the visual style of the page to a single document (the style sheet) so that

one change impacts all pages.

NOTE

Not every browser’s support of CSS is flawless. If you want to find out what the support is for
a specific CSS property (or HTML tag or other web technology), take a look at the website CanIUse
(www.caniuse.com).

http://www.caniuse.com

A CSS Style Primer 63

A CSS Style Primer
You now have a basic knowledge of CSS style sheets and how they are based on style rules that

describe the appearance of information in web pages. The next few sections of this lesson provide

a quick overview of some of the most important style properties and enable you to get started

using CSS in your own style sheets.

CSS includes various style properties that are used to control fonts, colors, alignment, and

 margins, among other things. The style properties in CSS can be generally grouped into two

major categories:

 N Layout properties—Properties that affect the positioning of elements on a web page, such

as margins, padding, and alignment

 N Formatting properties—Properties that affect the visual display of elements in a website,

such as the font type, size, and color

Basic Layout Properties
CSS layout properties determine how content is placed on a web page. One of the most important

layout properties is the display property, which describes how an element is displayed with

respect to other elements. The display property has five basic values:

 N block—The element is displayed on a new line, as in a new paragraph.

 N list-item—The element is displayed on a new line with a list-item mark (bullet) next to it.

 N inline—The element is displayed inline with the current paragraph.

 N inline-block—The element is displayed as a block-level element inline with surrounding

block elements.

 N none—The element is not displayed; it is hidden.

TRY IT YOURSELF

Creating a Style Sheet of Your Own

Starting from scratch, create a new text document called mystyles.css and add some
style rules for the following basic HTML tags: <body>, <p>, <h1>, and <h2>. After creating
your style sheet, make a new HTML file that contains these basic tags. Play around with different
style rules and see for yourself how simple it is to change entire blocks of text in paragraphs with
one simple change in a style sheet file.

64 LESSON 3: Understanding Cascading Style Sheets

NOTE

The display property relies on a concept known as relative positioning, which means that elements
are positioned relative to the location of other elements on a page. CSS also supports absolute
 positioning, which enables you to place an element at an exact location on a page, independent
of other elements. You’ll learn more about both of these types of positioning in Lesson 10,
“Understanding the CSS Box Model and Positioning.”

Understanding the display property is easier if you visualize each element on a web page occu-

pying a rectangular area when displayed; the display property controls the manner in which

this rectangular area is displayed. For example, the block value results in the element being

placed on a new line by itself, whereas the inline value places the element next to the content

just before it. The inline-block value treats the element as a block but positions it next to

the content just before it, and the img tag is the most commonly used inline-block element.

The display property is one of the few style properties that can be applied in most style rules.

Following is an example of how to set the display property:

display:block;

NOTE

The display property has several other values, including table, flex, and grid, and their inline
counterparts inline-table, inline-flex, and inline-grid. These values, which offer power-
ful layout and display functionality, are covered in more detail in Lesson 12, “Creating Layouts Using
Modern CSS Techniques.”

You control the dimensions of the rectangular area for an element with the width and height

properties. As with many other size-related CSS properties, width and height property values

can be specified in several different units of measurement:

 N in—Inches

 N cm—Centimeters

 N em—Ems

 N mm—Millimeters

 N %—Percentage

 N px—Pixels

 N pt—Points

 N rem—Rems

A CSS Style Primer 65

You can mix and match units any way you like within a style sheet, but it’s generally a good idea

to be consistent across a set of similar style properties. For example, you might want to stick with

rems for font properties and percentages for dimensions. Following is an example of setting the

width of an element using pixel units:

width: 200px;

Basic Formatting Properties
CSS formatting properties are used to control the appearance of content on a web page, as

opposed to controlling the physical positioning of the content. One of the most popular format-

ting properties is the border property, which establishes a visible boundary around an element

with a box or partial box. Note that a border is always present in that space is always left for it,

but the border does not appear in a way that you can see unless you give it properties that make

it visible (such as a color). The following border properties provide a means of describing the

 borders of an element:

 N border-width—The width of the border edge

 N border-color—The color of the border edge

 N border-style—The style of the border edge

 N border-left—The left side of the border

 N border-right—The right side of the border

 N border-top—The top of the border

 N border-bottom—The bottom of the border

 N border—All the border sides

The border-width property establishes the width of the border edge. It is often expressed in

 pixels, as the following code demonstrates:

border-width:5px;

Not surprisingly, the border-color and border-style properties set the border color and

style. Following are examples of how these two properties are set:

border-color:blue;
border-style:dotted;

The border-style property can be set to any of the following basic values:

 N solid—A single-line border

 N double—A double-line border

66 LESSON 3: Understanding Cascading Style Sheets

 N dashed—A dashed border

 N dotted—A dotted border

 N groove—A border with a groove appearance

 N ridge—A border with a ridge appearance

 N inset—A border with an inset appearance

 N outset—A border with an outset appearance

 N none—No border

 N hidden—Effectively the same as none

You’ll learn about some more advanced border tricks later in this course.

The default value of the border-style property is none, which is why elements don’t have a

border unless you set the border-style property to a different style. Although solid is the

most common border style, you will also see the other styles in use.

The border-left, border-right, border-top, and border-bottom properties enable you

to set the border for each side of an element individually. If you want a border to appear the same

on all four sides, you can use the single border property by itself, which expects the following

styles, separated by spaces: border-width, border-style, and border-color. Following is

an example of using the border property to set a border that consists of two (double) red lines

that are a total of 10 pixels in width:

border:10px double red;

You can also adjust the curve of the boxes by changing the border radius with these properties:

 N border-top-left-radius—The top-left corner radius

 N border-top-right-radius—The top-right corner radius

 N border-bottom-left-radius—The bottom-left corner radius

 N border-bottom-right-radius—The bottom-right corner radius

 N border-radius—The radius for all four corners

The border-radius properties take one or two values. These values define the two radii of a

quarter ellipse that describes the shape of the corner. The first value is the horizontal radius and

the second the vertical. If there is only one value, it is used for both. This property rounds the cor-

ners of both the border and any background placed on the element. Following is an example of

using the border-radius property set to 1rem:

border-radius: 1rem;

A CSS Style Primer 67

Whereas the color of an element’s border is set with the border-color property, the color of

the inner region of an element is set using the color and background-color properties. The

color property sets the color of text in an element (foreground), and the background-color

property sets the color of the background behind the text. Following is an example of setting both

color properties to predefined colors:

color:black;
background-color:orange;

You can also assign custom colors to these properties by specifying the colors in hexadecimal

(covered in more detail in Lesson 8, “Working with Colors, Images, and Multimedia”) or as

RGB (red, green, blue) decimal values:

background-color:#999999;
color:rgb(0,0,255);

You can even set the transparency of the colors with the RGBa (red, green, blue, alpha channel)

decimal values:

background-color:rgba(0,0,0,0.8);
color:rgba(0,0,255,1.0);

You can also control the alignment and indentation of web page content without too much

 trouble. This is accomplished with the text-align and text-indent properties, as the

following code demonstrates:

text-align:center;
text-indent:12px;

NOTE

The text-align property applies to the contents of a block-level element, not to the element
itself. If you want to center a block element (or an inline-block element, such as an image) you need
to use other methods, as discussed in Lesson 9, “Working with Margins, Padding, Alignment, and
Floating.”

When you have an element properly aligned and indented, you might be interested in setting its

font. The following basic font properties set the various parameters associated with fonts (and

you’ll learn about some more advanced font usage in Lesson 6, “Working with Fonts, Text Blocks,

Lists, and Tables”):

 N font-family—The typeface of the font

 N font-size—The size of the font

 N font-style—The style of the font (normal or italic)

 N font-weight—The weight of the font (normal, lighter, bold, bolder, and so on)

68 LESSON 3: Understanding Cascading Style Sheets

The font-family property specifies a prioritized list of typeface names. A prioritized list is used

instead of a single value to provide alternatives in case a font isn’t available on a given system.

If the typeface has multiple words, such as “Times New Roman,” you should surround the name

with quotation marks. The font-size property specifies the size of the font, using a unit of mea-

surement. Finally, the font-style property sets the style of the font, and the font-weight

property sets the weight of the font. Following is an example of setting these font properties:

font-family: Arial, "Gill Sans", sans-serif;
font-size: 1.2rem;
font-style: italic;
font-weight: normal;

Now that you know a whole lot more about style properties and how they work, look at Listing 3.1

again and see whether it makes a bit more sense. Here’s a recap of the style properties used in

that style sheet, which you can use as a guide for understanding how it works:

 N font—Lets you set many font properties at once. You can specify a list of font names sepa-

rated by commas; if the first one is not available, the next is tried, and so on. You can also

include the words bold and/or italic and a font size. Alternatively, you can set each of

these font properties separately with font-family, font-size, font-weight, and

font-style.

 N line-height—Is also known in the publishing world as leading. This sets the height of

each line of text. line-height is usually defined in the same units as font.

 N color—Sets the text color using the standard color names or hexadecimal color codes

(see Lesson 8 for more details).

 N text-decoration—Is useful for turning off link underlining; simply set it to none. The

values of underline, overline, and line-through are also supported. Lesson 7,

“Using External and Internal Links,” covers applying styles to links in more detail.

 N text-align—Aligns text (left, right, or center) or justifies the text (justify).

 N padding—Adds padding to the left, right, top, and bottom of an element; this padding can

be in measurement units or a percentage of the page width. Use padding-left and

padding-right if you want to add padding to the left and right of the element indepen-

dently. Use padding-top or padding-bottom to add padding to the top or bottom of the

element, as appropriate. You’ll learn more about these style properties in Lessons 9 and 10.

Using Style Classes
This is a “teach yourself” course, so you don’t have to go to a single class to learn how to give your

pages great style—although you do need to learn what a style class is. Whenever you want some

of the text on your pages to look different from the other text, you can create what amounts to

Using Style Classes 69

a custom-built HTML tag. Each type of specially formatted text you define is called a style class.

A style class is a custom set of formatting specifications that can be applied to any element in a

web page.

Before you examine a style class, we need to take a quick step back and clarify some CSS terminol-

ogy. First, a CSS style property is a specific style to which you can assign a value, such as color

or font-size. You associate a style property and its respective value with elements on a web

page by using a selector. A selector is used to identify tags on a page to which you apply styles.

Following is an example of a selector, a property, and a value all included in a basic style rule:

h1 { font: 36pt Courier; }

In this code, h1 is the selector, font is the style property, and 36pt Courier is the value. The

selector is important because it means that the font setting will be applied to all h1 elements in

the web page. But what if you want to differentiate between some of the h1 elements? The answer

lies in style classes.

Suppose you want two different kinds of <h1> headings for use in your documents. You create a

style class for each one by putting the following CSS code in a style sheet:

h1.silly { font: 36pt Comic Sans; }
h1.serious { font: 36pt Arial; }

Notice that these selectors include a period (.) after h1, followed by a descriptive class name. To

choose between the two style classes, use the class attribute, like this:

<h1 class="silly">Marvin's Munchies Inc.</h1>
<p>Text about Marvin's Munchies goes here.</p>

Or you could use this:

<h1 class="serious">MMI Investor Information</h1>
<p>Text for business investors goes here.</p>

When referencing a style class in HTML code, simply specify the class name in the class

 attribute of an element. In the preceding example, the words Marvin's Munchies Inc.

would appear in a 36-point Comic Sans font, assuming that you included a <link> to the style

sheet at the top of the web page and that the user has the Comic Sans font installed. The words

MMI Investor Information would appear in the 36-point Arial font instead. You can see

another example of classes in action in Listing 3.2; look for the subheader <p> class.

What if you want to create a style class that can be applied to any element instead of just head-

ings or some other particular tag? In your CSS, simply use a period (.) followed by any style class

name you make up and any style rules you choose. That class can specify any number of font,

spacing, and margin settings all at once. Wherever you want to apply your custom tag in a page,

just use an HTML tag plus the class attribute, followed by the class name you created.

70 LESSON 3: Understanding Cascading Style Sheets

For example, the style sheet in Listing 3.1 includes the following style class specification:

p.subheader {
 font-weight: bold;
 color:#593d87;
}

This style class is applied in Listing 3.2 with the following tag:

<p class="subheader">

NOTE

You might have noticed a change in the coding style when a style rule includes multiple properties.
For style rules with a single style, you commonly see the property placed on the same line as the
rule, like this:
p.subheader { font-weight: bold; }

However, when a style rule contains multiple style properties, it’s much easier to read and
 understand the code if you list the properties one per line, like this:
p.subheader {
 font-weight: bold;
 color:#593d87;
}

Everything between that tag and the closing </p> tag in Listing 3.2 appears in bold purple text.

What makes style classes so valuable is that they isolate style code from web pages, enabling you

to focus your HTML code on the actual content in a page rather than on how it is going to appear

on the screen. Then you can determine how the content is rendered to the screen by fine-tuning

the style sheet. You might be surprised by how a relatively small amount of code in a style sheet

can have significant effects across an entire website. Style classes make your pages much easier to

maintain and manipulate.

Using Style IDs
When you create custom style classes, you can use those classes as many times as you like; they

are not unique. However, in some instances, you want precise control over unique elements for

layout or formatting purposes (or both). In such instances, look to IDs instead of classes.

A style ID is a custom set of formatting specifications that can be applied to only one element in a

web page. You can use IDs across a set of pages—but only once within each page.

Internal Style Sheets and Inline Styles 71

For example, suppose you have a title within the body of all your pages. Each page has only one

title, but each page includes one instance of that title. Following is an example of a selector with

an ID indicated, plus a property and a value:

p#title {font: 24pt Verdana, Geneva, Arial, sans-serif}

Notice that this selector includes a hash tag, or pound sign (#), after p, followed by a descriptive

ID name. When referencing a style ID in HTML code, simply specify the ID name in the id

 attribute of an element, like so:

<p id="title">Some Title Goes Here</p>

Everything between the opening and closing <p> tags will appear in 24-point Verdana text—but only

once on any given page. You often see style IDs used to define specific parts of a page for layout pur-

poses, such as a header area, footer area, main body area, and so on. These types of areas in a page

appear only once per page, so using an ID rather than a class is the appropriate choice.

Internal Style Sheets and Inline Styles
In some situations, you want to specify styles that will be used in only one web page. You can

enclose a style sheet between <style> and </style> tags and include it directly in an HTML

document. Style sheets used in this manner must appear in the <head> of an HTML document.

No <link> tag is needed, and you cannot refer to that style sheet from any other page (unless

you copy it into the beginning of that document, too). This kind of style sheet is known as an

internal style sheet, as you learned earlier in the lesson.

NOTE

In many web pages, you see the attribute type="text/css" on the <style> tag. This used to
be required for valid HTML, but most modern browsers assume that is the type unless otherwise
 specified. So, in HTML5, that attribute is no longer required.

Listing 3.3 shows an example of how you might specify an internal style sheet.

LISTING 3.3 A Web Page with an Internal Style Sheet

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Some Page</title>
 <style>
 footer {
 font-size: 9pt;

72 LESSON 3: Understanding Cascading Style Sheets

 line-height: 12pt;
 text-align: center;
 }
 </style>
 </head>
 <body>
 ...
 <footer>
 Copyright 2018 Acme Products, Inc.
 </footer>
 </body>
</html>

In Listing 3.3, the footer style class is specified in an internal style sheet that appears in the

head of the page. The style class is now available for use within the body of this page. In fact, it is

used in the body of the page to style the copyright notice.

Internal style sheets are handy if you want to create a style rule that is used multiple times within

a single page. However, in some instances, you might need to apply a unique style to one particu-

lar element. This calls for an inline style rule, which enables you to specify a style for only a small

part of a page, such as an individual element. For example, you can create and apply a style rule

within a <p>, <div>, or tag via the style attribute. This type of style is known as an

inline style because it is specified right there in the middle of the HTML code.

NOTE

The and tags are dummy tags that do nothing in and of themselves except
specify a range of content to apply any style attributes that you add. The only difference between
<div> and is that <div> is a block element and, therefore, forces a line break, whereas
 doesn’t. Therefore, you should use to modify the style of any portion of text that is
to appear in the middle of a sentence or paragraph without any line break.

Here’s how a sample style attribute might look:

<p style="color:green;">
 This text is green, but this text
 is red.
 Back to green again, but...
</p>
<p>
 ...now the green is over, and we're back to the default color
 for this page.
</p>

Internal Style Sheets and Inline Styles 73

This code makes use of the tag to show how to apply the color style property in an

inline style rule. In fact, both the <p> tag and the tag in this example use the color

property as an inline style. It is important to understand that the color:red; style property

overrides the color:green; style property for the text between the and tags.

Then in the second paragraph, neither of the color styles applies because this completely new

paragraph adheres to the default color of the entire page.

CAUTION

Using inline styles isn’t considered a best practice when used beyond page-level debugging or the
process of trying out new things in a controlled setting. The best practice of all is having your pages
link to a centrally maintained style sheet so that changes are immediately reflected in all pages that
use it.

Validating Your Style Sheets
Just as it is important to validate your HTML or XHTML markup, it is important to validate style
sheets. You can find a specific validation tool for CSS at https://jigsaw.w3.org/css-validator/. You
can point the tool to a web address, upload a file, or paste content into the form field provided. The
ultimate goal is a result like the one in Figure 3.3: valid!

FIGURE 3.3
The W3C CSS Validator shows there are no errors in the style sheet contents of Listing 3.1.

https://jigsaw.w3.org/css-validator/

74 LESSON 3: Understanding Cascading Style Sheets

Summary
In this lesson, you learned that a style sheet can control the appearance of many HTML pages at

once. It can also give you extremely precise control over the typography, spacing, and positioning

of HTML elements. You also learned that, by adding a style attribute to almost any HTML tag,

you can control the style of any part of an HTML page without referring to a separate style sheet

document.

You learned about three main approaches to including style sheets in your website: a separate

style sheet file with the extension .css that is linked to in the <head> of your documents, a

 collection of style rules placed in the <head> of the document within the <style> tag, and rules

placed directly in an HTML tag via the style attribute (although the latter is not a best practice

for long-term use).

Table 3.1 summarizes the tags discussed in this lesson. Refer to the CSS style sheet standards at

www.w3c.org for details on what options can be included after the <style> tag or the style

 attribute.

TABLE 3.1 HTML Tags and Attributes Covered in Lesson 3

Tag Attributes Function

<style>…</style> Allows an internal style sheet to be included
within a document. Used between <head>
and </head>.

type="contenttype" The Internet content type. No longer required
for HTML5.

<link> Links to an external style sheet (or other
document type). Used in the <head>
section of the document.

href="url" The address of the style sheet.

type="contenttype" The Internet content type. No longer required
for HTML5.

rel="stylesheet" The link type.

… Does nothing except provide a place to
put style or other attributes. (Similar to
<div>…</div>, but does not cause a
line break.)

style="style" Includes inline style specifications. (Can be
used in , <div>, <body>, and most
other HTML tags.)

http://www.w3c.org

Workshop 75

Q&A
 Q. Say that I link a style sheet to my page that says all text should be blue, but there’s

a tag in the page somewhere. Will that text display

as blue or red?

 A. Red. Local inline styles always take precedence over external style sheets. Any style speci-
fications you put between <style> and </style> tags at the top of a page also take
precedence over external style sheets (but not over inline styles later in the same page).
This is the cascading effect of style sheets mentioned earlier in the lesson. You can think
of cascading style effects as starting with an external style sheet, which is overridden by an
internal style sheet, which is overridden by inline styles.

 Q. Can I link more than one style sheet to a single page?

 A. Sure. For example, you might have a sheet for formatting (text, fonts, colors, and so on) and
another one for layout (margins, padding, alignment, and so on); you just need to include a
<link> for each one. Technically, the CSS standard requires web browsers to give the user
the option to choose between style sheets when multiple sheets are presented via multiple
<link> tags. However, in practice, all major web browsers simply include every style sheet
unless it has a rel="alternate" attribute. Best practices recommend that you limit the
 number of style sheets you link to. This results in fewer calls to the server and, therefore,
faster page load times.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. What code would you use to create a style sheet to specify 30-point blue Arial headings

and all other text in 10-point blue Times Roman (or the default browser font)?

 2. If you saved the style sheet you made for Question 1 as corporate.css, how would you
apply it to a web page named intro.html?

 3. How many different ways are there to ensure that style rules can be applied to your
 content?

 4. How do you connect all your website pages to the style sheet named mystyles.css?

http://intro.html

76 LESSON 3: Understanding Cascading Style Sheets

 5. In the following HTML, what color would the text “To come to the aid of their country” be?

<div style="color:purple;">
 Now is the time
 <p style="color:orange;">for all good people</p>
 <p>To come to the aid of their country.</p>
</div>

 6. What does the display: block; property do?

 7. What does the term px mean?

 8. What does the style border-right: dashed red 2px; do?

 9. What does the style border-radius: 1em 1.5em; do?

 10. What does the style rule .main { color: purple; } do?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. Your style sheet would include the following:

h1 { font: 30pt blue Arial; }
body { font: 10pt blue "Times New Roman"; }

 2. Put the following tag between the <head> and </head> tags of the intro.html
 document:

<link rel="stylesheet" href="corporate.css">

 3. Three: externally, internally, and inline.

 4. To connect all your website pages to the style sheet named mystyles.css, use the
 following:

<link href="mystyles.css" rel="stylesheet">

 5. It would be purple.

 6. It displays the element on a new line.

 7. It is a unit of measure—pixels.

http://www.informit.com/register

Exercises 77

 8. It puts a right-side border on the element that is dashed, red, and 2 pixels wide.

 9. It rounds the corners of the element with a 1-em horizontal radius and a 1.5-em
vertical radius.

 10. It sets everything with the class main to have a purple text color.

Exercises
 N Using the style sheet you created earlier in this lesson, add some style classes to your

style sheet. To see the fruits of your labor, apply those classes to the HTML page you
created as well. Use classes with your <h1> and <p> tags to get a feel for things.

 N Develop a standard style sheet for your website and link it to all your pages. (Use
 internal style sheets and/or inline styles for pages that need to deviate from it.) If you
work for a corporation, chances are it has already developed font and style specifica-
tions for printed materials. Get a copy of those specifications and follow them for
 company web pages, too.

 N Be sure to explore the official style sheet specs at www.w3.org/Style/CSS/ and try
some of the more esoteric style properties not covered in this lesson.

http://www.w3.org/Style/CSS/

This page intentionally left blank

LESSON 4
Understanding JavaScript

What You'll Learn in This Lesson:

 N What web scripting is and what it’s good for

 N How scripting and programming are different (and similar)

 N What JavaScript is and where it came from

 N How to include JavaScript commands in a web page

 N What JavaScript can do for your web pages

 N Beginning and ending scripts

 N Formatting JavaScript statements

 N How a script can display a result

 N Including a script within a web document

 N Testing a script in a browser

 N Modifying a script

 N Dealing with errors in scripts

 N Moving scripts into separate files

The World Wide Web (WWW) began as a text-only medium; the first browsers didn’t even support

images within web pages. The Web has come a long way since those early days. Today’s websites

include a wealth of visual and interactive features in addition to useful content: graphics, sounds,

animation, and video. Using web scripting languages, such as JavaScript, is one of the easiest

ways to spice up a web page and to interact with users in new ways.

The first part of this lesson introduces the concept of web scripting and the JavaScript language.

As the lesson moves ahead, you’ll learn how to include JavaScript commands directly in your

HTML documents and how your scripts will be executed when the page is viewed in a browser.

You will work with a simple script, edit it, and test it in your browser, all the while learning the

basic tasks involved in creating and using JavaScript scripts.

80 LESSON 4: Understanding JavaScript

Learning Web Scripting Basics
You already know how to use two types of computer languages: HTML and CSS. You use HTML

tags to describe how you want your document formatted. Then you use CSS to describe how you

want the document displayed, and the browser shows the decorated content to the user. But

because HTML and CSS are simple text-based languages, they can’t respond to the user, make

decisions, or automate repetitive tasks. Interactive tasks such as these require a more sophisticated

language: a programming language or a scripting language.

Although many programming languages are complex, scripting languages are generally simple.

They have a simple syntax, can perform tasks with a minimum of commands, and are easy to

learn. JavaScript is a web scripting language that enables you to combine scripting with HTML

and CSS to create interactive web pages.

Scripts and Programs
A movie or a play follows a script—a list of actions (or lines) for the actors to perform. A web script

provides the same type of instructions for the web browser. A script in JavaScript can range from

a single line to a full-scale application. (In either case, JavaScript scripts usually run within a

browser.)

Some programming languages must be compiled, or translated, into machine code before they can

be executed. JavaScript, on the other hand, is an interpreted language: The browser executes each

line of script as it comes to it.

There is one main advantage to interpreted languages: Writing or changing a script is very

simple. Changing a JavaScript script is as easy as changing a typical HTML document, and the

change is enacted as soon as you reload the document in the browser.

NOTE

Interpreted languages have disadvantages, too: They can’t execute really quickly, so they’re not ide-
ally suited for complicated work, such as graphics, and they require the interpreter (in JavaScript’s
case, usually a browser) in order to work.

Introducing JavaScript
JavaScript was developed in 1995 by Netscape Communications Corporation, the maker of

the long-defunct Netscape web browser. JavaScript was the first web scripting language to be

 supported by browsers, and it is still by far the most popular.

How JavaScript Fits into a Web Page 81

NOTE

A bit of history: JavaScript was originally called LiveScript, and it was first introduced in Netscape
Navigator 2.0 in 1995. It was soon renamed JavaScript to indicate a marketing relationship with
Sun’s Java language, although there is no other relationship, structurally or otherwise, between
Java and JavaScript.

JavaScript is almost as easy to learn as HTML, and it can be included directly in HTML documents.

Here are a few of the things you can do with JavaScript:

 N Display messages to the user as part of a web page, in the browser’s status line, or in

alert boxes

 N Validate the contents of a form and make calculations (for example, by having an order

form automatically display a running total as you enter item quantities)

 N Animate images or create images that change when you move the mouse over them

 N Create ad banners that interact with the user rather than simply displaying a graphic

 N Detect what browser is in use or what features the browser has and perform advanced

 functions only on browsers that support them

 N Detect installed plug-ins and notify the user if a plug-in is required

 N Modify all or part of a web page without requiring the user to reload it

 N Display or interact with data retrieved from a remote server

You can do all this and more with JavaScript, including creating entire applications. We’ll explore

the uses of JavaScript throughout these lessons.

How JavaScript Fits into a Web Page
By using the <script> tag, as shown in Listing 4.1, you can add a short script (in this case, just

one line) to a web document. The <script> tag tells the browser to start treating the text as a

script, and the closing </script> tag tells the browser to return to HTML mode. In most cases,

you can’t use JavaScript statements in an HTML document except within <script> tags. The

exception is event handlers, described later in this lesson.

LISTING 4.1 A Simple HTML Document with a Simple Script

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>The American Eggplant Society</title>
 </head>

82 LESSON 4: Understanding JavaScript

 <body>
 <h1>The American Eggplant Society</h1>
 <p>Welcome to our site. Unfortunately, it is still
 under construction.</p>
 <p>We last worked on it on this date:
 <script>
 <!-- // Hide the script from old browsers
 document.write(document.lastModified);
 // Stop hiding the script -->
 </script>
 </p>
 </body>
</html>

JavaScript’s document.write statement, which you’ll learn more about later, sends output

as part of the web document. In this case, it displays the modification date of the document, as

shown in Figure 4.1.

FIGURE 4.1
Using document.write to display a last-modified date.

In this example, we placed the script within the body of the HTML document. There are actually

four places where you might use scripts:

 N In the body of the page—In this case, the script’s output is displayed as part of the HTML

document when the browser loads the page.

How JavaScript Fits into a Web Page 83

 N In the header of the page, between the <head> tags—Scripts in the header should not be

used to create output within the <head> section of an HTML document, since that would

likely result in poorly formed and invalid HTML documents, but these scripts can be referred

to by other scripts here and elsewhere. The <head> section is often used for functions—

groups of JavaScript statements that can be used as a single unit. You will learn more about

functions in Lesson 20, “Getting Started with JavaScript Programming.”

 N Within an HTML tag, such as <body> or <form>—This is called an event handler, and it

enables the script to work with HTML elements. When using JavaScript in event handlers,

you don’t need to use the <script> tag. You’ll learn more about event handlers in

Lesson 20.

 N In a separate file entirely—JavaScript supports the use of files with the .js extension con-

taining scripts; these can be included by specifying a file in the <script> tag. While using

the .js extension is a convention, scripts can actually have any file extension, or none.

As you’ll learn in Lesson 25, “JavaScript Best Practices,” the best place to put JavaScript is inside

the <body> tag, just before the closing </body> tag. This ensures that JavaScript is the last thing

to load and so doesn’t disrupt the speed of the rest of the page displaying.

Using Separate JavaScript Files
When you create more complicated scripts, you’ll quickly find that your HTML documents become

large and confusing. To avoid this problem, you can use one or more external JavaScript files.

These are files with the .js extension that contain JavaScript statements.

External scripts are supported by all modern browsers. To use an external script, you specify its

filename in the <script> tag, as shown here:

<script src="filename.js"></script>

NOTE

The type attribute used to be required. But in HTML5 it can be left out if the script referenced is
JavaScript.

Because in this case you’ll be placing the JavaScript statements in a separate file, you don’t need

anything between the opening and closing <script> tags; in fact, anything between them will

be ignored by the browser.

You can create the .js file by using the same text editor you use to write HTML and CSS. This

file should contain one or more JavaScript commands and only JavaScript; it should not include

<script> tags, other HTML tags, CSS, or HTML comments. Save the .js file in the same direc-

tory as the HTML documents that refer to it.

84 LESSON 4: Understanding JavaScript

NOTE

External JavaScript files have a distinct advantage: You can link to the same .js file from two or
more HTML documents. The browser stores this file in its cache, which can reduce the time it takes
your web pages to display. But remember that every linked file requires an additional request to the
server. So try to keep all your scripts in as few files as you can.

Understanding JavaScript Events
Many of the useful things you can do with JavaScript involve interacting with the user, and

that means responding to events—for example, a link or a button being clicked. You can define

event handlers within HTML tags to tell the browser how to respond to an event. For example,

Listing 4.2 defines a button that displays a message when clicked.

LISTING 4.2 A Simple Event Handler

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Event Test</title>
 </head>
 <body>
 <h1>Event Test</h1>
 <button type="button"
 onclick="alert('You clicked the button.')">
 Click Me!</button>
 </body>
</html>

In various places throughout these lessons, you’ll learn more about JavaScript’s event model and

how to create simple and complex event handlers.

Exploring JavaScript’s Capabilities
If you’ve spent any time browsing the Web, you’ve undoubtedly seen lots of examples of JavaScript

in action. The following sections provide some brief descriptions of typical applications for

JavaScript, all of which you’ll explore in later lessons.

Improving Navigation
Some of the most common uses of JavaScript are in navigation systems for websites. You can use

JavaScript to create a navigation tool—for example, a drop-down menu to select the next page to

read or a submenu that pops up when you hover over a navigation link.

Displaying Time with JavaScript 85

When it’s done right, this kind of JavaScript interactivity can make a site easier to use, even for

browsers that don’t support JavaScript.

Validating Forms
Form validation is another common use of JavaScript, although the form validation features of

HTML5 have stolen a lot of JavaScript’s thunder here as well. A simple script can read values the

user types into a form and make sure they’re in the right format, such as with zip codes, phone

numbers, and email addresses. This type of client-side validation enables users to fix common

errors without waiting for a response from the web server, telling them that their form submission

was invalid. You’ll learn how to work with form data in Lesson 27, “Working with Web-Based

Forms.”

Special Effects
One of the earliest and most annoying uses of JavaScript was to create attention-getting special

effects—for example, scrolling a message in the browser’s status line or flashing the background

color of a page.

These techniques have fortunately fallen out of style, but thanks to the W3C DOM and the latest

browsers, some more impressive effects are possible with JavaScript—for example, creating objects

that can be dragged and dropped on a page or creating fading transitions between images in a

slideshow. Some developers have HTML5, CSS3, and JavaScript working in tandem to create fully

functioning interactive games.

Remote Scripting (AJAX)
For a long time, the biggest limitation of JavaScript was that there was no way for it to commu-

nicate with a web server. For example, you could use JavaScript to verify that a phone number

had the right number of digits but not to look up the user’s location in a database based on the

 number.

Now that most browsers support some of JavaScript’s advanced features, this is no longer the

case. Your scripts can get data from a server without loading a page, or they can send data back

to be saved. These features are collectively known as AJAX (Asynchronous JavaScript and XML), or

remote scripting.

Displaying Time with JavaScript
One common use of JavaScript is to display dates and times in the browser, and that’s where we’ll

start putting some scripting pieces together. Because JavaScript runs on the browser, the times it

displays will be in the user’s current time zone. However, you can also use JavaScript to calculate

“universal” (UTC) time.

86 LESSON 4: Understanding JavaScript

NOTE

UTC, which stands for Universal Time (Coordinated), is the atomic time standard based on the old
GMT (Greenwich Mean Time) standard. This is the time at the prime meridian, which runs through
Greenwich, London, England.

Your script, like most other JavaScript programs, begins with the HTML <script> tag. As you

learned earlier in this lesson, you use the <script> and </script> tags to enclose a script

 within the HTML document.

CAUTION

Remember to include only valid JavaScript statements between the starting and ending <script>
tags. If the browser finds anything except valid JavaScript statements within the <script> tags, it
will display a JavaScript error message. You should use the comment indicator (//) in front of any
lines that are not JavaScript.

To begin creating the script, open your favorite text editor and type the beginning and ending

<script> tags, as shown here:

<script></script>

In this script, you’ll use JavaScript to determine the local and UTC times and then display them in

the browser. Fortunately, all the hard parts, such as converting between date formats, are built in

to the JavaScript interpreter; this is one of the reasons that displaying dates and times is a good

starting place for beginners.

Storing Data in Variables
To begin the script, you will use a variable to store the current date. You will learn more about

variables in Lesson 22, “Using JavaScript Variables, Strings, and Arrays,” but for now just under-

stand that a variable is a container that can hold a value—a number, some text, or, in this case,

a date.

To start writing the script, add the following line after the first <script> tag, making sure to

use the same combination of uppercase and lowercase letters in your version because JavaScript

 commands and variable names are case sensitive:

now = new Date();

This statement creates a variable called now and stores the current date and time in it. This

statement and the others you will use in this script use JavaScript’s built-in Date object, which

enables you to conveniently handle dates and times. You’ll learn more about working with dates

in Lesson 22.

Displaying Time with JavaScript 87

NOTE

Notice the semicolon at the end of the code snippet creating a variable called now. This semicolon
tells the browser that it has reached the end of a statement. Semicolons are optional, but using
them helps you avoid some common errors. We’ll use them throughout these lessons for clarity.

Calculating the Results
Internally, JavaScript stores dates as the number of milliseconds since January 1, 1970.

Fortunately, JavaScript includes a number of functions to convert dates and times in various ways,

so you don’t have to figure out how to convert milliseconds to days, dates, or times.

To continue your script, add the following two statements before the final </script> tag:

localtime = now.toString();
utctime = now.toGMTString();

These statements create two new variables: localtime, containing the current time and date in

a nice readable format, and utctime, containing the UTC equivalent.

NOTE

The localtime and utctime variables store a piece of text, such as January 1, 2001
12:00 PM. In programming parlance, a piece of text is called a string.

Creating Output
You now have two variables—localtime and utctime—which contain the results you want

from your script. Of course, these variables don’t do you much good unless you can see them.

JavaScript includes several ways to display information, and one of the simplest is by using the

document.write statement.

The document.write statement displays a text string, a number, or anything else you throw at

it. Because your JavaScript program will be used within a web page, the output will be displayed

as part of the page. To display the result, add these statements before the final </script> tag:

document.write("<p>Local time: " + localtime + "</p>");
document.write("<p>UTC time: " + utctime + "</p>");

These statements tell the browser to add some text to the web page containing your script. The

output will include some brief strings introducing the results and the contents of the localtime

and utctime variables.

Notice the HTML elements, such as <p> and , within the quotation marks; because

JavaScript’s output appears within a web page, it needs to be formatted using HTML.

88 LESSON 4: Understanding JavaScript

NOTE

Notice the plus signs (+) used between the text and variables in the document.write() code
snippets. In this case, each plus sign tells the browser to combine the values into one string of text.
If you use the plus sign between two numbers that aren’t in quotes, they are added together.

Adding the Script to a Web Page
You should now have a complete script that calculates a result and displays it. Your script should

match Listing 4.3.

LISTING 4.3 The Complete Date and Time Script

<script>
 now = new Date();
 localtime = now.toString();
 utctime = now.toGMTString();
 document.write("<p>Local time: " + localtime + "</p>");
 document.write("<p>UTC time: " + utctime + "</p>");
</script>

To use your script, you need to add it to an HTML document. If you use the general template

you’ve seen in the lessons so far, you should end up with something like Listing 4.4.

LISTING 4.4 The Date and Time Script in an HTML Document

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying Times and Dates</title>
 </head>
 <body>
 <h1>Current Date and Time</h1>
 <script>
 now = new Date();
 localtime = now.toString();
 utctime = now.toGMTString();
 document.write("<p>Local time: "
 + localtime + "</p>");
 document.write("<p>UTC time: " + utctime
 + "</p>");
 </script>
 </body>
</html>

Now that you have a complete HTML document, save it with an .html extension.

http://.html

Testing the Script 89

Testing the Script
To test your script, you simply need to load the HTML document you created in a web browser.

If you typed the script correctly, your browser should display the result of the script, as shown in

Figure 4.2. (Of course, your result won’t be the same as mine, but it should be the same as the

 setting of your computer’s clock.)

FIGURE 4.2
Using JavaScript to display the date and time.

NOTE

With Internet Explorer, depending on your security settings, the script might not execute, and your
browser might display a security warning. In this case, follow your browser’s instructions to allow
your script to run. (This happens because the default security settings allow JavaScript in online
documents but not in local files.)

Modifying the Script
Although the current script does indeed display the current date and time, its display isn’t nearly

as attractive as the clock on your wall or desk. To remedy that situation, you can use some

 additional JavaScript features and a bit of HTML to display a large clock.

To display a large clock, you need the hours, minutes, and seconds in separate variables. Once

again, JavaScript has built-in functions to do most of the work:

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

These statements load the hours, mins, and secs variables with the components of the time

using JavaScript’s built-in date functions.

After the hours, minutes, and seconds are in separate variables, you can create document.
write statements to display them:

document.write("<p>");
document.write(hours + ":" + mins + ":" + secs);
document.write("</p>");

90 LESSON 4: Understanding JavaScript

The first statement displays an HTML <h2> header tag to display the clock as a second-level

header element. The second statement displays the hours, mins, and secs variables, separated

by colons, and the third adds the closing </h2> tag.

You can add the preceding statements to the original date and time script to add the large clock

display. Listing 4.5 shows the complete modified version of the script.

LISTING 4.5 The Date and Time Script with a Large Clock Display

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying Times and Dates</title>
 </head>
 <body>
 <h1>Current Date and Time</h1>
 <script>
 now = new Date();
 localtime = now.toString();
 utctime = now.toGMTString();
 document.write("<p>Local time: "
 + localtime + "</p>");
 document.write("<p>UTC time: "
 + utctime + "</p>");
 hours = now.getHours();
 mins = now.getMinutes();
 secs = now.getSeconds();
 document.write("<h2>");
 document.write(hours + ":" + mins + ":" + secs);
 document.write("</h2>");
 </script>
 </body>
</html>

Now that you have modified the script, save the HTML file and open the modified file in your

browser. If you left the browser running, you can simply use the Reload button to load the new

version of the script. Try it and verify that the same time is displayed in both the upper portion of

the window and the new large clock. Figure 4.3 shows the results.

Testing the Script 91

FIGURE 4.3
Displaying the modified date and time script.

NOTE

The time formatting produced by this script isn’t perfect: Hours after noon are in 24-hour time, and
there are no leading zeros, so 12:04 is displayed as 12:4. See Lesson 22 for solutions to these
issues.

Dealing with JavaScript Errors
As you develop more complex JavaScript applications, you’re going to run into errors from time to

time. JavaScript errors are usually caused by mistyped JavaScript statements.

To see an example of a JavaScript error message, you can modify the statement you added in

the preceding section. In this example, we use a common error: omitting one of the parentheses.

Change the last document.write statement in Listing 4.5 to read

document.write("</h2>";

Save your HTML document again and load the document into the browser. Depending on the

browser version you’re using, one of two things will happen: Either an error message will be

 displayed, or the script will simply fail to execute.

If an error message is displayed, you’re halfway to fixing the problem by adding the missing

parenthesis. If no error was displayed, you should configure your browser to display error

 messages so that you can diagnose future problems:

 N In Firefox, you can select Tools, Web Developer, Web Console. The console displays the error

message you created in this example, as shown in Figure 4.4.

 N In Chrome, from the options menu (three horizontal dots on the right side of the browser

bar) select More Tools, Developer Tools. A console displays in the bottom of the browser

 window. Choose the console tab if it’s not selected.

92 LESSON 4: Understanding JavaScript

FIGURE 4.4
Showing an error in the JavaScript console in Firefox.

The error you get in this case, SyntaxError: missing) after argument list , points

to line 22. In this case, clicking the name of the document takes you directly to the highlighted

line containing the error, as shown in Figure 4.5.

FIGURE 4.5
Firefox helpfully points out the offending line.

Most modern browsers contain JavaScript debugging tools such as the one you just witnessed.

You’ll learn more about this in the next lesson.

Q&A 93

Summary
During this lesson, you’ve learned what web scripting is and what JavaScript is. You’ve also

learned how to insert a script into an HTML document or refer to an external JavaScript file, what

sorts of things JavaScript can do, and how JavaScript differs from other web languages. You also

wrote a simple JavaScript program and tested it using a web browser. You also learned how to

modify and test scripts, and you saw what happens when a JavaScript program runs into an error.

In the process of writing this script, you have used some of JavaScript’s basic features: variables,

the document.write statement, and functions for working with dates and times.

Now that you’ve learned a bit of JavaScript syntax, you’re ready to continue on to learn all sorts

of things about web development before settling in to writing interactive websites using client-side

scripting.

Q&A
 Q. Do I need to test my JavaScript on more than one browser?

 A. In an ideal world, any script you write that follows the standards for JavaScript will work
in all browsers, and 98% of the time (give or take) that’s true in the real world. But brows-
ers do have their quirks, and you should test your scripts in Chrome, Internet Explorer, and
Firefox, as well as mobile devices running iOS and Android—at a minimum.

 Q. If I plan to learn PHP, Ruby, or some other server-side programming language anyway,

will I have any use for JavaScript?

 A. Certainly. JavaScript is the ideal language for many parts of a web-based application, such
as basic interactivity. Although PHP, Ruby, and other server-side languages have their uses,
they can’t interact directly with the user on the client side.

 Q. When I try to run my script, the browser displays the actual script in the browser window

instead of executing it. What did I do wrong?

 A. This is most likely caused by one of three errors. First, you might be missing the beginning
or ending <script> tags. Check them and, if you use the type attribute, verify that it
reads type="text/javascript". Second, your file might have been saved with a .txt
extension, causing the browser to treat it as a text file. Rename it to have the extension
.htm or .html to fix the problem. Third, make sure your browser supports JavaScript and
ensure that it is not disabled in the preferences.

 Q. Why are the and <p> tags allowed in the statements to print the time? I thought

HTML tags aren't allowed within the <script> tags.

 A. Because these tags are inside quotation marks, they are considered a valid part of
the script. The script’s output, including any HTML tags, is interpreted and displayed
by the browser. You can use other HTML tags within quotation marks to add formatting,
such as the <h2> tags you added for the large clock display.

http://.html

94 LESSON 4: Understanding JavaScript

Workshop
The workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. When a user views a page containing a JavaScript program, which machine actually

 executes the script?

 a. The user’s machine running a web browser

 b. The web server

 c. A central machine deep within Netscape’s corporate offices

 d. A dedicated JavaScript server

 2. What software do you use to create and edit JavaScript programs?

 a. A browser

 b. A text editor

 c. A pencil and a piece of paper

 d. A JavaScript editor

 3. What are variables used for in JavaScript programs?

 a. Storing numbers, dates, or other values

 b. Varying randomly

 c. Causing high-school algebra flashbacks

 d. Changing the output of the script

 4. What should appear at the very end of a JavaScript script embedded in an HTML file?

 a. The <script> tag

 b. The </javascript> tag

 c. The END statement

 d. The </script> tag

 5. Which of these is not something you can do with JavaScript?

 a. Detect the features of the browser in use

 b. Modify part of a page without requiring a page refresh

 c. Write data to the remote server

 d. Interact with data from a remote server

Workshop 95

 6. Where can you place scripts?

 a. In the body of a page

 b. Within an HTML tag

 c. In a separate file

 d. All of the above

 7. What do you use to include a separate script file in a page?

 a. <link src="filename.js">

 b. <script src="filename.js"></script>

 c. <javascript src="filename.js">

 d. <include src="filename.js"></include>

 8. Which of these is an event handler?

 a. <button>

 b. type="button"

 c. onclick="alert('You clicked the button.')"

 d. </button>

 9. What does the line now = new Date(); do in JavaScript?

 a. It creates a variable called now and stores the current date in it.

 b. It creates a variable called new and stores the current date in it.

 c. It displays the current time.

 d. Nothing; it’s not valid JavaScript.

 10. Correct this line of JavaScript:

document.write("<p>Dinner Time: " + localtime + "</p>);

 a. document.write("<p>Dinner Time: "
+ localtime + "</p>");

 b. document.write("<p>Dinner Time: "
+ localtime + "</p>');

 c. document.write("<p>Dinner Time: "
+ localtime + "</p>;

 d. The line is correct as written.

96 LESSON 4: Understanding JavaScript

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. a. JavaScript programs execute in the web browser. (There is actually a server-side version

of JavaScript, but that’s another story.)

 2. b. You can use any text editor to create scripts.

 3. a. Variables are used to store numbers, dates, or other values.

 4. d. Your script should end with the </script> tag.

 5. c. JavaScript can never write data to the remote server due to security concerns.

 6. d. JavaScript can be added in the body, a tag, or in a separate file.

 7. b. Use the line <script src="filename.js"></script>.

 8. c. The onclick attribute and its value are the click event handler.

 9. a. It creates a variable called now and stores the current date in it.

 10. a. The final quotation mark is missing.

Exercises
 N Add a millisecond field to the large clock. You can use the getMilliseconds function,

which works just like getSeconds but returns milliseconds.

 N Modify the script to display the time, including milliseconds, twice. Notice whether any
time passes between the two time displays when you load the page.

http://www.informit.com/register

LESSON 5
Validating and Debugging

Your Code

What You’ll Learn in This Lesson:

 N How to validate your HTML and CSS

 N How to use Developer Tools to debug HTML and CSS

 N How to use the JavaScript Console to debug JavaScript

It doesn’t matter if you’re a beginner or a seasoned expert—bugs happen. Bugs are a fact of

life for developers of all skill levels, and we would even venture to say that if your code doesn’t

 contain errors at some point during its creation, then you’re just not trying hard enough. So don’t

worry about the bugs; just worry about identifying and fixing them before clients or customers

experience their side effects.

In this lesson, you’ll learn about how to validate and debug your HTML and CSS as you develop it,

as well as how to use some handy tools built directly into your web browser to identify and debug

issues with your JavaScript.

Validating Your Web Content
In the first lesson of this series, I discussed ways to test the web pages you create; one very impor-

tant way to test your pages is to validate them. Think of it this way: It’s one thing to design and

draw a beautiful set of house plans, but it’s quite another for an architect to stamp it as a safe

structure suitable for construction. Validating your web pages is a similar process; in this case,

however, the architect is a web-based application, not a person.

In brief, validation is the process of testing your pages with a special application that searches

for errors and makes sure the pages adhere to the current HTML and CSS standards. Validation

is simple. In fact, the standards body responsible for developing web standards, the World Wide

Web Consortium (W3C), offers an online validation tool you can use, at https://validator.w3.org.

Figure 5.1 shows the options for using the W3C Markup Validation Service.

https://validator.w3.org

98 LESSON 5: Validating and Debugging Your Code

FIGURE 5.1
The W3C Markup Validation Service enables you to validate an HTML document to ensure that it has been
coded accurately.

If you’ve already published a page online, you can use the Validate by URI tab. Use the Validate

by File Upload tab to validate files stored on your local computer file system. The Validate by

Direct Input tab enables you to paste the contents of a file from your text editor. If all goes well,

your page will get a passing report, like the one shown in Figure 5.2, which validates a code

 listing from Lesson 2, “Structuring an HTML Document.”

FIGURE 5.2
If a page passes the W3C Markup Validation Service, you know that the code is ready for prime time.

99Debugging HTML and CSS Using Developer Tools

The W3C also provides a tool to validate CSS; visit https://jigsaw.w3.org/css-validator/ and enter

a URL or upload a file using the options provided. If the W3C Markup or CSS Validation Service

encounters an error, it provides specific details (including the line numbers of the offending code).

Figure 5.3 shows an example of an error report; in this instance we have purposely used the CSS

property padding-up—a property that does not exist—instead of padding-top.

FIGURE 5.3
The W3C CSS Validation Service, like the W3C Markup Validation Service, provides useful error reports.

Using basic validation services is a great way to hunt down problems and rid your HTML and CSS

of invalid code, such as incorrectly named CSS properties and mismatched HTML tags. Validation

not only informs you when your pages are constructed properly but also assists you in finding and

fixing problems in the code before you publish pages for the world to see.

Debugging HTML and CSS Using
Developer Tools
You can extend your debugging efforts beyond basic validation by using more advanced tools that

are built into most major browsers. Figures 5.4, 5.5, and 5.6 show what some of the major brows-

ers look like with Developer Tools turned on; in each figure you’ll notice some consistencies in the

names and functionalities of certain tools.

https://jigsaw.w3.org/css-validator/

100 LESSON 5: Validating and Debugging Your Code

FIGURE 5.4
Inspecting an element containing the Google logo using Developer Tools in Firefox.

FIGURE 5.5
Inspecting an element containing the Google logo using Developer Tools in Microsoft Internet Explorer.

Debugging HTML and CSS Using Developer Tools 101

FIGURE 5.6
Inspecting an element containing the Google logo using Developer Tools in Chrome.

Although the examples we’ll go through in this section use the Chrome Developer Tools, you

can see similarities in all the Developer Tools shown previously (and in other browsers, such as

Safari). In this specific case, the ability to inspect an element is present in all three sets of tools.

When you are selecting an element on the screen with your mouse, the additional window panels

in Developer Tools show the exact HTML used to render that element, as well as the style rules

 currently applied to that element.

This functionality of the inspector is quite useful because it provides a visual way to see the rela-

tionship between the node in the DOM tree and the rendered web page; in addition, note the use

of breadcrumbs in each set of tools, which shows the hierarchy of nodes from the root html node

down to the img node (with the ID value of #hplogo). This use of breadcrumbs serves to further

assist your understanding of where a rendered visual element appears within the DOM (and not

just on your screen).

The next few sections take you through some practical applications of using these tools.

102 LESSON 5: Validating and Debugging Your Code

Debugging HTML Using the Inspector
To illustrate how to use the inspector to debug HTML, consider the code in Listing 5.1, which is

just a basic HTML document containing a list of movies, where the word “Favorite” in the heading

is supposed to be italic. However, if you look at the rendered version in Figure 5.7, you’ll see some

problems: Everything is italic, and there is no bullet in front of the first list item. These problems

are caused by just two characters in all the text.

LISTING 5.1 A Simple HTML Document with Some HTML Syntax Errors Illustrated

in Figure 5.7

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Favorite Movies</title>
 </head>
 <body>
 <h1><i>Favorite<i> Movies</h1>

 <ll>Lord of the Rings
 Harry Potter
 Narnia
 Hot Lead and Cold Feet

 </body>
</html>

FIGURE 5.7
This web page has two problems: only the word “Favorite” should be italic, and there is no bullet in front of
the first list item.

Debugging HTML and CSS Using Developer Tools 103

Follow along with these steps to find and fix the HTML syntax problems using the inspector in

Developer Tools:

 1. Add the code in Listing 5.1 to a new file, save the document, and then open it in your favor-

ite modern browser (Chrome, Firefox, Safari, or Edge). You can keep the document on your

local machine or put it on your web server; it doesn’t matter for this example, as long as you

can open the file in your web browser.

 2. Right-click the screen and choose Inspect Element. You should see something like what’s

shown in Figure 5.8, with the Elements tab preselected.

FIGURE 5.8
The Elements tab is selected by default.

 3. Click on the arrows in the Elements panel to expand the <h1> tag, as shown in Figure 5.9.

Notice there’s an <i> element under the <h1> element, and there is also another <i></i>

tag pair. That isn’t right: You remember (and can see in your source file) that you didn’t

put <i> elements all over your code, so why do they appear? Well, if you look closely at

the Elements panel and then the source code, you will notice that there is a missing / that

would make the second instance of the <i> tag the closing </i> tag that you want. This

means the browser is rendering (and the inspector is showing) what appear to be <i>
</i> elements around every single element in your code because the first <i> element was

never closed; the rendering engine is interpreting that all of these phantom <i> elements

are present.

104 LESSON 5: Validating and Debugging Your Code

FIGURE 5.9
This HTML inspector shows more <i> elements in the DOM than are in your source code.

 4. In your source file, change the second <i> tag to a closing </i> tag and save the docu-

ment. Put it on your web server if that’s where you originally placed it.

 5. Refresh the document in the browser. Notice that, as shown in Figure 5.10, the word “Favorite”

is now italic, as it should be, and all the phantom <i> elements are gone from the inspector;

however, the bullet point is still missing from the first list item in the browser’s display.

FIGURE 5.10
This web page now has only one problem: no bullet point on the first list item.

Debugging HTML and CSS Using Developer Tools 105

 6. Go back to the Elements panel and expand the element and then the <ll>, as shown

in Figure 5.11. Notice that instead of a set of four appropriately opened and closed

elements under the element, there is an open <ll> tag followed by three ele-

ments within it, and then a closing tag. Although we haven’t covered the HTML list

item tags yet (we do that in the next lesson), you can probably deduce that because the

three lines with opening and closing tags show bullets, and in the source code the

<ll> element is closed by an tag, the opening tag should be an tag.

FIGURE 5.11
Viewing the DOM reveals that the browser sees an <ll> tag under the tag, not a set of tags.

 7. In your source file, change the <ll> tag to a tag and save the document. Put it on

your web server if that’s where you originally placed it.

 8. Reload the web page in the browser. It is now displayed properly, as shown in Figure 5.12.

106 LESSON 5: Validating and Debugging Your Code

FIGURE 5.12
Chrome now displays the web page formatted as intended.

Although going through all the steps as you just did shows you some ways in which the inspector

can be used to help spot issues, you might wonder just how much more efficient and helpful that

process actually is compared to just using a validator. After all, the issues seen earlier were purely

validation errors and would have easily been caught by using the W3C Validator you learned

about previously. Figure 5.13 shows some of the validation errors present in the original listing.

FIGURE 5.13
The W3C Validator clearly shows errors.

Debugging HTML and CSS Using Developer Tools 107

NOTE

When you use a validator, it’s best to review the problems in the order in which they appear. Often,
fixing one error will cause a lot of the following errors listed to disappear. For example, fixing the first
“Unclosed element i” error in Figure 5.13 will fix the second one as well. It will also fix the “End tag
h1 seen…” error. It is often a good idea to fix one error and revalidate to see what happens.

It’s true that a validator will more quickly identify pure syntax issues and that using the inspector

requires you to have the knowledge and experience to see the issue straightaway if it’s presented

in a different context rather than the raw source code. We recommend that beginners run their

code through a validator first, but seeing alternative views of the DOM rendering is quite useful

for an ongoing learning process.

Debugging CSS Using the Inspector
Everything you just learned about debugging HTML with the inspector is also true when it comes

to CSS: You can use Developer Tools to uncover issues with style definitions and inheritance.

These built-in tools become especially useful when you are working with more advanced develop-

ment, such as when you are using JavaScript to modify the CSS of particular elements beyond

their original state in the source code, but they can still be useful in the beginning stages of your

 development.

The steps in this section go through a brief example of using the inspector when working with

CSS—specifically, some ill-formed yet valid CSS, as shown in Listing 5.2. Although you’re encoun-

tering this lesson (and therefore these examples) very early in your development process, we are

quite certain that within a few lessons, you’ll remember the steps you’ve learned here and will be

using Developer Tools to enhance your debugging and development throughout the rest of the

course.

LISTING 5.2 Valid HTML and CSS That Doesn’t Display Nicely

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <style>
 #container {
 margin: 30px;
 padding: 5px;
 width: 300px;
 }

 #tabs {
 padding: 0px;
 width: 50px;
 }

108 LESSON 5: Validating and Debugging Your Code

 #content {
 border: 1px solid #000000;
 height: 100px;
 width: 300px;
 clear: both;
 }
 span {
 margin: 5px;
 width: 100px;
 background-color: #C0C0C0;
 font-weight: bold;
 border-color: #C0C0C0;
 border: 1px solid #000000;
 border-radius: 5px 5px 0px 0px;
 padding: 3px;
 float: left;
 text-align: center;
 }

 span:hover {
 background-color: #3030FF;
 color: #FFFFFF;
 cursor: pointer;
 }

 p {
 font-weight: bold;
 text-align: center;
 }
 </style>
 <title>Sample Page</title>
 </head>
 <body>
 <div id="container">
 <div id="tabs">
 Name/Title
 Contact Info
 Biography
 </div>

 <div id="content">
 <p>Jimbo Jones</p>
 <p>Rabble-Rouser</p>
 </div>
 </div>
 </body>
</html>

Debugging HTML and CSS Using Developer Tools 109

If you run this HTML and CSS through a validator, it will produce no errors because it is valid

HTML and CSS. However, as you can see in Figure 5.14, it’s just not right. The tabs are supposed

to align across the top of the box that contains text. If we could get past this initial layout issue,

a user would be able to click on the tabs, and the contents in the box would change. But we can’t

move forward and make that happen until this initial display works as we intend it to work. This

is a classic example of a debugging problem in HTML and CSS—it’s not wrong (invalid), but it just

isn’t right (displaying the way we want it to).

FIGURE 5.14
The result of valid HTML and CSS that needs some additional debugging to look better.

Follow along with these steps to uncover and fix some of the issues using the inspector:

 1. Add the code in Listing 5.2 to a new file, save the document, and then open it in your web

browser. You can keep the document on your local machine or put it on your web server; it

doesn’t matter for this example, as long as you can open the file in your web browser.

 2. Right-click the page and choose Inspect Element to open Developer Tools.

 3. Click on the arrows in the Elements panel to expand the <div> element with the ID

 "container" and then the <div> element with the ID "tabs". Click on the <div> ele-

ment with the ID "tabs" so that it is highlighted on your screen, as shown in Figure 5.15.

The width of this particular <div> will be shown; in this case, it is 50 pixels wide. This

should lead you to wonder if the width of this particular <div>, which is less than the

width of any of the elements within it (click on one to see that they are 100 pixels

wide)—let alone all three of them—is causing an issue with your layout.

110 LESSON 5: Validating and Debugging Your Code

FIGURE 5.15
The selected <div> element is only 50 pixels wide.

 4. Following your instincts from the preceding step, click on the <div> element with the ID

"container" so that it is highlighted on your screen and so that the style is given focus in

the style panel. Note that the width of this particular <div> element is 300 pixels.

 5. In the Elements panel, again click on the <div> element with the ID "tabs" so that its

styles are in focus in the style panel. Within the style panel, double-click on the width

value so that the field becomes editable and change that value to be 300px, as shown in

Figure 5.16.

Debugging HTML and CSS Using Developer Tools 111

FIGURE 5.16
The layout changes immediately, although it still isn’t correct.

Without making any changes to the underlying source code, either locally or on your web server,

you can use the inspector as a sort of editor to review possible changes to HTML and CSS. Although

the code in this example is still far from looking “good,” you can continue to make changes on

your own and see how the display reacts. You might have better results after working through later

lessons, but even without detailed knowledge of alignment, margins, and padding, you can experi-

ence a sort of trial-and-error debugging without having to commit changes in your code.

NOTE

You can use the inspector within Developer Tools for more than just your own code. You can turn
on Developer Tools and look at the source code of any page and get a sense of how the page is
 constructed—and you can change HTML and CSS values to see how these changes affect the
 display, just as you did here.

112 LESSON 5: Validating and Debugging Your Code

Are you wondering why the three 100-pixel-wide tabs don’t fit in a 300-pixel-wide container? It

has to do with the CSS box model. You’ll learn more about that in Lesson 10, “Understanding the

CSS Box Model and Positioning.”

Debugging JavaScript Using Developer Tools
Developer Tools within most major browsers can help you debug your JavaScript, from catching basic

syntax errors in the Console to working through advanced debugging steps using the Sources panel

and all that it contains. As we go through the tools in this section, we’ll use the code in Listing 5.3.

LISTING 5.3 A Simple HTML Document with a Few Different JavaScript Errors

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Sample Page</title>

 <script src="http://code.jquery.com/jquery-latest.min.js"></script>

 <script>
 function incCount(){
 var count = 0;
 count += 1;
 return count;
 }

 function countIt(){
 $("#counter").html(incCount);
 }
 </script>

 <style>
 button {
 background-color: #0066AA;
 color: #FFFFFF;
 font-weight: bold;
 border: 2px solid, #C0C0C0;
 width: 100px;
 }
 </style>
 </head>

 <body>
 <button onclick="countit()">Click Me</button>
 <div id="counter"></div>
 </body>
</html>

http://"#counter").html(

Debugging JavaScript Using Developer Tools 113

If you add the code in Listing 5.3 to a new file, save the document, and then open it in a web

browser from either your local machine or your server, you’ll see the completely unassuming little

button shown in Figure 5.17.

FIGURE 5.17
Showing the initial output of Listing 5.3.

However, if you follow along with these steps, you’ll soon uncover issues with this code by using

the Console:

 1. Right-click on the web page and choose Inspect Element.

 2. Switch to the Console panel by clicking the Console tab in Developer Tools.

 3. Click the Click Me button that has been rendered by the browser. You should see an error

like the one shown in Figure 5.18, which indicates there is an error in the code.

FIGURE 5.18
The Console shows where there is a syntax error in the code.

114 LESSON 5: Validating and Debugging Your Code

 4. Click on the link that will take you to the precise line in the file that contains the error

(in this instance, the link is listing_with_js_errors.html:32), and you see that

the JavaScript function being called is countit(), whereas the function was originally

defined in line 15 as countIt(). As you learned in the preceding lesson, JavaScript is

case sensitive.

If you correct the underlying source file by using countIt() in line 32 instead of countit()

and then reload the document and click the Click Me button, you will no longer see an error in

the Console. However, as you’ll soon see, there are more issues with this document.

In the <head> section of the document is a link to a JavaScript library (jQuery, actually) that is

stored externally, as well as some JavaScript code that defines two functions. The <body> section

includes a <button> tag with an onclick event to invoke the countIt() JavaScript function,

as well as a <div> element that is used to display the string containing the current count of the

number of times the button has been clicked. That’s all fine and dandy, except that if you actually

click the Click Me button more than once, the number will not increase past 1, and no error will

be present in the Console. This situation calls for more advanced debugging.

NOTE

Always do more than one test on your web pages. In the JavaScript in Listing 5.3, fixing the first
error makes the page appear to work. But if you click the button only one time, you’ll never real-
ize that there is a problem on subsequent clicks. Whenever you deal with interaction on your web
pages, you should test at least three times in each browser/device on which you want your pages
to work.

Taking a Closer Look at the Sources Panel
The Sources panel (Debug panel in Firefox and Debugger in Safari) contains a set of tools that

enable you to pause, resume, and step through code that is loaded in the web browser. By setting

breakpoints, you can watch individual sections of your code execute, which is especially helpful

when you are trying to track down issues that are unrelated to basic syntax (which the Console

will helpfully display without intervention on your part).

With the code in Listing 5.3 loaded into your browser and Developer Tools enabled, click on the

Sources tab to see the Sources panel and its related tools. It should look something like what’s

shown in Figure 5.19.

http://listing_with_js_errors.html:32

Debugging JavaScript Using Developer Tools 115

Pause
Step Over
Step Into
Step Out

FIGURE 5.19
Showing the Sources panel in Chrome Developer Tools, along with some important tools for this example.

NOTE

For a thorough understanding of all the icons in the Sources panel, see https://developers.google
.com/web/tools/chrome-devtools/. There are similar pages for Firefox (https://developer.mozilla.org/
en-US/docs/Tools/Debugger), Safari (https://developer.apple.com/safari/tools/), and Edge
(https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/debugger).

To debug the script, we’ll focus on setting breakpoints and stepping through the code using the

tools highlighted in Figure 5.19. But first, some explanations of terms:

 N Breakpoints—Breakpoints enable you to specify where you would like to stop the JavaScript

from executing. When you set a breakpoint, the browser stops executing and breaks into the

debugger before it executes that line of code. This enables you to see the state of the code

at that specific point. You set a breakpoint by clicking on a line number in the code listing,

and you remove a breakpoint by clicking the line number again; breakpoints are indicated

by a highlighted blue arrow icon. The Breakpoints tab shows a list of breakpoints that have

been set. You can disable a breakpoint by unchecking the check box next to it.

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.apple.com/safari/tools/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/debugger

116 LESSON 5: Validating and Debugging Your Code

 N Step Over—When you click the Step Over icon, the code advances one line. If the line of

code is to execute another function, that function is executed, and you are taken to the next

line of code in the current function. If a breakpoint is encountered when stepping over a

function, the browser stops executing at that location in the script.

 N Step Into—When you click the Step Into icon, the code advances one line. If the line of code

is to execute another function, you are taken to the first line of code in that function.

 N Step Out—When you click the Step Out icon, the current function finishes executing, and

you are taken to the next line of code in the calling function.

Now, let’s start debugging the script in Listing 5.3 and see why it won’t advance the count past 1:

 1. Set a breakpoint on line 10 by clicking to the left of the line number. A blue arrow should

appear, as shown in Figure 5.20. Also note that the Scope Variables section of the rightmost

pane is open. We’ve opened this so we can watch how the value of count changes as the

script moves forward. After all, it’s this value that is the problem, since it’s not changing

after the first click.

FIGURE 5.20
A breakpoint is set on line 10 of the script.

Debugging JavaScript Using Developer Tools 117

 2. Now click the button on the web page. You should see a yellow arrow appear in the body of

the web page, indicating that the script is paused in the debugger, and line 10 in the code

listing will be highlighted. In the script, line 11 is the first line of the incCount() function;

the incCount() function is supposed to determine the value of the counter string, repre-

sented by the variable count. In the Scope Variables area, you should see that the value of

count is currently undefined.

 3. Click the Step Over icon. In the Scope Variables area, you should see the value of count go

to 0 because the value has been defined with a starting number of 0.

 4. Click the Step Over icon again. Now the value of count is 1, as expected, changed by the

count += 1; line, which says “take the current value of count and increment it by one.”

 5. Click the Step Out icon four times to step out of this function and the jQuery functions in

between. Notice that the value on the web page has gone to 1.

 6. Click the Continue or Resume icon (the Pause icon will change to a Continue icon or

Resume in Firefox as soon as the script is started) to allow the script to complete. So far,

so good.

 7. Click the button in the web page again. The debugger should activate again and be stopped

in the same location as in step 2. Notice that the value of count is undefined again, when

common sense (but not our code) says it should be 1.

 8. Click the Step Over icon; count changes to 0. Click Step Over again, and count changes to 1.

As the button is clicked, count is reset to undefined, set to 0, and then incremented to 1. This is

not the desired behavior.

 9. To fix the problem, return to the source code and switch lines 10 and 11 so that the defini-

tion of count happens before the definition of the function that uses it (incCount()). This

change defines the variable count and sets the value only once when the script is loaded

and before the function is defined.

If you load the newly debugged file, you’ll find that the counter increments as expected. You may

need to remove the breakpoint if it isn’t removed automatically. Listing 5.4 shows the corrected

JavaScript.

LISTING 5.4 Corrected Script

var count = 0;
function incCount(){
 count += 1;
 return count;
}

function countIt(){
 $("#counter").html(incCount);
}

http://"#counter").html(

118 LESSON 5: Validating and Debugging Your Code

This section has provided a basic example that is simple enough to easily follow and that helps

you get used to how the debugger works. Keep in mind these basic steps to set breakpoints and

watch the variables as you step through the code.

Summary
In this lesson you learned various ways to validate and debug issues in your HTML, CSS, and

JavaScript. You learned how to use the inspector within Developer Tools in your browser to see

the HTML elements and CSS styles and properties that the browser has rendered while loading a

web page. In addition, you learned the basics of reviewing JavaScript syntax errors in the Console

and setting breakpoints and systematically stepping through the code to debug more complex

 problems.

The methods you learned in this lesson will be very helpful to you as you finish this course, not

to mention in future projects, because they will save a lot of time and frustration with simple

 validation and syntax errors that always seem to creep into code, no matter how experienced

you are.

Q&A
 Q. I’ve seen web pages that don’t have a <!doctype> tag at the beginning, yet they look just

fine. How is that possible?

 A. Many web browsers forgive you if you forget to include the <!doctype> tag and display the
page anyway by using their best guess as to which standard to follow. However, it’s a good
idea to include a proper <!doctype> tag not only because you want your pages to be bona
fide valid HTML pages that conform to the latest web standards but also because if you
don’t, and the browser applies a default standard that doesn’t include the tags you’ve used
in the code, the display will look incorrect.

 Q. Developer Tools seems really rich. What else can I debug with these tools?

 A. You’re right: There are a lot of elements of Developer Tools in Chrome that aren’t covered
here, and there are also many idiosyncrasies of the other major browsers’ implementa-
tions of Developer Tools. In general, you can use Developer Tools to debug values stored in
 cookies, the status of external resources used by your script (whether they are found/not
found, whether they are slow to load, and so on), and the amount of memory used by the
page and its scripts, among other things.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Workshop 119

Quiz
 1. Using Chrome Developer Tools, how would you find the current value of the

background-color CSS property for a specific <div> tag in a document?

 2. Using a debugger, how do you stop code execution on a specific line of code?

 3. Which section of Chrome Developer Tools enables you to see the value of a variable
as a script is stepped through?

 4. What web languages can you validate with a W3C validator?

 5. What browsers have Developer Tools?

 6. What is a way to debug broken HTML code?

 7. When is using the Developer Tools inspector particularly useful?

 8. What happens when you change a style value (or add a style rule) in the CSS inspector?

 9. What does the Step Over command do in a web page debugger?

 10. How do you set a breakpoint in Developer Tools?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. Click on the Elements tab to open the Elements panel and then select the specific <div>

you’re interested in. The current style values will appear in the rightmost panel.

 2. You can stop script execution on a particular line by setting a breakpoint. This is true with
most debugging tools and is not specific to Chrome Developer Tools.

 3. The Scope Variables section of the Sources panel enables you to see the values of
 variables used in a script.

 4. This lesson mentions an HTML validator and a CSS validator from the W3C. The W3C also
offers other validation services, such as link checking, RSS and Atom feed checking, and
even mobile content checking.

 5. Nearly every modern desktop browser has some form of Developer Tools built in. This
 lesson mentions tools in Chrome, Firefox, Safari, and Internet Explorer. There are also
 developer tools in Edge and Opera.

 6. You can use an HTML validator to find the error or use Developer Tools in a browser to view
the code. Or you can go through your HTML line-by-line.

http://www.informit.com/register

120 LESSON 5: Validating and Debugging Your Code

 7. The inspector in Developer Tools is particularly useful when you’re working with JavaScript
that modifies CSS beyond the original state in the HTML.

 8. The web page will change to reflect the new CSS rule, but that rule will not be applied
outside the current page. If you do not add the changes to the CSS file, they will not be
applied permanently to the web page.

 9. The Step Over command advances the JavaScript code one line.

 10. To set a breakpoint, click on the line number where you want the breakpoint. A blue arrow
then appears on that line and sets the breakpoint. To turn it off, click the line number
again. To disable it temporarily, uncheck the check box next to the breakpoint in the
Breakpoints tab.

Exercises
 N Continue debugging Listing 5.2 until the elements line up in ways that look appealing

to you. Since you haven’t explicitly learned these skills yet, we’ll give you a hint: Try
 modifying values for widths and values for padding in the CSS.

 N Use Console logging to output specific strings at different points throughout your script.
You can log to the Console by inserting code like the following in your JavaScript and
then review these strings in the Console panel as the script executes:

console.log("Some string.");

LESSON 6
Working with Fonts, Text Blocks,

Lists, and Tables

What You’ll Learn in This Lesson:

N How to use boldface, italic, and special text formatting

N How to tweak the font

N How to use special characters

N How to align text on a page

N How to use the three types of HTML lists

N How to nest lists within lists

N How to create simple tables

N How to control the size of tables

N How to align content and span rows and columns within tables

N How to use CSS columns

In the early days of the Web, text was displayed in only one font and one size. However, a

combination of HTML and CSS now makes it possible to control the appearance of text (typeface,

size, color) and how it is aligned and displayed on a web page. In this lesson you’ll learn how to

change the visual display of the font—its font family (the typeface), size, and weight—and how to

incorporate boldface, italic, superscripts, subscripts, and strikethrough text into your pages. You

will also learn how to change typefaces and font sizes and how to use web fonts.

Then, after becoming conversant in these textual aspects, you’ll learn the basics of text alignment

and some other text tips and tricks, such as the use of lists. Because lists are very common, HTML

provides tags that automatically indent text and add numbers, bullets, or other symbols in front

of each listed item. You’ll learn how to format different types of lists.

In this lesson, you’ll learn how to build HTML tables that you can use to control the spacing,

layout, and appearance of tabular data in your web content. Although you can achieve similar

results using CSS, there are definitely times when using a table is the best way to present

information in rows and columns. You’ll also see in this lesson how designers had to use tables for

page layout in the past—and how to avoid ever doing that in the future.

122 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Finally, you’ll learn a new technique for displaying large blocks of text—CSS columns. You’ll find

out how to create newspaper-style columns out of your content and how to make the columns look

nice on the page.

NOTE

When viewing other designers’ web content, you might notice methods of marking up text that are
different from those this series teaches. Some telltale signs of the old way of formatting text include
the use of the tag pair to indicate when a word should be bolded, the <i></i> tag pair to
indicate when a word should be in italics, and the tag pair to specify font family,
size, and other attributes. However, this method is being phased out of HTML, and CSS is consider-
ably more powerful.

 TRY IT YOURSELF

Preparing Sample Text

You can make the most of learning how to style text throughout this lesson if you have some
sample text that you can use to display different fonts and colors and that you can indent,
center, or otherwise manipulate. It doesn’t really matter what type of text you use because there
are so many stylistic possibilities to try that they would never appear all on the same web page
anyway (unless you wanted to drive your visitors batty). Take this opportunity to get a feel for how
text-level changes can affect the appearance of your content.

N If the text you’ll be using is from a word processing or database program, be sure to save it
to a new file in plain-text or ASCII format. You can then add the appropriate HTML tags and
style attributes to format it as you go through this lesson.

N Any text will do but try to find (or type) some text you want to put onto a web page. The text
from a company brochure or from your résumé might be a good choice.

N Any type of outline, bullet points from a presentation, numbered steps, glossary, or list of
textual information from a database will serve as good material to work with.

N Before you use the code introduced in this lesson to format the body text, add the set of
skeleton HTML tags you’ve used in previous lessons (at least the <!doctype>, <html>,
<head>, <title>, and <body> tags).

Working with Special Characters
Before we rush headlong into font changes, let’s talk for a minute about special characters

in fonts. Most fonts include special characters for European languages, such as the accented é

in café. You’ll also find a few mathematical symbols and special punctuation marks, such as the

circular • bullet.

Working with Special Characters 123

You can insert these special characters at any point in an HTML document by using the

appropriate codes (see Table 6.1). You’ll find an even more extensive list of codes for multiple

character sets at the following URL:

https://www.webstandards.org/learn/reference/charts/entities/namedentities/

HTML uses a special code known as a character entity to represent special characters such as

© and ®. Character entities are always specified starting with & and ending with ;. Table 6.1 lists

the most commonly used character entities, although HTML supports many more.

Table 6.1 includes codes for the angle brackets, quotation marks, and ampersand. You must

use those codes if you want these symbols to appear on your pages; otherwise, the web browser

interprets them as HTML commands.

Listing 6.1 and Figure 6.1 show several of the symbols from Table 6.1 in use.

For example, you can produce the word café by using either of the following:

café
café

NOTE

One of the reasons it’s a good idea to use the line <meta charset="utf-8"> in your HTML is
because it reduces the need for these special character codes. By setting your character set to
UTF-8, you tell the browser to expect these characters without any special encoding. In other words,
in a UTF-8 web page, you can write <h1>My Café</h1> instead of <h1>My Café</h1>,
and it will display correctly.

You should still use encodings for characters that are used in HTML, such as < for <, >
for >, and & for &. This ensures that the browser knows that these characters are part of the
text and not HTML.

TABLE 6.1 Commonly Used English-Language Special Characters

Character Numeric Code Code Name Description

“ " " Quotation mark

& & & Ampersand

< < < Less than

> > > Greater than

¢ ¢ ¢ Cents sign

£ £ £ Pound sterling

¦ ¦ ¦ Broken vertical bar

§ § § Section sign

© © © Copyright

https://www.webstandards.org/learn/reference/charts/entities/namedentities/

124 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Character Numeric Code Code Name Description

® ® ® Registered trademark

° ° ° Degree sign

± ± ± plus or minus
2 ² ² Superscripted two
3 ³ ³ Superscripted three

· · · Middle dot
1 ¹ ¹ Superscripted one

¼ ¼ ¼ Fraction one-fourth

½ ½ ½ Fraction one-half

¾ ¾ ¾ Fraction three-fourths

Æ Æ Æ Capital AE ligature

æ æ æ Small ae ligature

É É É Accented capital E

é é é Accented lowercase e

× × × Multiplication sign

÷ ÷ ÷ Division sign

Although you can specify character entities by number, each symbol also has a mnemonic name

that is often easier to remember.

NOTE

Looking for the copyright (©) and registered trademark (®) symbols? Those codes are © and
®, respectively.

To create an unregistered trademark (™) symbol, use ™.

LISTING 6.1 Special Character Codes

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Punctuation Lines</title>
 <style>
 section {
 margin-bottom: 20px;
 }
 </style>
 </head>

Working with Special Characters 125

 <body>
 <section>
 Q: What should you do when a British banker picks a fight
 with you?

 A: £ some ¢¢ into him.
 </section>
 <section>
 Q: What do you call it when a judge takes part of a law
 off the books?

 A: § violence.
 </section>
 <section>
 Q: What did the football coach get from the locker room
 vending machine in the middle of the game?

 A: A ¼ back at ½ time.
 </section>
 <section>
 Q: How hot did it get when the police detective interrogated
 the mathematician?

 A: x³°
 </section>
 <section>
 Q: What does a punctilious plagiarist do?

 A: ©
 </section>
 </body>
</html>

FIGURE 6.1
This is how the HTML page in Listing 6.1 looks in most web browsers.

126 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Boldface, Italic, and Special Text Formatting
Way back in the age of the typewriter, we were content with a plain-text display and with using

an occasional underline to show emphasis. Today, boldface and italic text have become de rigueur

in all paper communication. Naturally, you can add bold and italic text to your web content as

well. Several tags and style rules make text formatting possible.

NOTE

Although you should use styles wherever possible to affect presentation, an alternative to using style
rules when it comes to bold and italic text is to use the and tag
pairs. The tag does the same thing as the tag in most browsers, whereas the
tag acts just like the tag <i>, formatting text as italic. Of course, you can style these tags however
you’d like, but those are the defaults.

The and tags are considered an improvement over and <i> because they
imply only that the text should receive special emphasis; they don’t dictate exactly how that effect
should be achieved. In other words, a browser doesn’t necessarily have to interpret as
meaning bold or as meaning italic. This makes and more fitting in HTML5
because they add meaning to text along with affecting how the text should be displayed.

The old-school approach to adding bold and italic formatting to text—discussed briefly here

because invariably you will see it in the source code of many older websites, if you choose to look—

involves the and <i></i> tag pairs. For boldface text, you wrap the and

tags around your text. Similarly, to make any text appear in italics, you enclose it in <i> and

</i> tags. Although this approach still works fine in browsers, it isn’t as flexible or powerful as

the CSS style rules for text formatting and should be avoided.

Part III, “Advanced Web Page Design with CSS,” covers CSS style rules in more depth, but a little

foreshadowing is appropriate here just so that you understand some basic text formatting options.

The font-weight style rule enables you to set the weight, or boldness, of a font by using a style

rule. Standard settings for font-weight include normal, bold, bolder, and lighter (with

normal being the default). Italic text is controlled via the font-style rule, which you can set

to normal, italic, or oblique. You can specify style rules together as well if you want to apply

more than one rule, as the following example demonstrates:

<p style="font-weight:bold; font-style:italic;">This paragraph is bold and
italic!</p>

In this example, both style rules are specified in the style attribute of the <p> tag. The key to

using multiple style rules is that they must be separated by a semicolon (;).

Boldface, Italic, and Special Text Formatting 127

You aren’t limited to using font styles in paragraphs, however. The following code shows how to

italicize text in a bulleted list:

 <li style="font-style:italic;">Important Stuff
 <li style="font-style:italic;">Critical Information
 <li style="font-style:italic;">Highly Sensitive Material
 Nothing All That Useful

You can also use the font-weight style rule within headings, but a heavier font usually doesn’t

have an effect on headings because they are already bold by default.

Although using CSS enables you to apply richer formatting, there are a few HTML5 tags that are

good for adding special formatting to text when you don’t necessarily need to be as specific as CSS

enables you to be. Following are some of these tags:

N —Superscript text

N —Subscript text

N —Emphasized (typically italic) text

N —Strong (typically boldface) text

N <pre></pre>—Monospaced text, preserving spaces and line breaks

Listing 6.2 and Figure 6.2 demonstrate each of these tags in action.

CAUTION

In the past, a <u> tag was useful in creating underlined text, but you don’t want to use it now, for
a couple of reasons. First, users expect underlined text to be a link, so they might get confused if
you underline text that isn’t a link. Second, the <u> tag is obsolete, which means that it has been
phased out of the HTML language (as has the <strike> tag). Both tags are still supported in web
browsers and likely will be for quite a while, but using CSS is the preferred approach to creating
underlined and strikethrough text.

LISTING 6.2 Special Formatting Tags

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>The Miracle Product</title>
 </head>

128 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 <body>
 <p>
 New ^{Super}Strength H₂O
 plus will knock out any stain.
Look for new
 ^{Super}Strength
 H₂O plus in a stream near you.
 </p>
 <pre>
 NUTRITION INFORMATION (void where prohibited)
 Calories Grams USRDA
 /Serving of Fat Moisture
 Regular 3 4 100%
 Unleaded 3 2 100%
 Organic 2 3 99%
 Sugar Free 0 1 110%
 </pre>
 </body>
</html>

FIGURE 6.2
Here’s what the character formatting from Listing 6.2 looks like.

The <pre> tag causes text to appear in a monospaced font—and it does something else unique

and useful. As you learned in Lesson 2, “Structuring an HTML Document,” multiple spaces and

line breaks are normally ignored in HTML files, but <pre> causes exact spacing and line breaks

to be preserved. For example, without <pre>, the text at the end of Figure 6.2 would look like the

following:

calories grams usrda /serving of fat moisture regular
3 4 100% unleaded 3 2 100% organic 2 3 99% sugar free 0 1 110%

Tweaking the Font 129

Even if you added
 tags at the end of every line, the columns wouldn’t line up properly.

However, when you put <pre> at the beginning and </pre> at the end, the columns line up

properly because the exact spaces are kept; no
 tags are needed. The <pre> tag gives you

a quick and easy way to preserve the alignment of any monospaced text files you might want to

transfer to a web page with minimum effort.

CSS provides you with more robust methods for lining up text (and doing anything with text,

 actually), and you’ll learn more about them throughout Part III.

Tweaking the Font
Sometimes you want a bit more control over the size and appearance of your text than just some

boldface or italic. Before we get into the appropriate way to tinker with the font using CSS, let’s

briefly look at how things were done before CSS; you might still find examples of this method

when you look at the source code for other websites. Remember, just because these older methods

are in use doesn’t mean you should follow suit.

Before style sheets entered the picture, the now-phased-out tag was used to control the

fonts in web page text.

NOTE

We cannot stress enough that the tag is not to be used! It is mentioned here for illustrative
and historical purposes only.

For example, the following HTML was once used to change the size and color of some text

on a page:

This text will be big and purple.

As you can see, the size and color attributes of the tag made it possible to alter the font of

the text without too much effort. Although this approach worked fine, it was replaced with a far

superior approach to font formatting, thanks to CSS style rules. Following are a few of the main

style rules used to control fonts:

N font-family—Sets the family (typeface) of the font

N font-size—Sets the size of the font

N color—Sets the color of the font

130 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

NOTE

You’ll learn more about controlling the color of the text on your pages in Lesson 8, “Working with
Colors, Images, and Multimedia.” That lesson also shows how to create your own custom colors and
how to control the color of text links.

The font-family style rule enables you to set the typeface used to display text. You can and

usually should specify more than one value for this style (separated by commas) so that if the first

font isn’t available on a user’s system, the browser can try alternatives.

Providing alternative font families is important because each user potentially has a different set of

fonts installed, at least beyond a core set of common basic fonts (Arial, Times New Roman, and so

forth). By providing a list of alternative fonts, you have a better chance of your pages gracefully

falling back on a known font when your ideal font isn’t found.

Following is an example of the font-family style used to set the typeface for a paragraph

of text:

<p style="font-family:arial, sans-serif, 'times roman';">

This example has several interesting parts. First, arial is specified as the primary font.

Capitalization does not affect the font family, so arial is no different from Arial or ARIAL.

Another interesting point about this code is that single quotes are used around the times roman

font name because it has a space in it. However, because 'times roman' appears after the

generic specification of sans-serif, it is unlikely that 'times roman' would be used. Because

sans-serif is in the second position, it says to the browser “if Arial is not on this machine, use

the default sans-serif font.” Every browser has a default serif font, sans-serif font, cursive font,

monospace font, and fantasy font. However, they may not look anything like what you would

expect, so it’s best to define a list of two or three specific font families and then place the generic

family name last.

The font-size and color style rules are also commonly used to control the size and color of

fonts. The font-size style can be set to a predefined size (such as small, medium, or large),

or you can set it to a specific point size (such as 12pt or 14pt). The color style can be set to a

predefined color (such as white, black, blue, red, or green), or you can set it to a specific

hexadecimal color (such as #ffb499). Following is a better version of the previous paragraph

example, and with the font size and color specified:

<p style="font-family:arial, 'times roman', sans-serif;
 font-size:14pt; color:green;">

NOTE

You’ll learn about hexadecimal colors in Lesson 8. For now, just understand that the color style
rule enables you to specify exact colors beyond just using color names such as green, blue,
orange, and so forth.

Tweaking the Font 131

The sample web content in Listing 6.3 and shown in Figure 6.3 uses some font style rules to create

the beginning of a basic online résumé.

LISTING 6.3 Using Font Style Rules to Create a Basic Résumé

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Résumé for Jane Doe</title>
 <style>
 body {
 font-family: Verdana, sans-serif;
 font-size: 12px;
 }
 header {
 text-align: center;
 }
 h1 {
 font-family:Georgia, serif;
 font-size: 28px;
 text-align: center;
 }
 p.contactinfo {
 font-size: 14px;
 }
 p.categorylabel {
 font-size: 12px;
 font-weight: bold;
 text-transform: uppercase;
 }
 div.indented {
 margin-left: 25px;
 }
 </style>
 </head>
 <body>
 <header>
 <h1>Jane Doe</h1>
 <p class="contactinfo">1234 Main Street, Sometown,
 CA 93829

 tel: 555-555-1212, e-mail: jane@doe.com</p>
 </header>
 <section>
 <p class="categorylabel">Summary of Qualifications</p>

 Highly skilled and dedicated professional offering a
 solid background in whatever it is you need.

132 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 Provide comprehensive direction for whatever it is
 that will get me a job.
 Computer proficient in a wide range of industry-related
 computer programs and equipment. Any industry.

 </section>
 <section>
 <p class="categorylabel">Professional Experience</p>
 <div class="indented">
 <p>Operations Manager,
 Super Awesome Company, Some City, CA [Sept 2002 –
 present]</p>

 Direct all departmental operations
 Coordinate work with internal and external
 resources
 Generally in charge of everything

 <p>Project Manager,
 Less Awesome Company, Some City, CA [May 2000 - Sept
 2002]</p>

 Direct all departmental operations
 Coordinate work with internal and external
 resources
 Generally in charge of everything

 </div>
 </section>
 <section>
 <p class="categorylabel">Education</p>

 MBA, MyState University, May 2002
 B.A, Business Administration, MyState University,
 May 2000

 </section>
 <section>
 <p class="categorylabel">References</p>

 Available upon request.

 </section>
 </body>
</html>

Using Web Fonts 133

FIGURE 6.3
Here’s what the code used in Listing 6.3 looks like.

Using CSS, which organizes sets of styles into classes—as you learned in Lesson 3, “Understanding

Cascading Style Sheets”—you can see how text formatting is applied to different areas of this

content. If you look closely at the definition of the div.indented class, you will see the use of

the margin-left style. This style, which you will learn more about in Part III, applies a certain

amount of space (25 pixels, in this example) to the left of the element. That space accounts for the

indentation shown in Figure 6.3.

Using Web Fonts
In the preceding section, you saw uses of font families that we’re pretty sure reside on everyone’s

computers. That is, you can be assured that most computers would render Arial or Times New

Roman or have a go-to default serif font and sans-serif font, if that’s what your style sheet calls

for. But with the inclusion of the @font-face feature in CSS3, you can wield even greater design

power over the content you place online.

In brief, the @font-face rule enables you to define fonts for use in your HTML5 markup so

that they are displayed to users regardless of whether they have those fonts installed on their

134 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

computers (and chances are incredibly great that users do not have your selected fancy font on

their own computer). The definition of the font can be local (to your web server, if you care to

include font files there) or remote (in case you link to locations where many fonts are stored).

In your style sheet, to define a new font for use throughout your page(s), you can simply use the

following structure:

@font-face {
 font-family: 'some_name_goes_here';
 src: url('some_location_of_the_font_file');
}

After it’s defined, you can refer to the font-family as you would anywhere else in your style

sheet, such as here:

h1 {
 font-family: 'some_name_goes_here';
 font-size: 28px;
 text-align: center;
}

But where do you get fonts? You can obtain fonts from many locations—some free, others not.

A widely popular location is Google Fonts (www.google.com/fonts), not only because the fonts

are free but also because Google is widely recognized as providing a stable platform, which is

important if your web typography relies on a font that’s sitting on someone else’s web server.

Some other reliable pay sites for obtaining fonts are Adobe Typekit (https://typekit.com) and

Fontspring (www.fontspring.com). Pay sites aren’t necessarily bad—artists have to make money,

too. We have used Typekit, but we also use Google Fonts for many projects.

Let’s take a look at modifying the code in Listing 6.3 to include a font from Google Fonts for the

h1 element. If you go to www.google.com/fonts and select a font you like, Google gives you code

to include in your HTML and CSS. We’ve selected a font called Cherry Swash, and Google has

advised us to include the following in our HTML template, in the <head> section:

<link href="http://fonts.googleapis.com/css?family=Cherry+Swash:400,700"
 rel="stylesheet">

NOTE

If you look at the file at the Google link location, you can see that it is Google’s @font-face
definition, already done for you. Specifically, it says this:
@font-face {
 font-family: 'Cherry Swash';
 font-style: normal;
 font-weight: 400;
 src: local('Cherry Swash'), local('CherrySwash-Regular'),
url(http://themes.googleusercontent.com/static/fonts/cherryswash/v1/

http://www.google.com/fonts
https://typekit.com
http://www.fontspring.com
http://www.google.com/fonts

Using Web Fonts 135

HqOk7C7J1TZ5i3L-ejF0vnhCUOGz7vYGh680lGh-uXM.woff) format('woff');
}
@font-face {
 font-family: 'Cherry Swash';
 font-style: normal;
 font-weight: 700;
 src: local('Cherry Swash Bold'), local('CherrySwash-Bold'),
url(http://themes.googleusercontent.com/static/fonts/cherryswash/v1/
-CfyMyQqfucZPQNB0nvYyHl4twXkwp3_u9ZoePkT564.woff) format('woff');
}

Now that the code knows where to look for the font, you just refer to it:

h1 {
 font-family:'Cherry Swash';
 font-size:28px;
 text-align:center;
}

Figure 6.4 shows the new résumé with the web font in use.

FIGURE 6.4
The résumé, using Cherry Swash as the font in the heading.

136 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Aligning Text on a Page
It’s easy to take for granted the fact that most paragraphs are automatically aligned to the left

when you’re reading information on the Web. However, there certainly are situations in which

you might choose to align content to the right or justify the text. HTML gives you the option to

align a single HTML block-level element, such as text contained within a <p></p> or <div>
</div> tag pair. Before we get into the details of aligning block elements, however, let’s briefly

look at how attributes work.

Using Style, Class, and ID Attributes
Attributes provide additional information related to an HTML tag. Attributes are special code

words used inside an HTML tag to control exactly what the tag does. They are very important in

even the simplest bit of web content, so it’s important that you are comfortable using them.

Attributes invoke the use of styles, classes, or IDs that are applied to particular tags. If you define

a particular class or ID in a style sheet—as you learned to do in Lesson 3—then you can invoke

that class or ID by using class="someclass" or id="someid" within the tag itself. When

the browser renders the content for display, it looks to the style sheet to determine exactly how

the content will appear, according to the associated style definitions. Similarly, you can use the

style attribute to include style rules for a particular element without connecting the element to

an actual style sheet; this is the inline style format you learned about in Lesson 3.

In the following example, each paragraph could be left-aligned:

<p style="text-align: left;">Text goes here.</p>
<p class="leftAlignStyle">Text goes here.</p>
<p id="firstLeftAlign">Text goes here.</p>

In the first paragraph, the style appears directly in the style attribute. This is useful for debug-

ging or for short-term formatting tests—but not so much for ongoing maintenance of your web

content. In the second paragraph, the paragraph will be left-aligned if the style sheet entry for

the .leftAlignStyle class includes the text-align statement; remember that using a class

means other tags can reuse the class. Similarly, the third paragraph will be left-aligned if the style

sheet entry for the #firstLeftAlign id includes the text-align statement; remember that

using an id means these styles can be applied to only the one identified tag.

Aligning Block-Level Elements
To align text in a block-level element such as <p> to the right margin without creating a separate

class or ID in a style sheet, simply place style="text-align:right;" inside the <p> tag at

the beginning of the paragraph (or define it in a class or an ID). Similarly, to center the text in the

element, use <p style="text-align:center;">. To align text in a paragraph to the left, use

<p style="text-align:left;">.

Aligning Text on a Page 137

The text-align part of the style attribute is referred to as a style rule, which means it sets a

particular style aspect of an HTML element. You can use many style rules to carefully control the

formatting of web content.

NOTE

Every attribute and style rule in HTML has a default value that is assumed when you don’t
set the attribute yourself. In the case of the text-align style rule of the <p> tag, the default
value is left, so using the bare-bones <p> tag has the same effect as using <p style="text-
align:left;">. Learning the default values for common style rules is an important part of
becoming a good web page developer.

The text-align style rule is not reserved for just the <p> tag. In fact, you can use the

text-align style rule with any block-level element, including semantic elements such as

<section> and <header>, as well as <h1>, <h2>, the other heading-level tags, and the

<div> tag, among others. The <div> tag is especially handy because it can encompass other

block-level elements and thus allows you to control the alignment of large portions of your web

content all at once. The div in the <div> tag is for division.

Listing 6.4 demonstrates the style attribute and text-align style rule with different block-

level elements. Figure 6.5 displays the results.

LISTING 6.4 The text-align Style Rule Used with the style Attribute

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Bohemia</title>
 </head>
 <body>
 <section style="text-align:center;">
 <header>
 <h1>Bohemia</h1>
 <h2>by Dorothy Parker</h2>
 </header>
 </section>
 <section>
 <p style="text-align:left;">
 Authors and actors and artists and such

 Never know nothing, and never know much.

 Sculptors and singers and those of their kidney

 Tell their affairs from Seattle to Sydney.
 </p>

138 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 <p style="text-align:center;">
 Playwrights and poets and such horses' necks

 Start off from anywhere, end up at sex.

 Diarists, critics, and similar roe

 Never say nothing, and never say no.
 </p>
 <p style="text-align:right;">
 People Who Do Things exceed my endurance;

 God, for a man that solicits insurance!
 </p>
 </section>
 </body>
</html>

FIGURE 6.5
The results of using the text alignment in Listing 6.4.

The use of <section style="text-align:center;"> ensures that the content area,

including the two headings, is centered. However, the inline styles applied to the individual para-

graphs within the <section> override the setting and ensure that the text of the first paragraph

is left-aligned, the second paragraph is centered, and the third paragraph is right-aligned.

The Three Types of HTML Lists 139

The text-align property also allows you to justify text so that both the right and left margins

are straight. This can cause strange gaps between words on a line but is another way to align your

text blocks. Just write text-align:justify; for your style rule.

The Three Types of HTML Lists
For clarity, it’s often useful to present information on a web page as a list of items. There are three

basic types of HTML lists:

N Ordered list—An indented list that has numbers or letters before each list item. The ordered

list begins with the tag and ends with a closing tag. List items are enclosed in

the tag pair, and line breaks appear automatically at each opening tag.

The entire list is indented.

N Unordered list—An indented list that has a bullet or another symbol before each list item.

The unordered list begins with the tag and closes with . As with the ordered

list, its list items are enclosed in the tag pair. A line break and symbol appear

at each opening tag, and the entire list is indented.

N Definition list—A list of terms and their meanings. This type of list, which has no special

number, letter, or symbol before each item, begins with <dl> and ends with </dl>. The

<dt></dt> tag pair encloses each term, and the <dd></dd> tag pair encloses each defini-

tion. Line breaks and indentations appear automatically.

These three types of lists are shown in Figure 6.6, and Listing 6.5 reveals the HTML used to

construct them.

LISTING 6.5 Unordered Lists, Ordered Lists, and Definition Lists

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>How to Be Proper</title>
 </head>
 <body>
 <article>
 <header>
 <h1>How to Be Proper</h1>
 </header>
 <section>
 <header>
 <h1>Basic Etiquette for a Gentleman Greeting a
 Lady Acquaintance</h1>
 </header>

140 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 Wait for her acknowledging bow before tipping your
 hat.
 Use the hand farthest from her to raise the hat.
 Walk with her if she expresses a wish to converse;
 never make a lady stand talking in the street.
 When walking, the lady must always have the wall.

 </section>
 <section>
 <header>
 <h1>Recourse for a Lady Toward Unpleasant Men Who Persist
 in Bowing</h1>
 </header>

 A simple stare of iciness should suffice in most
 instances.
 A cold bow discourages familiarity without offering
 insult.
 As a last resort: "Sir, I have not the honour of your
 acquaintance."

 </section>
 <section>
 <header>
 <h1>Proper Address of Royalty</h1>
 </header>
 <dl>
 <dt>Your Majesty</dt>
 <dd>To the king or queen.</dd>
 <dt>Your Royal Highness</dt>
 <dd>To the monarch's spouse, children, and siblings.</dd>
 <dt>Your Highness</dt>
 <dd>To nephews, nieces, and cousins of the sovereign.</dd>
 </dl>
 </section>
 </article>
 </body>
</html>

Note the use of semantic elements (<article>, <section>, and <header>) in Listing 6.5

to provide a better sense of the content outline, including how the chunks of text relate to one

another. Each of these elements could have its own styles applied, which would provide further

visual separation of the elements.

The Three Types of HTML Lists 141

FIGURE 6.6
The three basic types of HTML lists.

NOTE

Remember that different web browsers can display web content quite differently. The HTML standard
doesn’t specify exactly how web browsers should format lists, so users with older web browsers
might not see exactly the same indentation you see. You can use CSS to gain precise control over
list items, and you will learn about this later in this lesson.

CAUTION

Although definition lists are officially supposed to be used for defining terms, many web page
authors use them anywhere they’d like to see some indentation. In practice, you can indent any text
simply by putting <dl><dd> at the beginning of it and </dd></dl> at the end and skipping over
the <dt></dt> tag pair. This is a bad habit to get into, as it reduces your control over the design
and implies a semantic meaning to those indented areas that shouldn’t be there. Instead, you
should use CSS to indent content.

142 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Placing Lists Within Lists
Lists placed within lists are called nested lists. It used to be common to see designers use nested

lists to indent content quickly. Because of the level of control you have over the display of your

items when using CSS, there is no need to use nested lists to achieve the visual appearance of

indentation. Reserve your use of nested lists for when the content warrants it. In other words, use

nested lists to show a hierarchy of information, such as in Listing 6.6.

NOTE

Nesting refers to a tag that appears entirely within another tag. Nested tags are also referred to as
child tags of the (parent) tag that contains them. It is a common (but not required) coding practice to
indent nested tags in the HTML code so that you can easily see their relationship to the parent tag.

Ordered and unordered lists can be nested inside one another, down to as many levels as you want.

In Listing 6.6, a complex indented outline is constructed from several unordered lists. Notice in

Figure 6.7 that the web browser automatically uses a different type of bullet for each of the first three

levels of indentation, which makes the list very easy to read. This is common in modern browsers.

LISTING 6.6 Using Lists to Build Outlines

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Vertebrates</title>
 </head>
 <body>
 <section>
 <header>
 <h1>Vertebrates</h1>
 </header>

 Fish

 Barramundi
 Kissing Gourami
 Mummichog

 Amphibians

 Anura

 Goliath Frog
 Poison Dart Frog

Placing Lists Within Lists 143

 Purple Frog

 Caudata

 Hellbender
 Mudpuppy

 Reptiles

 Nile Crocodile
 King Cobra
 Common Snapping Turtle

 </section>
 </body>
</html>

FIGURE 6.7
Multilevel unordered lists are neatly indented and bulleted for improved readability.

144 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

As Figure 6.7 shows, a web browser normally uses a solid disc for the first-level bullet, a hol-

low circle for the second-level bullet, and a solid square for all deeper levels. However, you can

explicitly choose which type of bullet to use for any level by using <ul style="list-style-
type:disc;">, <ul style="list-style-type:circle;">, or <ul style="list-
style-type:square;"> instead of , either inline or in a specific style sheet.

You can even change the bullet for any single point within an unordered list by using the

list-style-type style rule in the tag. For example, the following code displays a hollow

circle in front of the words extra and super and a solid square in front of the word special:

<ul style="list-style-type:circle;">
 extra
 super
 <li style="list-style-type:square;">special

The list-style-type style rule also works with ordered lists, but instead of choosing a type

of bullet, you choose the type of numbers or letters to place in front of each item. Listing 6.7

shows how to use Roman numerals (list-style-type:upper-roman;), capital letters

(list-style-type:upper-alpha;), lowercase letters (list-style-type:lower-alpha;),

and ordinary numbers (list-style-type:decimal;) in a multilevel list. Figure 6.8 shows the

resulting outline, which is nicely formatted.

Although Listing 6.7 uses the list-style-type style rule only with the tag, you can

also use it for specific tags within a list (though it’s hard to imagine a situation when

you would want to do this). You can also explicitly specify ordinary numbering with list-
style-type:decimal;, and you can make lowercase Roman numerals with list-style-
type:lower-roman;.

LISTING 6.7 Using the list-style-type Style Rule with the style Attribute in

Multitiered Lists

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Advice from the Golf Guru</title>
 </head>
 <body>
 <article>
 <header>
 <h1>How to Win at Golf</h1>
 </header>
 <ol style="list-style-type:upper-roman;">
 Training

Placing Lists Within Lists 145

 Mental prep
 <ol style="list-style-type:upper-alpha;">
 Watch golf on TV religiously
 Get that computer game with Tiger whatsisname
 Rent "personal victory" subliminal tapes

 Equipment
 <ol style="list-style-type:upper-alpha;">
 Make sure your putter has a pro autograph on it
 Pick up a bargain bag of tees-n-balls at Costco

 Diet
 <ol style="list-style-type:upper-alpha;">
 Avoid junk food
 <ol style="list-style-type:lower-alpha;">
 No hotdogs

 Drink wine and mixed drinks only, no beer

 Pre-game

 Dress
 <ol style="list-style-type:upper-alpha;">
 Put on shorts, even if it's freezing
 Buy a new hat if you lost last time

 Location and Scheduling
 <ol style="list-style-type:upper-alpha;">
 Select a course where your spouse or boss won't
 find you
 To save on fees, play where your buddy works

 Opponent
 <ol style="list-style-type:upper-alpha;">
 Look for: overconfidence, inexperience
 Buy opponent as many pre-game drinks as possible

146 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 On the Course

 Tee off first, then develop severe hayfever
 Drive cart over opponent's ball to degrade
 aerodynamics
 Say "fore" just before ball makes contact with
 opponent
 Always replace divots when putting
 Water cooler holes are a good time to correct any
 errors in ball placement

 </article>
 </body>
</html>

FIGURE 6.8
A well-formatted outline can make almost any plan look more plausible.

Creating a Simple Table 147

Creating a Simple Table
Another method for controlling the layout of information within your web pages is to display

that information within a table. A table consists of rows of information with individual cells

inside. To make a table, you have to start with a <table> tag. Of course, you end a table with

the </table> tag. CSS contains numerous properties that enable you to modify a table, such as

the various border properties you learned about in previous lessons.

With the <table> tag in place, you next need the <tr> tag. The <tr> tag creates a table row,

which contains one or more cells of information before the closing </tr>. To create these individ-

ual cells, use the <td> tag (<td> stands for table data). Place the table information between the

<td> and </td> tags. A cell is a rectangular region that can contain any text, images, and HTML

tags. Each row in a table consists of at least one cell. Multiple cells within a row form columns

in a table.

One more basic tag is involved in building tables. The <th> tag works exactly like a <td> tag,

except that <th> indicates that the cell is part of the heading of the table. Most web browsers

automatically render the text in <th> cells as centered and boldface, as you can see with Chrome

in Figure 6.9. However, if your browser does not automatically render this element with a built-in

style, you have an element that you can style using CSS without using a class to differentiate

among types of table data elements.

FIGURE 6.9
The code in Listing 6.8 creates a table with four columns and six rows.

You can create as many cells as you want, but each row in a table should have the same number

of columns as the other rows. The HTML code in Listing 6.8 creates a simple table using only the

four table tags mentioned thus far.

148 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

LISTING 6.8 Creating Tables with the <table>, <tr>, <td>, and <th> Tags

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Baseball Standings</title>
 </head>
 <body>
 <h1>Baseball Standings</h1>
 <table>
 <tr>
 <th>Team</th>
 <th>W</th>
 <th>L</th>
 <th>GB</th>
 </tr>
 <tr>
 <td>San Francisco Giants</td>
 <td>54</td>
 <td>46</td>
 <td>8.0</td>
 </tr>
 <tr>
 <td>Los Angeles Dodgers</td>
 <td>62</td>
 <td>38</td>
 <td>—</td>
 </tr>
 <tr>
 <td>Colorado Rockies</td>
 <td>54</td>
 <td>46</td>
 <td>8.0</td>
 </tr>
 <tr>
 <td>Arizona Diamondbacks</td>
 <td>43</td>
 <td>58</td>
 <td>19.5</td>
 </tr>
 <tr>
 <td>San Diego Padres</td>
 <td>39</td>
 <td>62</td>
 <td>23.5</td>
 </tr>
 </table>
 </body>
</html>

Creating a Simple Table 149

NOTE

You might find your HTML tables easier to read (and less prone to time-wasting errors) if you use
spaces to indent <tr> and <td> tags, as shown in Listing 6.8. Remember that browsers ignore
spaces when rendering HTML, so the layout of your code has no effect on the layout of the table
that people will see.

The table in the example contains baseball standings, which are perfect for arranging in rows and

columns—but the table is a little plain. For instance, this example doesn’t even have any borders!

You’ll learn to jazz things up a bit in just a moment. The headings in the table show the Team,

Wins (W), Losses (L), and Games Behind (GB) in the standings.

You can add the following style sheet entries to add a basic border around the table and its cells:

table, tr, th, td {
 border: 1px solid black;
 border-collapse: collapse;
 padding: 3px;
}

You might wonder why you have to specify these styles for all four elements used to create the

table instead of just the overall table element itself. Basically, this is because a table is made up of

its elements, and each element can have these styles applied. To emphasize this point, the follow-

ing figures demonstrate how the table would look with various elements styled and unstyled.

Figure 6.10 shows the output of the styles just listed. The border-collapse property, with the

value collapse, makes all the borders of the <table>, <tr>, and <th> or <td> elements col-

lapse into one shared border. The padding adds a little breathing room to the content of the cells.

FIGURE 6.10
Adding some CSS styles to the table, including the use of border-collapse.

150 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

In Figure 6.11, you can see what the table would look like without the border-collapse

 property specified. (The default value then takes effect, in this case separate, for separate

 borders.)

FIGURE 6.11
Removing the border-collapse property causes borders to appear for all the elements.

In Figure 6.12, you can see what the table would look like if you did not specify any of the

 previous styles for the <th> and <td> elements. Note the lack of border denoting the columns.

FIGURE 6.12
Removing the styles for the <th> and <td> elements.

Controlling Table Sizes 151

NOTE

You can use three other useful but not required table-related tags when creating simple tables:

N <thead></thead>—Wrap your header rows in this element to add more meaning to the
grouping and also allow these header rows to be printed across all pages (if your table is that
long). You can then style the <thead> element as well as or instead of individual <th> cells.

N <tfoot></tfoot>—Much as with the <thead> element, use this to wrap your footer rows
(if you have any) to add more meaning to the grouping and style it as a whole. An example of
a footer row might be a summation of the data presented in the columns, such as financial
totals. To be valid, your <tfoot> rows should be listed in the HTML of the table before the
<tbody> rows, but the browser will render them after the <tbody> rows. This ensures that,
in long tables, the footer data displays while the rest of the table is loading.

N <tbody></tbody>—Wrap the rows that make up the “body” of this table (everything
besides the header and the footer rows) in this element to add more meaning to the grouping.
You can also style the <tbody> element as a whole as well as or instead of styling individual
<td> cells.

Controlling Table Sizes
When a table width is not specified, the size of a table and its individual cells automatically

expand to fit the data you place into it. This is different from other HTML elements, like <div>

and <p>, which stretch to fit the width of their container. However, you can control the width

of the entire table by defining the width CSS property for the <table> element; you can also

define the width of each cell through the width CSS property assigned to the <td> elements. The

width property can be specified as any length measure, such as pixels, ems, or percentages.

To make the first cell of a table 20% of the total table width and the second cell 80% of the table

width, you use the following property definitions:

<table style="width:100%;">
 <tr>
 <td style="width:20%;">skinny cell</td>
 <td style="width:80%;">fat cell</td>
 </tr>
</table>

Notice that the table is sized to 100%, which ensures that it fills the entire width of the browser

window. When you use percentages instead of fixed pixel sizes, the table resizes automatically to

fit any size browser window while maintaining the aesthetic balance you’re seeking. In this case,

the two cells within the table are automatically resized to 20% and 80% of the total table width,

respectively.

In Listing 6.9, the simple table from Listing 6.8 (plus the border-related styles) is expanded to

show very precise control over table cell widths. (In addition, the border-related styles have been

added.)

152 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

LISTING 6.9 Specifying Table Cell Widths

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Baseball Standings</title>
 <style>
 table, tr, th, td {
 border: 1px solid black;
 border-collapse: collapse;
 padding: 3px;
 }
 </style>
 </head>
 <body>
 <h1>Baseball Standings</h1>
 <table>
 <tr>
 <th style="width: 200px;">Team</th>
 <th style="width: 25px;">W</th>
 <th style="width: 25px;">L</th>
 <th style="width: 25px;">GB</th>
 </tr>
 <tr>
 <td>San Francisco Giants</td>
 <td>62</td>
 <td>38</td>
 <td>--</td>
 </tr>
 <tr>
 <td>Los Angeles Dodgers</td>
 <td>54</td>
 <td>46</td>
 <td>8.0</td>
 </tr>
 <tr>
 <td>Colorado Rockies</td>
 <td>54</td>
 <td>46</td>
 <td>8.0</td>
 </tr>
 <tr>
 <td>Arizona Diamondbacks</td>
 <td>43</td>
 <td>58</td>
 <td>19.5</td>
 </tr>

Controlling Table Sizes 153

 <tr>
 <td>San Diego Padres</td>
 <td>39</td>
 <td>62</td>
 <td>23.5</td>
 </tr>
 </table>
 </body>
</html>

You can see the consistent column widths in Figure 6.13.

FIGURE 6.13
The code in Listing 6.9 creates a table with four columns and six rows, with specific widths used for each
column.

The addition of a specific width style for each <th> element in the first row defines the widths

of the columns. The first column is defined as 200px wide, and the second, third, and fourth

columns are each 25px wide. In Figure 6.13, you can see whitespace after the text in the first

column, indicating that the specified width is indeed greater than the column width would have

been had the table been allowed to render without explicit width indicators.

Also note that these widths are not repeated in the <td> elements in subsequent rows.

Technically, you need to define the widths in only the first row; the remaining rows will follow

suit because they are all part of the same table. However, if you had used another formatting

style (such as a style to change font size or color), you would’ve had to repeat that style for each

element that should have those display properties.

154 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Alignment and Spanning Within Tables
By default, anything you place inside a table cell is aligned to the left and vertically centered. All

the figures so far in this lesson have shown this default alignment. However, you can align the

contents of table cells both horizontally and vertically with the text-align and vertical-
align style properties.

You can apply these alignment attributes to any <tr>, <td>, or <th> tag. Alignment attributes

assigned to a <tr> tag apply to all cells in that row. Depending on the size of your table, you can

save yourself some time and effort by applying these attributes at the <tr> level and not in each

<td> or <th> tag.

The HTML code in Listing 6.10 uses a combination of text alignment styles to apply a default

alignment to a row, but it is overridden in a few individual cells. Figure 6.14 shows the result of

the code in Listing 6.10.

LISTING 6.10 Alignment, Cell Spacing, Borders, and Background Colors in Tables

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Dandelions</title>
 <style>
 table {
 border: 2px solid black;
 border-collapse: collapse;
 padding: 3px;
 width: 100%;
 }

 tr, th, td {
 border: 2px solid black;
 border-collapse: collapse;
 padding: 3px;
 }
 thead {
 background-color: #ff0000;
 color: #ffffff;
 }
 .aligntop {
 vertical-align:top;
 }
 .description {
 font-size: 14px;
 font-weight: bold;

Alignment and Spanning Within Tables 155

 vertical-align: middle;
 text-align: center;
 }
 .size {
 text-align: center;
 }
 </style>
 </head>
 <body>
 <h1>Things to Fear</h1>
 <table>
 <thead>
 <tr>
 <th colspan="2">Description</th>
 <th>Color</th>
 <th>Size</th>
 </tr>
 </thead>
 <tbody>
 <tr class="aligntop">
 <td></td>
 <td class="description">Flower</td>
 <td>Yellow</td>
 <td class="size">1-2 inches</td>
 </tr>
 <tr class="aligntop">
 <td></td>
 <td class="description">Seeds</td>
 <td>White</td>
 <td class="size">1-2 inches</td>
 </tr>
 <tr class="aligntop">
 <td></td>
 <td class="description">Leaves</td>
 <td>Green</td>
 <td class="weight">3-4 inches</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

156 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

FIGURE 6.14
The code in Listing 6.10 shows the use of the colspan attribute and some alignment styles.

Following are some of the most commonly used vertical-align style property values: top,

middle, bottom, text-top, text-bottom, and baseline (for text). These property values

give you plenty of flexibility in aligning table data vertically.

NOTE

Keeping the structure of rows and columns organized in your mind can be the most difficult part of
creating tables with cells that span multiple columns or rows. The tiniest error can often throw the
whole thing into disarray. You can save yourself time and frustration by sketching complicated tables
on paper before you start writing the HTML to implement them.

Spanning is the process of forcing a cell to stretch across more than one row or column of a table. The

colspan attribute causes a cell to span multiple columns; rowspan has the same effect on rows.

At the top of Figure 6.14, a single cell (Description) spans two columns. This is accomplished

with the colspan attribute in the <th> tag for that cell. As you might guess, you can also use the

rowspan attribute to create a cell that spans more than one row.

Page Layout with Tables 157

In addition, text styles are defined in the style sheet and applied to the cells in the Description

column to create bold text that is both vertically aligned to the middle and horizontally aligned to

the center of the cell.

A few tricks in Listing 6.10 haven’t been explained yet. You can give an entire table—and each

individual row or cell in a table—its own background, distinct from any background you might

use on the web page itself. You can do this by placing the background-color or background-
image style in the <table>, <tr>, <td>, <th>, <thead>, <tbody>, or <tfoot> tags (or

assigning the value in the style sheet for these elements), exactly as you would in the <body> tag.

In Listing 6.10, only the top row has a background color; the style sheet defines the <thead>

element as having a red background and white text in the cells in that row.

NOTE

You often see alternating row colors in a table. For instance, one row might have a gray
background, and the next row might have a white background. Alternating the row colors helps
users read the content of a table more clearly, and it is especially helpful if the table is large. You
can do this automatically with CSS, as you’ll learn in Lesson 13, “Taking Control of Backgrounds
and Borders.”

Similar to the background-color style property is the background-image property

(not shown in this example), which is used to set an image for a table background. If you

wanted to set the image leaves.gif as the background for a table, you would use

background-image:url(leaves.gif); in the style sheet entry for the <table> element.

Notice that the image file is placed within parentheses and preceded by the word url, which

indicates that you are describing where the image file is located.

Tweaking tables goes beyond just using style properties. As Listing 6.10 shows, you can control

the space around the content of the cell, within its borders, by applying some padding to the

cell. If you want to add some space between the borders of the cells themselves, you can use the

border-spacing CSS property, which enables you to define the horizontal and vertical spacing,

like so:

border-spacing: 2px 4px;

In the example, spacing is defined as 2 pixels of space between the horizontal borders and

4 pixels of space between the vertical borders. If you use only one value, the value is applied to all

four borders.

Page Layout with Tables
At the beginning of this lesson, we indicated that designers have used tables for page layout, as

well as to display tabular information. You will still find many examples of table-based layouts if

158 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

you peek at another designer’s source code. This method of design grew out of inconsistencies in

browser support for CSS in the mid-1990s to early 2000s. Because all browsers supported tables,

and in generally the same way, web designers latched on to the table-based method of content

layout to achieve the same visual page display across all browsers. However, now that support

for CSS is relatively similar across all major browsers, designers can follow the long-standing

standards-based recommendation not to use tables for page layout.

NOTE

HTML5 has changed the recommendation again. Using tables for layout is still not a good idea,
but as long as you define the containing table as a layout table with either a border="0" or
role="presentation" attribute on the table, you will be in alignment with the recommendation.
But it’s still not a good idea to use tables for layout. In Lesson 12, “Creating Layouts Using Modern
CSS Techniques,” you’ll learn several CSS alternatives that work much better than tables.

The World Wide Web Consortium (W3C), the standards body that oversees the future of the web,

has long promoted using style sheets as the proper way to lay out pages (instead of using tables).

Style sheets are ultimately much more powerful than tables, which is why the bulk of these lessons

teach you how to use style sheets for page layout.

The main reasons for avoiding using tables for layout include these:

N Mixing presentation with content—One goal of CSS and standards-compliant web design

is to separate the presentation layer from the content layer.

N Creating unnecessarily difficult redesigns—To change a table-based layout, you have

to change the table-based layout on every single page of your site (unless it is part of a

complicated, dynamically driven site, in which case you have to undo all the dynamic

pieces and remake them).

N Addressing accessibility issues—Screen reading software looks to tables for content and

often tries to read layout tables as content tables.

N Rendering on mobile devices—Table layouts are often not flexible enough to scale

downward to small screens (see Lesson 17, “Designing for Mobile Devices”).

Using CSS Columns
If you have a large amount of text-only information, you might want to present it much like

a physical newspaper does: in columns. Over 100 years of research have shown a correlation

between the length of a line and reading speed. There is a “sweet spot,” or optimum length

of a line that allows for a quick and enjoyable reading experience. The continued presence of

this sweet spot—lines that are around 4 inches long—is why physical newspapers still present

information in columns.

Using CSS Columns 159

If you have a lot of information to present to readers, or if you simply want to mimic the

aesthetic of a newspaper layout, you can use CSS columns. True, you could also use a table,

because tables are made of rows and columns, but the preceding section explained some of the

reasons to avoid a table-based layout. Also, columns aren’t just for text; you can put anything you

want into defined columns, such as advertisements or related text in a sidebar.

In Figure 6.15, you can see a basic use of CSS columns to define a traditional newspaper-type

layout. Listing 6.11 shows the code to create this three-column layout.

FIGURE 6.15
The code in Listing 6.11 shows a three-column layout.

LISTING 6.11 Alignment, Cell Spacing, Borders, and Background Colors in Tables

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Breaking News!</title>
 <style>
 article {
 column-count: 3;
 column-gap: 21px;
 }

160 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 h1 {
 text-align: center;
 column-span: all;
 }
 p {
 margin-top: 0px;
 margin-bottom: 12px;
 }
 footer {
 column-span: all;
 }
 </style>
 </head>
 <body>
 <article>
 <header>
 <h1>Breaking News!</h1>
 </header>
 <p>Breaking news, also known as a special report or news
 bulletin, is a current issue that broadcasters feel warrants
 the interruption of scheduled programming and/or current news
 in order to report its details. Its use is also assigned to
 the most significant story of the moment or a story that is
 being covered live. It could be a story that is simply of wide
 interest to viewers and has little impact otherwise. Many
 times, breaking news is used after the news network has
 already reported on this story. When a story has not been
 reported on previously, the graphic and phrase "Just In" is
 sometimes used instead.</p>
 <p>In early coverage of a breaking story, details are commonly
 sketchy, usually due to the limited information available at the
 time. For example, during the Sago Mine disaster, initial reports
 were that all twelve miners were found alive, but news
 organizations later found only one actually survived.</p>
 <p>Another criticism has been the diluting of the importance of
 breaking news by the need of 24-hour news channels to fill time,
 applying the title to soft news stories of questionable importance
 and urgency, for example car chases. Others question whether the
 use of the term is excessive, citing occasions when the term is
 used even though scheduled programming is not interrupted.</p>
 <footer>
 Text courtesy of Wikipedia:
 http://en.wikipedia.org/wiki/Breaking_news
 </footer>
 </article>
 </body>
</html>

Using CSS Columns 161

The code in Listing 6.11 is from a fake news article, and we’ve used the <article> element

to hold all the content. Inside the <article> element is a <header> element that contains

the “Breaking News!” heading (at the <h1> level), followed by three paragraphs of text and a

<footer> element. All the styling is handled in the style sheet at the beginning of the listing;

styles are provided for four of the elements just named: <article>, <h1>, <p>, and <footer>.

In the style sheet, we’re applying the primary definition of the columns within the <article>

element. We’ve used column-count to define three columns, and we’ve used column-gap to

define the space between the columns as 21 pixels wide. Next, we’ve added a definition for the

<h1> element, first to make the text align in the center of the page and second to ensure that

the text spans all the columns. We’ve applied the same column-span property to the entry for

the <footer> element for the same reason.

After the entry for the <h1> element, we added some specific margins to the <p> element—

namely, a top margin of 0 pixels and a bottom margin of 12 pixels. We could have left well

enough alone and just allowed the <p> elements to display as the default style, but that would

have created a margin at the top of each paragraph. “What’s the big deal?” you might ask,

because it looks as though we’ve manually added space between the paragraphs anyway—and

that’s true. However, we added the space after each paragraph and took away the space before

each paragraph so that the first column doesn’t begin with a space and thus cause the tops of the

three columns to misalign.

NOTE

You will sometimes see related entries with -webkit, -o, -ms, and -moz prefixes, such as
-webkit-column-count: 2;. These are added to style sheets when a property is not fully
supported by browsers. The -webkit prefix is for Chrome and Safari (and their mobile counterparts
Android and iOS), -o is for Opera, -ms is for Microsoft Edge and Internet Explorer, and -moz is for
Firefox. While you can use these prefixes for CSS columns, browser support is basically universal
now, so the prefixes are necessary only if you need to support older browser versions. A good site to
reference what prefixes you might need is www.caniuse.com.

You can even add vertical lines between columns, as shown in Figure 6.16. The style sheet entries

we added to achieve this appearance are shown here:

column-rule-width: 1px;
column-rule-style: solid;
column-rule-color: #000;

Note that these style sheet entries look remarkably similar to the ones you use to define borders

(which you will learn about in Lesson 13).

http://www.caniuse.com

162 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

FIGURE 6.16
The code in Listing 6.11, with the addition of vertical lines between the columns.

You will learn more about how to use CSS columns for responsive layouts in Lesson 17.

Summary
In this lesson, you learned how to make text appear as boldface or italic and how to code

superscripts, subscripts, special symbols, and accented letters. You saw how to control the size,

color, and typeface of any section of text on a web page, including how to use web fonts for more

interesting typefaces. You also learned that attributes are used to specify options and special

behavior for many HTML tags, and you learned to use the style attribute with CSS style rules

to affect the appearance of text. You also learned how to create and combine three basic types of

HTML lists: ordered lists, unordered lists, and definition lists. Lists can be placed within other lists

to create outlines and other complex arrangements of text.

Finally, you learned to arrange text and images into organized rows and columns called tables.

You learned the basic tags for creating tables and several CSS properties for controlling the align-

ment, spacing, and appearance of tables. You also learned that tables should not be used for lay-

out purposes but that you can achieve a multicolumn layout by using CSS columns.

Table 6.2 summarizes the HTML tags and attributes discussed in this lesson. Don’t feel as though

you have to memorize all these tags, by the way!

Summary 163

TABLE 6.2 HTML Tags and Attributes Covered in Lesson 6

Tag/Attribute Function

… Adds emphasis (usually italic).

… Adds stronger emphasis (usually bold).

<pre>…</pre> Indicates preformatted text (with exact line endings and spacing
preserved—usually rendered in a monospaced font).

_… Indicates subscript.

[…] Indicates superscript.

<div>…</div> Specifies a region of text to be formatted.

<dl>…</dl> Indicates a definition list.

<dt>…</dt> Indicates a definition term, as part of a definition list.

<dd>…</dd> Specifies the corresponding definition to a definition term, as part
of a definition list.

… Indicates an ordered (numbered) list.

… Indicates an unordered (bulleted) list.

… Indicates a list item for use with or .

<table>…</table> Creates a table that can contain any number of rows and columns.

<thead>…</thead> Defines the header rows of a table.

<tbody>…</tbody> Defines the body rows of a table.

<tfoot>…</tfoot> Defines the footer rows of a table.

<tr>…</tr> Defines a table row containing one or more cells (<td> tags).

<th>…</th> Defines a table heading cell. (Accepts all the same styles as
<td>.)

<td>…</td> Defines a table data cell.

Attribute Function

style="font-family:
typeface;"

Specifies the typeface (family) of the font, which is the name of a
font, such as Arial. (Can also be used with <p>, <h1>, <h2>,
<h3>, and so on.)

style="font-
size:size;"

Specifies the size of the font, which can be set to small, medium,
or large, as well as x-small, x-large, and so on. Can also be
set to a specific size (such as 12pt or 2em).

style="color:color;" Changes the color of the text.

style="text-align:
alignment;"

Aligns text to center, left, or right. (Can also be used with
<p>, <h1>, <h2>, <h3>, and so on.)

164 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

Tag/Attribute Function

Attribute Function

style="list-style-
type:numtype;"

Indicates the type of numerals used to label the list. Possible val-
ues are decimal, lower-roman, upper-roman, lower-alpha,
upper-alpha, and none.

style="list-style-
type:bullettype;"

Indicates the bullet dingbat used to mark list items. Possible values
are disc, circle, square, and none.

style="list-style-
type:type;"

Indicates the type of bullet or number used to label this item.
Possible values are disc, circle, square, decimal, lower-
roman, upper-roman, lower-alpha, upper-alpha, and none.

Q&A
 Q. How do I find out the exact name for a font I have on my computer?

 A. On a Windows 10 computer, open the Control Panel and go to the Appearance and
Personalization section. Then click the Fonts folder, and you see a list of the fonts on your
system. On a Mac, open Font Book in the Applications folder to find a list of the
fonts on your system. When specifying fonts in the font-family style rule, use the exact
spelling of each font name. Font names are not case sensitive, however.

 Q. How do I put Kanji, Arabic, Chinese, and other non-European characters on my pages?

 A. First of all, users who need to read these characters on your pages must have the appropriate
language fonts installed. If you have your browser set to the UTF-8 character set, you should be
able to just type the characters onto your page, just as you do English characters.

 You can also use the Character Map program in Windows (or a similar program in other
operating systems) to get the numeric codes for the characters in any language font. To find
Character Map, click Start, All Programs, Accessories, and then System Tools. (On a Mac, look
for the Emoji & Symbols option in the Edit menu of any application.) If the character you want
has the code 214, use Ö to place it on a web page. If you cannot find the Character
Map program, use your operating system’s built-in Help function to find the specific location.

 Q. I’ve seen web pages that use little three-dimensional balls or other special graphics for

bullets. How do they do that?

 A. That trick is a little bit beyond what this lesson covers. You’ll learn how to do this in Lesson 8.

 Q. I made a big table, and when I load the page, nothing appears on the page for a long time.

Why the wait?

 A. Complex tables can take a while to appear on the screen. The web browser has to figure
out the size of everything in the table before it can display any part of it. You can speed
things up a bit by defining the width and height attributes for every image within a table.
Defining specific widths for the <table> and <td> elements also helps. You may want to
split extremely large tables into smaller tables, so that they render individually.

Workshop 165

Workshop
The workshop contains quiz questions and activities to help you solidify your understanding of the
material covered.

Quiz
 1. How would you create a paragraph in which the first three words are bold, using styles

rather than the or tags?

 2. How would you represent the chemical formula for water?

 3. How do you display “© 2018, Webwonks Inc.” on a web page?

 4. How would you center all the text on a page?

 5. How can you create a simple two-column, two-row table with a single-pixel black border
outlining the table?

 6. Why should you use character codes to write 3 < 6 on a web page?

 7. What typeface will be used in most browsers with this style property: font-family:
Geneva, Arial, helvetica, sans-serif;?

 8. What is the CSS command to define a web font?

 9. What do you call a list enclosed inside another list?

 10. What is the CSS property for creating a three-column newspaper layout on a web page?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. You can use this code:

<p>First three words are bold.</p>

 2. You can use H₂O.

 3. You can use either of the following:

© 2018, Webwonks Inc.
© 2018, Webwonks Inc.

http://www.informit.com/register

166 LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables

 4. If you thought about putting a <div style="text-align:center;"> immediately after
the <body> tag at the top of the page and </div> just before the </body> tag at the
end of the page, then you’re correct. However, the text-align style is also supported
directly in the <body> tag, which means you can forgo the <div> tag and place the
style="text-align:center;" style directly in the <body> tag. Presto, the entire page
is centered!

 5. Use the following HTML:

<table style="border: 1px solid #000000; border-collapse: collapse;">
 <tr>
 <td>Top left...</td>
 <td>Top right...</td>
 </tr>
 <tr>
 <td>Bottom left...</td>
 <td>Bottom right...</td>
 </tr>
</table>

 6. Because the < character is also the character that starts an HTML tag, by writing 3 < 6,
you will ensure that the browser knows to display the less-than sign rather than thinking <
is the start of an HTML tag.

 7. This will display in most browsers in the typeface Geneva. If the browser doesn’t have that
font, it will display in Arial, then Helvetica, and then in its default sans-serif font.

 8. You use the @font-face rule to define the name and source URL of a web font.

 9. A list inside another list is called a nested list.

 10. Use column-count: 3; to define a three-column layout on your page.

Exercises
N Apply the font-level style attributes you learned about in this lesson to various block-level

elements, such as <p>, <div>, , and items. Try nesting your elements to get
a feel for how styles do or do not cascade through the content hierarchy.

 Use the text alignment style attributes to place blocks of text in various places on your
web page. Try nesting your paragraphs and divisions (<p> and <div>) to get a feel for
how styles do or do not cascade through the content hierarchy.

N Try producing an ordered list outlining the information you’d like to put on your web
pages. This will give you practice formatting HTML lists and also give you a head start
on thinking about the issues covered in later lessons.

LESSON 7
Using External and

Internal Links

What You’ll Learn in This Lesson:

 N How to use anchor links

 N How to link between pages on your own site

 N How to link to external content

 N How to link to non-Web documents such as PDF and Word documents

 N How to link to an email address

 N How to use window targeting with your links

 N How to style your links with CSS

 N How to add descriptions to links

 N Best practices for web page links

So far, you have learned how to use HTML tags to create some basic web pages. However, at this

point, those pieces of content are islands unto themselves, with no connection to anything else. To

turn your work into real web content, you need to connect it to the rest of the Web—or at least to

other pages within your own sites.

This lesson shows you how to create hypertext links to content within your own document and

how to link to other external documents. In addition, you will learn how to style hypertext links so

that they display in the color and decoration you desire—not necessarily the default blue under-

lined display. You will also learn some of the best practices that designers have learned from over

20 years of linking web pages.

Using Web Addresses
The simplest way to store web content for an individual website is to place all the files in the same

folder. When files are stored together like this, you can link to them by simply providing the name

of the file in the href attribute of the <a> tag.

168 LESSON 7: Using External and Internal Links

NOTE

Before you get too far into this lesson, you might want a refresher on the basics of where to
put files on your server and how to manage files within a set of directories. This information is
important to understand when creating links in web content. Refer to Lesson 1, “Understanding
How the Web Works,” specifically the section titled “Understanding Where to Place Files on the
Web Server.”

An attribute is a piece of information associated with a tag that provides further details about the

tag. For example, the href attribute of the <a> tag identifies the address of the page or docu-

ment to which you are linking.

When you have more than a few pages, or when you start to have an organization structure to

the content in your site, you should put your files into directories (or folders, if you will) whose

names reflect the content within them. For example, all your images could be in an images

directory, corporate information could be in an about directory, and so on. Regardless of how

you organize your documents within your own web server, you can use relative addresses, which

include only enough information to find one page from another.

A relative address describes the path from one web page to another, as opposed to a full (or

absolute) Internet address.

As you recall from Lesson 1, the document root of your web server is the directory designated as

the top-level directory for your web content. In web addresses, that document root is represented

by the forward slash (/). All subsequent levels of directories are separated by the same type of

forward slash, as in this example: /directory/subdirectory/subsubdirectory/.

CAUTION

The forward slash (/) is always used to separate directories in HTML. Don’t use the backslash (\),
which is normally used in the Windows operating system, to separate your directories. You can
remember this by thinking that everything on the web moves forward, so use forward slashes.

Suppose you are creating a page named zoo.html in your document root, and you want to

include a link to pages named african.html and asian.html in the elephants subdirec-

tory. The links would look like the following:

Learn about African elephants.
Learn about Asian elephants.

These specific addresses are actually called relative-root addresses, in that they are relative

addresses that lack the entire domain name, but they are specifically relative to the document

root specified by the forward slash.

http://zoo.html
http://african.html
http://asian.html
http://"/elephants/african.html">Learn
http://"/elephants/asian.html">Learn

Using Web Addresses 169

Using a regular relative address, you can skip the initial forward slash. This type of address allows

the links to become relative to whatever directory they are in—whether that is the document root

or another directory one or more levels down from the document root. This is what a regular

relative address looks like:

Learn about African elephants.
Learn about Asian elephants.

Your african.html and asian.html documents in the elephants subdirectory could link

back to the main zoo.html page in either of these ways:

Return to the zoo.
Return to the zoo.
Return to the zoo.

The first link is an absolute link. With an absolute link, there is absolutely no doubt where the link

should go because the full URL is provided—domain name included.

The second link is a relative-root link. It is relative to the domain you are currently browsing and,

therefore, does not require the protocol type (for example, http://) or domain name

(for example, www.yourdomain.com); the initial forward slash is provided to show that the

address begins at the document root.

NOTE

The general rule surrounding relative addressing (elephants/african.html) versus absolute
addressing (http://www.takeme2thezoo.com/elephants/african.html) is that
you should use relative addressing when linking to files that are stored together, such as files
that are all part of the same website. Use absolute addressing when you’re linking to files
somewhere else—another computer, another disk drive, or, more commonly, another website on
the Internet.

In the third link, the double dot (..) is a special command that indicates the folder that contains

the current folder—in other words, the parent folder. Anytime you see the double dot, just think to

yourself, “Go up a level in the directory structure.”

The advantage of relative addressing is that the links will work as long as the pages remain on

the same site. If you use relative addressing consistently throughout your web pages, you can

move directories of pages to another folder, disk drive, or web server without changing

the links.

Relative addresses can span quite complex directory structures, if necessary. Lesson 28,

“Organizing and Managing a Website,” offers more detailed advice for organizing and linking

large numbers of web pages.

http://www.yourdomain.com
http://elephants/african.html
http://www.takeme2thezoo.com/elephants/african.html

170 LESSON 7: Using External and Internal Links

Linking Within a Page Using Anchors
The <a> tag—the tag responsible for hyperlinks on the web—got its name from the word anchor,
because a link serves as a designation for a spot in a web page. In examples throughout these

lessons so far, you’ve learned how to use the <a> tag to link to somewhere else, but that’s only

half its usefulness. Let’s get started working with anchor links that link to content within the

same page.

Identifying Locations in a Page with Anchors
The <a> tag can be used to mark a spot on a page as an anchor, enabling you to create a link

that points to that exact spot. Listing 7.1, presented a bit later in this lesson, demonstrates a link

 TRY IT YOURSELF

Creating a Simple Site Architecture

Hopefully by now you’ve created a page or two of your own while working through the lessons.
Follow these steps to add a few more pages and link them:

 1. Use a home page as a main entrance and as a central hub to which all your other pages
are connected. If you created a page about yourself or your business, use that page as your
home page. You also might like to create a new page now for this purpose.

 2. On the home page, put a list of links to the other HTML files you’ve created (or placehold-
ers for the HTML files you plan to create soon). Be sure that the exact spelling of the
filename, including any capitalization, is correct in every link.

NOTE

Most web servers run UNIX or Linux, which are case sensitive, but Windows does not distinguish
between cases when you’re viewing your pages locally. This means that links to african.html
and African.html will both point to the same page on a Windows machine, but they will point to
different pages on the web server. It’s best to stick to one case—preferably lowercase—for all your
web filenames.

 3. On every other page besides the home page, include a link at the bottom (or top) leading
back to your home page. This makes navigating around your site simple and easy.

 4. You might also want to include a list of links to related or interesting sites, either on your
home page or on a separate links page. People often include a list of their friends’ personal
pages on their own home page. However, businesses should be careful not to lead potential
customers away to other sites too quickly, as there’s no guarantee that they’ll return to your
site after leaving, and the other site might not have a link back.

http://african.html
http://African.html

Linking Within a Page Using Anchors 171

to an anchor within a page. To see how such links are made, let’s take a quick peek ahead at the

first <h1> tag in the listing:

<h1 id="top">First Lines of Shakespearean Sonnets</h1>

The <a> tag uses the href attribute to specify a hyperlinked target. The <a href> is what you

click, and the element with the corresponding id attribute is where you go when you click there.

In this example, the <h1> tag is specifying a target, but it is also the headline for that section of

the page. The id attribute gives a name, in this case top, to the specific point on the page where

the tag occurs. A unique name must be assigned to the id attribute, but it can be placed on any

element in the page where you want the link to land.

NOTE

You can use an id attribute on any container element in HTML5, and you can use the <a> tag to
point to those elements as anchor links as well. Best practices recommend that you not add extra
tags to your document but simply add the id attribute to relevant tags that are already present.

Linking to Anchor Locations
Listing 7.1 shows a site with various anchor points placed throughout a single page. Take a look

at the last <a> tag in Listing 7.1 to see an example:

Return to Index.

The # symbol means that the word top refers to a named anchor point within the current

document rather than to a separate page. When a user clicks Return to Index, the web

browser displays the part of the page starting with the tag with the id="top" attribute.

LISTING 7.1 Setting Anchor Points by Using the <a> Tag with an id Attribute

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Alphabetical Shakespeare</title>
 </head>
 <body>
 <article>
 <header>
 <h1 id="top">First Lines of Shakespearean Sonnets</h1>
 </header>
 <p>Don't you just hate when you go a-courting, and you're
 down on one knee about to rattle off a totally romantic
 Shakespearean sonnet, and zap! You space it. "Um... It
 was, uh... I think it started with a B..."</p>
 <p>Well, appearest thou no longer the dork. Simply refer to

172 LESSON 7: Using External and Internal Links

 this page, click on the first letter of the sonnet you want,
 and get an instant reminder of the first line to get you
 started. "Beshrew that heart that makes my heart to
 groan..."</p>

 <p style="text-align:center">Alphabetical Index</p>
 <div style="text-align:center">
 A B C
 D E F
 G H I
 J K L
 M N O
 P Q R
 S T U
 V W X
 Y Z
 </div>
 <hr>

 <section>
 <header>
 <h1 id="A">A</h1>
 </header>

 A woman's face with nature's own hand painted,
 Accuse me thus, that I have scanted all,
 Against my love shall be as I am now
 Against that time (if ever that time come)
 Ah wherefore with infection should he live,
 Alack what poverty my muse brings forth,
 Alas 'tis true, I have gone here and there,
 As a decrepit father takes delight,
 As an unperfect actor on the stage,
 As fast as thou shalt wane so fast thou grow'st,

 <p>Return to Index.</p>
 </section>
 <hr>
<!-- continue with the alphabet -->
 <section>
 <header>
 <h1 id="Z">Z</h1>
 </header>
 <p>(No sonnets start with Z.)</p>
 <p>Return to Index.</p>
 </section>
 </article>
 </body>
</html>

Linking Within a Page Using Anchors 173

NOTE

Near the end of Listing 7.1 you see the following line:

<!-- continue with the alphabet -->

This text (an HTML comment) will appear in your source code but will not be displayed by the
browser. You will learn more about commenting your code in Lesson 28.

Each of the <a href> links in Listing 7.1 makes an underlined link leading to a corresponding

<a id> anchor—or it would if all the text were filled in. Only A and Z will work in this example

because only the A and Z links have corresponding text to link to, but feel free to fill in the rest on

your own! Clicking the letter Z under Alphabetical Index in Figure 7.1, for example, takes you to

the part of the page shown in Figure 7.2.

NOTE

In HTML4, anchor names specified via the id attribute in a tag have to start with a letter. But
HTML5 is less strict. The ID must contain at least one character and no space characters. Best
practices suggest that it’s best to avoid characters that have meaning in HTML, CSS, JavaScript,
and HTTP (the protocol that web servers use to load pages). These include periods (.), colons (:),
semicolons (;) pound signs (#), slashes (/), and backslashes (\). We recommend using only num-
bers and letters from a standard keyboard in your id attributes.

FIGURE 7.1
The <h1 id> tags in Listing 7.1 don’t appear differently from standard <h1> tags. The <a href> tags
appear as underlined links.

174 LESSON 7: Using External and Internal Links

FIGURE 7.2
Clicking the letter Z on the page shown in Figure 7.1 takes you to the appropriate section of the same page.

Having mastered the concept of linking to sections of text within a single page, you will now learn

to link other pieces of web content.

Linking Between Your Own Web Content
As you learned earlier in this lesson, you do not need to include http:// before each address

specified in the href attribute when linking to content within your domain (or on the same com-

puter, if you are viewing your site locally). When you create a link from one file to another file

within the same domain or on the same computer, you don’t need to specify a complete Internet

address. In fact, if the two files are stored in the same folder, you can simply use the name of the

HTML file by itself:

Go to Page 2.

For example, Listing 7.2 and Figure 7.3 show a quiz page with a link to the answers page shown

in Listing 7.3 and Figure 7.4. The answers page contains a link back to the quiz page. Because the

page in Listing 7.2 links to another page in the same directory, the filename can be used in place

of a complete address.

Linking Between Your Own Web Content 175

LISTING 7.2 The historyanswers.html File

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>History Quiz</title>
 </head>
 <body>
 <section>
 <header>
 <h1>History Quiz</h1>
 </header>
 <p>Complete the following rhymes. (Example: William the
 Conqueror played cruel tricks on the Saxons in... ten
 sixty-six.)</p>

 Columbus sailed the ocean blue in...
 The Spanish Armada met its fate in...
 London burnt like rotten sticks in...

 <p style="text-align: center;">
 Check Your Answers!
 </p>
 </section>
 </body>
</html>

FIGURE 7.3
This is the historyquiz.html file listed in Listing 7.2 and referred to by the link in Listing 7.3.

http://historyanswers.html
http://"historyanswers.html">Check
http://historyquiz.html

176 LESSON 7: Using External and Internal Links

LISTING 7.3 The historyanswers.html File That historyquiz.html

Links To

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>History Quiz Answers</title>
 </head>
 <body>
 <section>
 <header>
 <h1>History Quiz Answers</h1>
 </header>

 ...fourteen hundred and ninety-two.
 ...fifteen hundred and eighty-eight.
 ...sixteen hundred and sixty-six.

 <p style="text-align: center;">
 Return to the Questions
 </p>
 </section>
 </body>
</html>

FIGURE 7.4
The Check Your Answers! link in Figure 7.3 takes you to this answers page. The Return to the
Questions link takes you back to what’s shown in Figure 7.3.

http://historyanswers.html
http://historyquiz.html
http://"historyquiz.html">Return

Linking to Non-HTML Files 177

Using filenames instead of complete Internet addresses saves you a lot of typing. More importantly,

the links between your pages will work properly no matter where the group of pages is stored. You

can test the links while the files are still on your computer’s hard drive. You can then move them

to a web server, a CD-ROM, a DVD, or a USB drive, and all the links will still work correctly. There

is nothing magic about this simplified approach to identifying web pages; it all has to do with web

page addressing, as you’ve already learned.

NOTE

In both Listing 7.2 and Listing 7.3, you’ll see the use of the <section></section> tag pair
around the bulk of the content. You might wonder whether that is entirely necessary—after all, it is
the only content on the page. The answer is, no, it isn’t entirely necessary. The HTML would validate
just fine, and no one looking at this code would be confused by its organization if the <section>
</section> tags were not present. The tags are used here just to make sure you get used to see-
ing them throughout these code examples and to provide an opportunity to include this note about
how you might use the <section></section> tags at some point in the future. For example, if
you were to put both the questions section and the answers section on one page and apply styles
and a little bit of JavaScript-based interactivity, you could hide one section (the questions) until the
reader clicked a link that would then show the other section (the answers). This action is beyond the
scope of these lessons, but it is an example of how the simplest bit of markup can set you up for
bigger things later.

Linking to Non-HTML Files
Once you know how to link to an HTML document, you can link to non-HTML documents in the

same way. Items like word processing documents and PDF files are examples of other files on the

web. To link to them, you just replace the URL in the href attribute with the location of the

document, as in these examples:

my word-processed document
my PDF file

The first example links to a word processing document (.doc), and the second example links to a

PDF file (.pdf). When these links are clicked, the browser will do one of two things: It will either

open the document in the window or it will open a download dialog box that asks the user to

download the file.

Sometimes it makes sense to require that a linked document be downloaded to the user’s local

computer. But web browsers typically try to display as much as they can without downloading, as

downloading can be slow, and some operating systems don’t allow it. In order to force the browser

to open a download dialog box, add the attribute download to the link. This is what’s called a

Boolean attribute because it is either on or off. Sometimes you will see them written as having

178 LESSON 7: Using External and Internal Links

self-referential values, such as download="download". This attribute is new in HTML5 and

has good support in all modern browsers except Internet Explorer (but it works in Edge) and iOS

Safari.

To force the previous two links to be download links, write the following:

my word-processed document
my PDF file

Linking to External Web Content
The only difference between linking to pages within your own site and linking to external web

content is that when linking outside your site, you need to include the full address to that bit of

content. The full address includes the http:// or https:// before the domain name and then

the full pathname to the file (for example, an HTML file, an image file, a multimedia file, and

so on). This is called the fully qualified domain name (FQDN).

For example, to include a link to Google from within one of your own web pages, you would use

this type of absolute addressing in your <a> link:

Go to Google

NOTE

These days, it is more common to see web pages with https:// as the protocol for the web page
URL. This is because more and more servers are using secure SSL certificates to keep their
websites secure. You will learn more about this in Lesson 27, “Working with Web-Based Forms.”

CAUTION

As you might know, you can leave out the protocol (http:// or https://) at the front of any
address when typing it into most web browsers. However, you cannot leave out that part when you
type an Internet address into an <a href> link on a web page.

You can apply what you have learned in previous sections to creating links to named anchors on

other pages. Linked anchors are not limited to the same page. You can link to a named anchor on

another page by including the address or filename followed by # and the anchor name. For exam-

ple, the following link would take you to an anchor named photos within the african.html

page inside the elephants directory on the (fictional) domain www.takeme2thezoo.com:

Check out the African Elephant Photos!

http://www.takeme2thezoo.com

Linking to an Email Address 179

If you are linking from another page already on the www.takeme2thezoo.com domain

(because you are, in fact, the site maintainer), your link might simply be as follows:

Check out the
African Elephant Photos!

The protocol and the domain name would not be necessary in this instance, as you have already

learned.

Linking to an Email Address
In addition to linking between pages and between parts of a single page, the <a> tag enables you

to link to email addresses. This is the simplest way to enable your web page visitors to talk back

to you. Of course, you could just provide visitors with your email address and trust them to type it

into whatever email programs they use, but that increases the likelihood for errors. By providing a

clickable link to your email address, you make it almost completely effortless for them to send you

messages and eliminate the chance for typos.

An HTML link to an email address looks like the following:

Send me an
email message.

The words Send me an email message will appear just like any other <a> link.

If you want people to see your actual email address (so that they can make note of it or send a

message using a different email program), include it both in the href attribute and as part of the

message between the <a> and tags, like this:

you@yourdomain.com

CAUTION

Many spammers use automated tools to harvest email addresses from web pages by looking for
mailto links and email addresses. There are ways to try to hide the email address from spammers,
but in general if the email address works in the web page, spammers can grab it. So be sure that
whatever address you point to has a strong spam filter on it.

In most web browsers, when a user clicks the link, that person gets a window into which he or she

can type a message that is immediately sent to the mailto email address—and the email program

that person uses to send and receive email will automatically be used.

You can provide some additional information in the link so that the subject and body of the mes-

sage also have default values. You do this by adding subject and body variables to the mailto

link. You separate the variables from the email address with a question mark (?), separate the

http://www.takeme2thezoo.com

180 LESSON 7: Using External and Internal Links

value from the variable with an equal sign (=), and then separate each of the variable and value

pairs with an ampersand (&). You don’t have to understand the variable/value terminology at this

point. Here is an example of specifying a subject and body for the preceding email example:

<a href="mailto:author@somedomain.com?subject=Book Question&body=
When is the next edition coming out?">author@somedomain.com

When a user clicks this link, an email message is created with author@somedomain.com as the

recipient, Book Question as the subject of the message, and When is the next edition
coming out? as the message body.

NOTE

If you want to specify only an email message subject and not the body, you can just leave off the
ampersand and the body variable, equal sign, and value text string, as follows:

author@somedomain.com

You can add carbon-copy and blind carbon-copy recipients to the message as well with the cc

and bcc properties, like so:

<a href="mailto:author@somedomain.com?subject=
Book Question&cc=coauthor@somedomain.com&
bcc=publisher@somedomain.com">Mail the author

This will send the Book Question message to author@somedomain.com, cc

coauthor@somedomain.com, and bcc publisher@somedomain.com.

NOTE

If you put an email contact link in the footer of all your web pages, you make it easy for others to
contact you; you give them a way to tell you about any problems with the page that your testing
might have missed. Use the <address> HTML tag to semantically define this email address as the
address for the web page.

Opening a Link in a New Browser Window
Now that you have a handle on how to create addresses for links—both internal (within your site)

and external (to other sites)—there is one additional method of linking: forcing the user to open

links in new windows.

You’ve no doubt heard of pop-up windows, which are browser windows—typically advertising prod-

ucts or services—that are intended to be opened and displayed automatically without the user’s

Giving Titles to Links 181

approval. Many modern browsers disallow this behavior. However, the concept of opening another

window or targeting another location serves a valid purpose in some instances. For example, you

might want to present information in a smaller secondary browser window but still allow the user

to see the information in the main window. This is often the case when the user is clicking on a link

to an animated demo, a movie clip, or some other multimedia element. You might also want to

target a new browser window when you are linking to content offsite.

The word target is important because this is the name of the attribute used with the <a> tag. The

target attribute points to a valid browsing context, or “new window to open.”

A valid HTML link that opens in a new window is constructed like so:

Open a Window!

The keyword _blank is a special target name that tells the browser to open in a new window

without a name. The initial underscore (_) is not a typo but is part of the name. You can also give

windows names by targeting them with any text designation, such as the following:

Open a New Window!

In this case, the new window will be called newWindow. Any other links you target with that

same name will open in that same window.

Remember that forcing a link to open in a new browser window—especially when it’s a full-size

new window—goes against some principles of usability and accessibility. Best practices recom-

mend that you avoid doing this unless you have no other choice.

Giving Titles to Links
One feature of links that many web designers forget is the title attribute. This attribute lets you

add to your links descriptions that aren’t immediately visible on web pages. For example, this

HTML creates a link that reads Come see my page:

Come see my page

When people view the page, it will display as a standard link, but if they hover over or focus on

the link, the browser will display the message This is the best page on this site.

Giving title to links is especially useful for people who rely on screen readers, as they can get a

little more information about a link before they click on it. You can also use the title attribute

as a style hook. To reference every link with a title attribute you write the following:

a[title] { /* put styles here */ }

http://"/some/file.html"
http://"/some/file.html"
http://"myPage.html"

182 LESSON 7: Using External and Internal Links

Think of the title attribute as a way to give a little more information about a link without

taking up space on the page. It’s not meant to be a repetition of the link text, as that would be

pointless and boring. And it does nothing for search engine visibility, so don’t fill it with spammy

keyword phrases. Use it to provide more useful information. If you don’t have any more useful

information, don’t use the title attribute.

Using CSS to Style Hyperlinks
The default display of a text-based hyperlink on a web page is underlined blue text. You might

also have noticed that links you have previously visited appear as underlined purple text; that

color is also a default. If you’ve spent any time at all on the Web, you will also have noticed that

not all links are blue or purple—and for that we are all thankful. Using a little CSS and knowledge

of the various pseudo-classes for the <a> link, you can make your links look however you want.

NOTE

You can use graphics as links (instead of using text as links) by putting an tag between the
opening <a> and closing tags.

A pseudo-class is a class that describes styles for elements that apply to certain circumstances, such

as various states of user interaction with that element.

For example, these are the common pseudo-classes for the <a> tag:

 N a:link—Describes the style of a hyperlink that has not been visited previously.

 N a:visited—Describes the style of a hyperlink that has been visited previously and is

present in the browser’s memory.

 N a:hover—Describes the style of a hyperlink as a user’s mouse hovers over it (and before it

has been clicked).

 N a:focus—Describes the style of a hyperlink as the user activates the link. This is often used

on devices where there is no mouse, so clicking is not possible.

 N a:active—Describes the style of a hyperlink that is in the act of being clicked but has not

yet been released.

NOTE

It’s important to remember to style the :focus property because many people today use devices
without mice to view web pages. Most people view web pages on tablets and smartphones more
often than on computers with mice. And :focus is also important for accessibility to people who
use the keyboard to navigate the web.

Using CSS to Style Hyperlinks 183

For example, let’s say you want to produce a link with the following styles:

 N A font that is bold and Verdana (and not underlined, meaning it has no text decoration)

 N A base color that is light blue

 N The color red when users hover over it, give it focus, or are clicking it

 N The color gray after users have visited it

Your style sheet entries might look like the following:

a {
 font-family: Verdana, sans-serif;
 font-weight: bold;
 text-decoration: none;
}
a:link {
 color: #6479A0;
}
a:visited {
 color: #cccccc;
}
a:hover {
 color: #e03a3e;
}
a:focus {
 color: #e03a3e;
}
a:active {
 color: #e03a3e;
}

NOTE

The colors in this example are indicated by their hexadecimal values.

Because the sample link will be Verdana bold (and not underlined), regardless of the state it is in,

those three property and value pairs can reside in the rule for the a selector. However, because

each pseudo-class must have a specific color associated with it, we use a rule for each pseudo-

class, as shown in the code example. The pseudo-class inherits the style of the parent rule unless

the rule for the pseudo-class specifically overrides that rule. In other words, all the pseudo-classes

in the preceding example will be Verdana bold (and not underlined). However, if we used the fol-

lowing rule for the hover pseudo-class, the text would display in Comic Sans when users hover

over it (if, in fact, they have the Comic Sans font installed):

a:hover {
 font-family: "Comic Sans MS";
 color: #e03a3e;
}

184 LESSON 7: Using External and Internal Links

In addition, because the active, focus, and hover pseudo-classes use the same font color,

you can combine style rules for them:

a:hover, a:focus, a:active {
 color: #e03a3e;
}

Listing 7.4 puts these code snippets together to produce a page using styled pseudo-classes;

Figure 7.5 shows the results of this code.

LISTING 7.4 Using Styles to Display Link Pseudo-classes

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Sample Link Style</title>
 <style>
 a {
 font-family: Verdana, sans-serif;
 font-weight: bold;
 text-decoration: none;
 }
 a:link {
 color: #6479a0;
 }
 a:visited {
 color: #cccccc;
 }
 a:hover, a:active {
 color: #ff0000;
 }
 </style>
 </head>
 <body>
 <h1>Sample Link Style</h1>
 <p>The first time you see me,
 I should be a light blue, bold, non-underlined link in
 the Verdana font.</p>
 </body>
</html>

http://"simplelinkstyle.html">The

Using CSS to Style Hyperlinks 185

FIGURE 7.5
A link can use particular styles to control the visual display.

If you view the example in your web browser, indeed the link should be a light blue, bold, non-

underlined Verdana font. If you hover over the link or click the link without releasing it, it should

turn red. If you click and release the link, the page simply reloads because the link points to the

file with the same name. However, at that point, the link is in your browser’s memory and thus is

displayed as a visited link—and it appears gray instead of blue.

You can use CSS to apply a wide range of text-related changes to your links. You can change fonts,

sizes, weights, decoration, and so on. Sometimes you might want several sets of link styles in your

style sheet. In that case, you can create classes; you aren’t limited to working with only one set of

styles for the <a> tag. The following example is a set of style sheet rules for a footerlink class

for links you might want to place in the footer area of a website:

a.footerlink {
 font-family: Verdana, sans-serif;
 font-weight: bold;
 font-size: 75%;
 text-decoration: none;
}
a.footerlink:link,
a.footerlink:visited {
 color: #6479a0;
}
a.footerlink:hover,
a.footerlink:active,
a.footerlink:focus {
 color: #e03a3e;
}

186 LESSON 7: Using External and Internal Links

As you can see in the example that follows, the class name (footerlink) appears after the

selector name (a), separated by a dot, and before the pseudo-class name (hover), separated

by a colon:

selector.class:pseudo-class
a.footerlink:hover

Using Links Effectively
Throughout this lesson we’ve mentioned a few best practices for using links effectively, but there

are a few more you should be aware of:

 N Make your links stand out—Links should stand out from the text on the page so that cus-

tomers know that they can do something with them. You can make your links stand out by

changing their color, changing their background color, underlining them (the default in

most browsers), making their font larger, making them bold, or in other ways. The impor-

tant thing is that for links to work, your users must know they are links.

 N For links use only link styles—This is the corollary to the first rule. If your links are to stand

out, they must look different from the surrounding text. If you underline links, then you

should not underline non-links. The same idea applies to link colors: If you color your links

red, then you should not use red for other, non-link text.

 N Style visited links—It’s important to let people know when they’ve been to a page before.

Users get frustrated when they end up in a loop of links because the visited links look the

same as the unvisited ones. A good rule of thumb is to use a slightly darker shade of the

same color you used for the standard links. This provides a visual cue that the links

are visited without messing with your design.

 N Use descriptive content for link text—It’s tempting to write “Click here” and make just

those two words the link, but such links are harder to use. There is nothing about “Click

here” that says what the user will get when he or she clicks. It forces the reader to scan the

rest of the content to determine whether it’s worth clicking, and the more work you make

your readers do, the more likely they will be to go to someone else’s site. Note that this

doesn’t mean you can’t say “Click here”; just don’t have that be the only text that is

clickable.

 N Add padding to text links—Padding is the space surrounding links. By adding padding,

you ensure that your links are more clickable, even if the words are very small. To add some

padding, you could write: a { padding: 3px; }. This is especially important for navi-

gation links. You’ll learn more about padding in Lesson 9, “Working with Margins, Padding,

Alignment, and Floating.”

187Summary

 N Link images—Usability studies have shown that people notice and click on images even

when they are not links. So if you have images on your web pages, it makes sense to make

them links. At a bare minimum, you should link your logo to your home page, but any

other images on you pages should be linked as well.

 N Use icons to aid in comprehension—You can add icons to links to help people quickly see

where they go. There are icons for all kinds of things, from social media to file types to

entertainment and more.

 N Avoid tiny links—Small links are hard to click and can be nearly impossible to tap on a

touchscreen device. The smaller the text, the harder it is for your readers to use. If your site

targets seniors, you should use fonts for all your text of at least 12 points.

Summary
The <a> tag is what makes hypertext “hyper.” With it, you can create links between pages, as well

as links to specific anchor points on any page. This lesson focused on creating and styling simple

links to other pages by using either relative or absolute addressing to identify the pages.

You learned that when you’re creating links to other people’s pages, it’s important to include

the full Internet address of each page in an <a href> tag. For links between your own pages,

include just the filenames and enough directory information to get from one page to another.

You also learned how to create named anchor points within a page and how to create links to a

specific anchor. You learned how to link to your email address so that users can easily send mes-

sages to you. You also learned how to protect your email address from spammers. Finally, you

learned methods for controlling the display of your links by using CSS and some of the best prac-

tices for linking based on over 20 years of web design.

Table 7.1 summarizes the <a> tag discussed in this lesson.

TABLE 7.1 HTML Tags and Attributes Covered in Lesson 7

Tag/Attribute Function

<a>… With the href attribute, creates a link to another document or anchor.
With the id attribute, creates an anchor that can be linked to.

Attributes Function

href="address" Specifies the address of the document or anchor point to link to.

id="name" Specifies the name for this anchor point in the document.

188 LESSON 7: Using External and Internal Links

Q&A
 Q. What happens if I link to a page on the Internet, and then the person who owns that page

deletes or moves it?

 A. It depends on how the maintainer of that external page has set up his or her web server.
Usually, you will see a page not found message (sometimes called a 404 page, refer-
encing the HTTP error code the server delivers) when you click a link that has been moved
or deleted. You can still click the Back button to return to your page. As a site maintainer,
you can periodically run link-checking programs to ensure that your internal and external
links are valid. An example of this is the Link Checker service at https://validator.w3.org/
checklink.

 Q. One of the internal links on my website works fine on my computer, but when I put the

pages on the Internet, the link doesn’t work anymore. What’s up?

 A. These are the most likely culprits:

 N Capitalization problems—On Windows computers, linking to a file named MyFile.html
with works. On most web servers, the link must be
 or you must change the name of the file to myfile.html.
To make matters worse, some text editors and file transfer programs actually change the
capitalization without telling you. The best solution is to stick with all-lowercase filenames
for web pages.

 N Spaces in filenames—Most web servers don’t allow filenames with spaces. For
example, you should never name a web page my page.html. Instead, name it
mypage.html or even my_page.html or my-page.html (using an underscore
or dash instead of a space).

 N Local absolute addresses—If you link to a file using a local absolute address, such
as C:\mywebsite\news.html, the link won’t work when you place the file on the
Internet. You should never use local absolute addresses; when this occurs, it is usu-
ally an accident caused by a temporary link that was created to test part of a page.
So be careful to remove any test links before publishing a page on the Web.

 Q. Can I put both href and id in the same <a> tag? Would I want to do this for any

reason?

 A. You can, and it might save you some typing if you have a named anchor point and a link
right next to each other. It’s generally better, however, to use the id attribute on another
element entirely to avoid confusion. Remember that they play very different roles in an
HTML document.

https://validator.w3.org/checklink
https://validator.w3.org/checklink
http://MyFile.html
http://"myfile.html"
http://"MyFile.html"
http://myfile.html
http://page.html
http://mypage.html
http://my_page.html
http://my-page.html
http://C:\mywebsite\news.html

189Workshop

 Q. What happens if I accidentally misspell the name of an anchor or forget to put the # in

front of it?

 A. If you link to an anchor name that doesn’t exist within a page or if you misspell the anchor
name, the link goes to the top of that page. If you write an anchor without a URL or # in
front of it, the browser will attempt to take you to a page by the same name, which will
usually result in a Page Not Found error.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. Your best friend from elementary school finds you on the Internet and says he wants to

trade home page links. How do you put a link to his site at www.supercheapsuits.com/
~billybob/ on one of your pages?

 2. What HTML would you use to make it possible for someone clicking the words “About the
Authors” at the top of a page to skip down to a list of credits somewhere else on the page?

 3. If your email address is bon@soir.com, how would you make the text “goodnight greeting”
into a link that people can click to compose and send you an email message?

 4. What attribute can you add to an HTML element to turn it into an anchor?

 5. What character do you use to link to an anchor?

 6. How do you tell a browser that the link target document should be downloaded rather than
loaded in the window?

 7. When should you include http:// in a link?

 8. What mail features can you use in a mailto link?

 9. When is the best case to force a link to open in a new window?

 10. What pseudo-class do you use to style visited links?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

http://www.supercheapsuits.com/~billybob/
http://www.supercheapsuits.com/~billybob/
mailto:bon@soir.com
http://www.informit.com/register

190 LESSON 7: Using External and Internal Links

Answers
 1. Put the following on your page:

Billy
Bob's site

 2. Type this at the top of the page:

About the Authors

Type this at the beginning of the credits section:

<anytag id="credits">

 3. Type the following on your web page:

Send me a goodnight greeting!

 4. The id attribute can be used on any HTML element as an anchor.

 5. You use the pound sign (#) to link to a named anchor point on the page.

 6. Use the attribute download to tell the browser the link target should be downloaded.

 7. You should include the http:// and the rest of the FQDN when you are linking to a page
outside the current site.

 8. You must point to the email address the message is to. Optional values are subject,
body, cc, and bcc.

 9. You should avoid forcing links to open in a new window at all costs.

 10. Use the a:visited pseudo-class to style visited links.

Exercises
 N Create an HTML file consisting of a formatted list of your favorite websites. You might

already have these sites bookmarked in your web browser, in which case you can
visit them to find the exact URL in the browser’s address bar.

 N If you have created any pages for a website, look through them and consider whether
there are any places in the text where you’d like to make it easy for people to contact
you. Include a link to your email address there. You can never provide too many oppor-
tunities for people to contact you and tell you what they need or what they think about
your products—especially if you’re running a business.

LESSON 8
Working with Colors, Images,

and Multimedia

What You’ll Learn in This Lesson:

 N How to choose colors for your website that work on the web

 N How to use CSS to set background, text, and border colors

 N How to select a graphics software package to use

 N How to prepare photographs for use online

 N How to create banners and buttons

 N How to reduce the number of colors in an image

 N How to create transparent images

 N How to prepare an image for a tiled background

 N How to create animated web graphics

 N How to place an image on a web page

 N How to describe images with text

 N How to specify image height and width

 N How to align images

 N How to use background images

 N How to use image maps

 N How to link to or embed multimedia files

 N How to use HTML5 audio and video elements

This lesson covers a lot of topics, but have no fear, for each of these tasks is short and sweet, and

this lesson will help you move your web development experience from the white background/

black text examples so far in this series to more interesting (or at least colorful) examples. But

that’s not to say that dark text on a light background is bad; in fact, it’s the most common color

combination you’ll find online.

Paying attention to color schemes and producing a visually appealing website is important, but

you don’t have to be an artist by trade to implement high-impact color schemes in your website

192 LESSON 8: Working with Colors, Images, and Multimedia

or to put a few appealing flourishes on what would otherwise be a drab, square world. You don’t

need to spend hundreds or thousands of dollars on software packages, either, just to manipulate

digital photographs or other source graphics you might want to use. The topics in this lesson

should help you understand the very basics of color theory and how to modify colors using CSS,

as well as how to create images you can use in your website.

NOTE

Although the sample figures in this lesson use a popular and free graphics program for Windows,
Mac, and Linux users (GNU Image Manipulation Program [GIMP]), you can apply the knowledge you
learn in this lesson to any major Windows or Mac graphics application—although the menus and
options will look different, of course.

After you learn to create the graphics themselves, you’ll be ready to include them in your

website. Beyond just the basics of using the HTML tag to include images for display in

a web browser, you’ll learn how to provide descriptions of these images (and why). You’ll also

learn about image placement, including how to use images as backgrounds for different ele-

ments. You’ll learn how to use image maps, which enable you to use a single image as a link to

multiple locations.

Finally, you’ll learn a little bit about working with multimedia. The term multimedia encom-

passes everything we see and hear on a web page: audio, video, and animation, as well as

static images and text. Although you won’t learn how to create any particular audio or video,

you will learn how to include such files in your site, through either linking or embedding the

content.

Best Practices for Choosing Colors
We can’t tell you exactly which colors to use in your website, but we can help you understand

certain considerations when selecting colors on your own. The colors you use can greatly influ-

ence your visitors; for example, if you are running an e-commerce site, you want to use colors that

entice your users to view your catalog and eventually purchase something. If you are creating a

text-heavy site, you want to make sure the color scheme helps create easy-to-read text. Overall,

you want to make sure you use colors judiciously and with respect.

You might wonder how respect enters into the mix when talking about colors. Remember that

the World Wide Web is an international community and that people’s interpretations differ.

For instance, pink is very popular in Japan but very unpopular in Eastern European countries.

Similarly, green is the color of money in the United States, but the vast majority of other countries

have multicolored paper bills—“the color of money” thus isn’t a single color at all, so the meta-

phor would be of no value to international visitors.

Best Practices for Choosing Colors 193

Besides using culturally sensitive colors, other best practices include the following:

 N Use a natural palette of colors—This doesn’t mean you should use earth tones; rather, you

should use colors that you would naturally see on a casual stroll around town and avoid

ultra-bright colors that can cause eye strain.

 N Use accessible color combinations—Color blindness is not uncommon, and you should

avoid using color as the only differentiator for important information. For example, if you

need to display a warning, you can change the text or background color, but you should

also add an icon or other aid to indicate the problem. For accessibility, you might consider

using the Toptal Colorblind Web Page Filter tool at www.toptal.com/designers/colorfilter to

see how your site looks to a person with colorblindness.

 N Use colors with good contrast, especially for blocks of text—The reason that black text

on a white background is so popular is because it has good contrast and so is easy to read.

Avoid using background/foreground color combinations that have too little contrast. You

can test the contrast of two colors at https://webaim.org/resources/contrastchecker/.

 N Use a small color palette—You don’t need to use 15 colors to achieve your goals. In fact, if

your page includes text and images in 15 colors, you might reevaluate the message you’re

attempting to send. Focus on 3 or 4 main colors, with 1 or 2 complementary colors at most.

 N Consider your demographics—You likely can’t control your demographics, so you have to

find a middle ground that accommodates everyone. The colors younger people enjoy are

not necessarily the same ones older people appreciate, just as there are color biases between

men and women and between people from different geographic regions and cultures.

You might now be thinking that your color options are limited. Not so. You simply need to think

about the decisions you’re making before you make them. A search for “color theory” in the

search engine of your choice should give you more food for thought, as will the use of a color

wheel.

A color wheel is a chart that shows the organization of colors in a circular manner. Its method of

display is an attempt to help you visualize the relationships among primary, secondary, and com-

plementary colors. Color schemes are developed from working with the color wheel; understand-

ing color schemes can help you determine the color palette to use consistently throughout your

website. For example, knowing something about color relationships will hopefully enable you to

avoid using orange text on a light blue background, or bright blue text on a brown background.

Some common color schemes in web design are given here:

 N Analogous—Using colors that are adjacent to each other on the color wheel, such as yellow

and green. One color is the dominant color, and its analogous friend enriches the display.

http://www.toptal.com/designers/colorfilter
https://webaim.org/resources/contrastchecker/

194 LESSON 8: Working with Colors, Images, and Multimedia

 N Complementary—Using colors that are opposite each other on the color wheel, such as a

warm color (red) and a cool color (green).

 N Monochromatic—Using colors that are all the same primary hue. The secondary colors are

created by adding white and black to the primary color.

 N Triadic—Using three colors that are equally spaced around the color wheel. The triadic

scheme provides balance while still allowing rich color use.

Entire books and courses are devoted to understanding color theory, so continuing the discussion

in this lesson would indeed be a tangent. However, if you intend to work in web design and devel-

opment, you will be served well with a solid understanding of the basics of color theory. Spend

some time reading about it; an online search will provide a wealth of information.

In addition, spend some hands-on time with the color wheel. The color scheme designer Paletton,

at http://paletton.com, enables you to start with a base color and produce monochromatic,

 complementary, triadic, tetradic, analogic, and accented analogic color schemes.

Understanding Web Colors
Specifying a background color other than white for a web page is easier than you prob-

ably realize. For example, to specify blue as the background color for a page, put

style="background-color:blue;" inside the <body> tag or in the style sheet rule

for the body element. Of course, you can use many colors other than blue. In fact, the W3C

 standards list 16 colors: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,

purple, red, silver, teal, white, and yellow.

NOTE

The CSS color gray has the U.S. spelling in the standards document. But most web browsers
also support grey as an alternate spelling. However, the CSS style properties color and
background-color must be spelled with the U.S. spelling.

Obviously, many more than just those 16 colors are displayed on the Web. In fact, you can use

140 color names with the assurance that all browsers will display these colors similarly. Here’s a

partial list of the 140 descriptive color names: azure, bisque, cornflowerblue, darksalmon, fire-

brick, honeydew, lemonchiffon, papayawhip, peachpuff, saddlebrown, thistle, tomato, wheat,

and whitesmoke.

NOTE

For a complete list of the 140 descriptive color names, as well as their hexadecimal codes
and an example of the color as displayed by your browser, visit www.w3.org/TR/SVG/types
.html#ColorKeywords.

http://paletton.com
http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.w3.org/TR/SVG/types.html#ColorKeywords

Understanding Web Colors 195

But names are subjective. For instance, if you look at the color chart of 140 cross-browser color

names, you’ll see that you can’t distinguish between fuchsia and magenta. The associated RGB

color values for those two color, fuchsia and magenta, are also exactly the same: rgb(255, 0,
255). You’ll learn about RGB color values in the next section, but for now, know that if you want

to be standards compliant and use more than the 16 color names the W3C standards dictate, you

should use RGB or hexadecimal color values.

NOTE

Color names are not case sensitive. So Black, black, and BLACK are all black, although most web
designers stick with lowercase or mixed case (if they use color names at all; most designers use
hexadecimal notation for a more nuanced approach to color use).

Hexadecimal color codes make possible 16 million colors, and most modern computer displays

can display all of them. However, be aware that not all computer monitors display colors in the

same hues. What might appear as a beautiful light blue background color on your monitor might

be more of a purple hue on another user’s monitor. Neutral, earth-tone colors (such as medium

gray, tan, and ivory) can produce even more unpredictable results on many computer monitors.

These colors might even seem to change color on a single monitor, depending on lighting condi-

tions in the room or the time of day.

In addition to changing the background of your pages to a color other than white, you can

change the color of text links, including various properties of links (such as the color for

when a user hovers over a link versus when the user clicks a link—as you learned in previous

lessons). You can also set the background color of container elements (such as paragraphs,

sections, block quotes, and table cells), and you can use colors to specify the borders around

those elements. You’ll see some examples of colors and container elements later in this

 lesson.

There are plenty of very bad websites, some created by earnest people with no trace of irony what-

soever. However, the World’s Worst Website, in Figure 8.1, was purposefully created to show some

of the more egregious sins of website design, especially in terms of the use of colors. A screenshot

does not do it justice, though (especially in the printed version of this book, which is in black and

white), so visit and experience the site for yourself, at www.angelfire.com/super/ badwebs/main

.htm. For the full effect, make sure to have your sound turned on.

If you search for “bad website examples” in your search engine, you will find many sites that

 collect examples of bad design and explain just why such a site should be in a Hall of Shame

rather than a Hall of Fame. Many sites are considered bad because of their visual displays, and

the display begins with color selection. Therefore, understanding colors, including the nuances of

their specification and use, is a crucial step in creating a good website.

http://www.angelfire.com/super/badwebs/main.htm
http://www.angelfire.com/super/badwebs/main.htm

196 LESSON 8: Working with Colors, Images, and Multimedia

FIGURE 8.1
A partial screenshot of the World’s Worst Website.

Using Hexadecimal Values for Colors
To remain standards compliant, as well as to retain precise control over the colors in your website, you

can reference colors by their hexadecimal values. The hexadecimal value of a color is an indication

of how much red, green, and blue light should be mixed into each color. It works a little bit like Play-

Doh: Just mix in the amounts of red, blue, and green you want in order to get the appropriate color.

The hexadecimal color format is #rrggbb, in which rr, gg, and bb are two-digit hexadecimal

values for the red (rr), green (gg), and blue (bb) components of the color. If you’re not familiar

with hexadecimal numbers, don’t sweat it. Just remember that ff is the maximum, and 00 is the

minimum. Use one of the following codes for each component:

 N ff means full brightness.

 N cc means 80% brightness.

Using RGB and RGBa Values for Colors 197

 N 99 means 60% brightness.

 N 66 means 40% brightness.

 N 33 means 20% brightness.

 N 00 means none of this color component.

For example, bright red is #ff0000, dark green is #003300, bluish-purple is #660099, and

medium gray is #999999. To make a page with a red background and dark green text, you could

use the following HTML code within inline styles:

<body style="background-color:#ff0000; color:#003300;">

Although only 6 examples of two-digit hexadecimal values are shown here, there are actually 256

combinations of two-digit hexadecimal values: 0–9 and a–f, paired up. For example, f0 is a pos-

sible hex value (decimal value 240), 62 is a possible hex value (decimal value 98), and so on.

As previously discussed, the rr, gg, and bb in the #rrggbb hexadecimal color code format stand

for the red, green, and blue components of the color. Each of those components has a decimal

value ranging from 0 (no color) to 255 (full color).

So white (or #ffffff) translates to a red value of 255, a green value of 255, and a blue value

of 255. Similarly, black (#000000) translates to a red value of 0, a green value of 0, and a blue

value of 0. True red is #ff0000 (all red, no green, and no blue), true green is #00ff00 (no red,

all green, no blue), and true blue is #0000ff (no red, no green, and all blue). All other hexadeci-

mal notations translate to some variation of the 255 possible values for each of the three colors.

The cross-browser-compatible color name cornflowerblue is associated with the hexadecimal nota-

tion #6495ed—a red value of 100, a green value of 149, and a blue value of 237 (almost all of

the available blue values).

When picking colors, either through a graphics program or by finding something online that you

like, you might see the color notation in hexadecimal or decimal. If you type “hexadecimal color

converter” into your search engine, you will find numerous options to help you convert color val-

ues into something you can use in your style sheets.

Using RGB and RGBa Values for Colors
Hexadecimal codes define the red, green, and blue percentages of each color for millions of col-

ors. But you can also define those colors with RGB values. The RGB format is rgb(red, green,
blue), where red, green, and blue are values of 0 to 255—just like hexadecimal, but written

in base-10 numbers (decimal) rather than base-16 (hexadecimal). You simply need to remember

that 255 is the maximum, and 0 is the minimum.

198 LESSON 8: Working with Colors, Images, and Multimedia

Use the following values in your RGB colors:

 N 255 means full brightness.

 N 204 means 80% brightness.

 N 153 means 60% brightness.

 N 102 means 40% brightness.

 N 51 means 20% brightness.

 N 0 means none of this color component.

To make a page with a red background and dark green text using RGB, you could use the

 following CSS:

background-color:rgb(255,0,0); color:rgb(0,51,0);

Every hexadecimal color code has a corresponding RGB code. So white (or #ffffff) is the same

as rgb(255,255,255). Black (#000000) is rgb(0,0,0). True red is rgb(255,255,255), true

green is rgb(0,255,0), and true blue is rgb(0,0,255). All other hexadecimal notations trans-

late to some variation of the 255 possible values for each of the three colors. The cross- browser-

compatible color name cornflowerblue is associated with the hexadecimal notation #6495ed and

the RGB notation rgb(100,149,237). There are lots of color conversion apps online.

Designers often use RGB codes because a lot of graphics programs are set up to use RGB. But

the better reason to use RGB is RGBa—RGB with alpha transparency. RGBa allows you to set the

opaqueness or transparency of a color. The more transparent a color is, the more of the back-

ground color will show through.

To define the alpha transparency, you write your RGB color with one extra value: rgba(red,
green, blue, transparency). The transparency value is a number between 0 and 1,

representing the transparency percentage. 0 is fully transparent, meaning the background is

all you see, 1 is fully opaque meaning the background is completely covered, and 0.5 is 50%

 transparent.

To make a page with faded cornflowerblue text on a white background, you could use this CSS:

body { color: rgba(100,149,237,0.5); }

You could then change the transparency to 1 for bold text, to make it stand out more,

with this CSS:

strong { color: rgba(100,149,237,1); font-weight: normal; }

Remember when using RGBa that the color of the foreground depends on the color of the back-

ground. While rgba(100,149,237,0.5) is a pale blue on a white background, it is going to

look darker on a black background.

Using CSS to Set Background, Text, and Border Colors 199

Using CSS to Set Background, Text, and
Border Colors
When using CSS, it’s most common to use color values in three instances: when specifying the

background color, the text color, or the border color of elements. In Lesson 7, “Using External and

Internal Links,” you learned about using colors for various link states, and in this lesson, we focus

on basic element display.

Figure 8.2 shows an example of color usage that could very easily go into a web design Hall of

Shame. We can’t imagine ever using these combinations of colors and styles in a serious website,

but it serves here as an example of how color style could be applied to various elements. The

image printed here will likely not do justice to the horrific colors used (especially if you’re reading

a printed copy of this book, which is in black and white) so be sure to open the sample file or type

up the code in Listing 8.1 and load it in your browser.

FIGURE 8.2
You can set background, text, and border colors by using CSS.

Listing 8.1 shows the HTML and CSS styles used to produce Figure 8.2.

LISTING 8.1 Using Styles to Produce Background, Text, and Border Colors

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Background, Text, and Border Colors</title>
 <style>

200 LESSON 8: Working with Colors, Images, and Multimedia

 #uglyparagraph {
 background-color: #cccccc;
 color: #ff0000;
 border:1px solid #000000;
 }
 .orange {
 color: #ffa500
 }
 #uglydiv {
 width: 300px;
 height: 75px;
 margin-bottom: 12px;
 background-color: #000000;
 border: 2px dashed #ff0000;
 color: #ffffff;
 }
 table {
 border: 1px solid #000;
 border-spacing: 2px;
 border-style: outset;
 border-collapse: collapse;
 }
 .greencell {
 background-color: #00ff00;
 }
 .redcell {
 background-color: #ff0000;
 }
 .bluecell {
 background-color: #0000ff;
 }
 .yellowcell {
 background-color: #ffff00;
 }
 #uglybq {
 background-color: #0000ff;
 border:4px dotted #ffff00;
 color:#ffffff;
 }
 </style>
 </head>
 <body>
 <h1>Background, Text, and Border Colors</h1>
 <p id="uglyparagraph">Grey paragraph, black border, red text
 with an orange span.</p>
 <div id="uglydiv">Black div, red border, white text. </div>
 <table>
 <tr>
 <td class="greencell">Green Table Cell</td>

Choosing Graphics Software 201

 <td class="redcell">Red Table Cell</td>
 </tr>
 <tr>
 <td class="bluecell">Blue Table Cell</td>
 <td class="yellowcell">Yellow Table Cell</td>
 </tr>
 </table>
 <blockquote id="uglybq">
 Blue blockquote, yellow border, white text.
 </blockquote>
 </body>
</html>

Looking at the styles in Listing 8.1, you should be able to figure out almost everything except some

of the border styles. In CSS you can’t designate a border as a color without also having a width and

type. In the first example in Listing 8.1, for uglyparagraph, the border width is 1px, and the

border type is solid. In the example for uglydiv, the border width is 2px, and the border type is

dashed. In the uglybq example, the border width is 4px, and the border type is dotted.

When picking colors for your website, remember that a little goes a long way. If you really like

a bright and spectacular color, use it as an accent color, not throughout the primary design ele-

ments. In addition, remember that light backgrounds with dark text are much easier to read than

dark backgrounds with light text.

Choosing Graphics Software
You can use almost any graphics program to create and edit images for your website, from the sim-

ple painting or drawing program that typically comes free with your computer’s operating system,

to an expensive professional program such as Adobe Photoshop. Similarly, if you have a digital cam-

era or scanner attached to your computer, it probably came with some graphics software capable of

creating images suitable for online use. Several free image editors also are available for download—

or even online as web applications—that deal just with the manipulation of photographic elements.

NOTE

Without a doubt, Adobe Photoshop is the cream of the crop when it comes to image-editing pro-
grams. However, it is expensive and quite complex and so may not be a great choice for someone
who doesn’t have experience working with computer graphics. For more information on Adobe’s prod-
ucts, visit the Adobe website, at www.adobe.com. If you are in the market for one of the company’s
products, you can download a free evaluation version from the site.

If you already have software you think might be good for creating web graphics, try using it to

do everything described in these next sections. If your software can’t handle some of the tasks

http://www.adobe.com

202 LESSON 8: Working with Colors, Images, and Multimedia

 covered here, it probably isn’t a good tool for web graphics. In that case, download and install

GIMP from www.gimp.org. This fully functional graphics program is completely free and can

 definitely perform the actions shown in this lesson.

Using Images Found Elsewhere
One of the best ways to save time creating graphics and media files for web pages is, of course, to
avoid creating them altogether. Grabbing a graphic from any web page is as simple as right-clicking it
(or Option+clicking with an Apple mouse) and selecting Save Image As or Save Picture As (depending
on the browser). Extracting a background image from a page is just as easy: Right-click it and select
Save Background As.

However, you should never use images without the explicit permission of the owner, either by asking
or by looking for a Creative Commons license. Using images without explicit permission is a copy-
right violation (and is also distasteful). To learn more about copyrights, we recommend the Copyright
Crash Course online tutorial from the University of Texas, at http://guides.lib.utexas.edu/copyright.

You might also want to consider using royalty-free clip art, which doesn’t require you to get copyright
permission. One good source of copyright-free photos and images is Pixabay (https://pixabay.com).
These images are released under Creative Commons CC0, which makes them free to use without
permission or attribution, even for commercial purposes. Clipart.com is a popular clip art destina-
tion; for a small fee this site gives you access to thousands of stock images.

If GIMP doesn’t suit you, consider downloading the evaluation version of CorelDRAW for Windows

or Macintosh (www.coreldraw.com) or Acorn for Macintosh (https://flyingmeat.com/acorn/). For

photo manipulation only, there are many free options, all with helpful features. Pixlr (https://

pixlr.com) is a good option. It is suited for editing images rather than creating them from scratch.

These types of programs won’t necessarily help you design a banner or button image for your

site; however, they can help you work with some supplementary images, and they are powerful

enough that they’re worth checking out.

The Least You Need to Know About Graphics
Two forces are always at odds when you post graphics and multimedia on the Internet. The users’

eyes and ears want all your content to be as detailed and accurate as possible, and they also want

information to be displayed immediately. Intricate, colorful graphics mean big file sizes, which

increase the transfer time—even over a fast connection. How do you maximize the quality of your

presentation while minimizing file size? To make these choices, you need to understand how color

and resolution work together to create a subjective sense of quality.

The resolution of an image is the number of individual dots, or pixels, that make up an image

(typically 72 dots per inch, or 72dpi). Large, high-resolution images generally take longer to trans-

fer and display than small, low-resolution images. Image dimensions are usually specified as the

width times the height of the image, expressed in pixels; a 300 × 200 image, for example, is

300 pixels wide and 200 pixels high.

http://www.gimp.org
http://guides.lib.utexas.edu/copyright
https://pixabay.com
http://Clipart.com
http://www.coreldraw.com
https://flyingmeat.com/acorn/
https://pixlr.com
https://pixlr.com

Preparing Photographic Images 203

NOTE

Several types of image resolution are used, including pixel, spatial, spectral, temporal, and radiomet-
ric. You could spend hours just learning about each type—and if you were taking a graphics design
class, you might do just that. For now, however, all you need to remember is that large images take
longer to download and also use a lot of space in your display. Display size and storage or transfer
size are factors to take into consideration when you are designing a website.

You might be surprised to find that resolution isn’t the most significant factor in determining an

image file’s storage size (and transfer time). This is because images used on web pages are always

stored and transferred in compressed form. Image compression is the mathematical manipula-

tion that images are put through to squeeze out repetitive patterns. The mathematics of image

compression are complex, but the basic idea is that repeating patterns or large areas of the same

color can be squeezed out when the image is stored on a disk. This makes the image file much

smaller and allows it to be transferred faster over the Internet. The web browser then restores the

original appearance of the image when the image is displayed.

In the sections that follow, you’ll learn how to create graphics with big visual impact but small

file sizes. The techniques you use to accomplish this depend on the contents and purpose of each

image. There are as many uses for web graphics as there are web pages, but four types of graphics

are by far the most common:

 N Photos of people, products, and places

 N Graphical banners and logos

 N Buttons or icons to indicate actions and provide links

 N Background textures for container elements

Preparing Photographic Images
To put photos on your web pages, you need to convert your print-based photos to digital images

or create photos digitally by using a digital camera, such as the camera in your smartphone. In

the case of some older models of hardware, you might need to use the custom software that came

with your device to transfer images to your hard drive, but in most cases, you should be able to

connect your device and then drag and drop files to your hard drive. If you are using a scanner to

create digital versions of your print photos, you can control just about any scanner directly from

the graphics program of your choice; see your software documentation for details.

NOTE

If you don’t have a scanner or digital camera, note that almost all film developers offer the service
of transferring photos from 35mm film to a CD-ROM or DVD-ROM for a modest fee. You can then
copy the files to your hard drive and use your graphics program to open and modify the image files.

204 LESSON 8: Working with Colors, Images, and Multimedia

After you transfer the digital image files to your computer, you can use your graphics program to

crop, resize, color-correct, and compress to get them ready for use in your website.

Cropping an Image
Because you want web page graphics to be as compact as possible, you usually need to crop your digi-

tal photos. When you crop a photo, you select the area you want to display and crop away the rest.

TRY IT YOURSELF

Cropping in GIMP

The GIMP toolbox offers quick access to the crop tool and its possible attributes. Find an image file—
either a digital image you have taken with your camera and stored on your hard drive or an image you
found online. After opening the image in GIMP, perform the following steps to crop it in GIMP:

 1. In the GIMP toolbox, click the Crop tool (see Figure 8.3). Depending on the tool you select,
you might have additional attributes you can select. For example, Figure 8.3 shows the attri-
butes for the cropping tool (such as the aspect ratio, position, size, and so on).

FIGURE 8.3
Select the Crop tool from the toolbox.

Preparing Photographic Images 205

Even after your image has been cropped, it might be larger than it needs to be for a web page. For

most responsive designs, your images don’t need to be more than 2000 pixels wide. This would

allow the image to expand up to 2000px on large screens without losing quality. If you never plan

on using the image all by itself on a page, you can crop the image smaller, but the larger the

starting image is, the more screens it will support.

 2. In the image you want to crop, draw a box around the selection by clicking the upper-left
corner of the portion of the image you want to keep and holding down the left mouse button
while you drag down to the lower-right corner. See Figure 8.4.

FIGURE 8.4
Select the area of the image that you want to display. (Credit: Scott Prokop/Shutterstock)

 3. Click one of the corners of the selection to apply the cropping.

Your graphics program will likely have a different method than the one shown, but the concept is
the same: Select the area to keep and then crop out the rest.

206 LESSON 8: Working with Colors, Images, and Multimedia

NOTE

Your graphics software will likely have an omnipresent size display somewhere in the image window
itself. In GIMP, you can see the current image size in the window title bar. Other programs might
show it in the lower-right corner or the lower-left corner. You might also see the magnification ratio in
the window, and you might be able to change it by zooming in or out.

The key to good cropping is to remove unwanted details from the image. One way to do this is

with the rule of thirds. Positioning the interesting elements at the top, right, bottom, or left third

of the image makes the whole thing more visually interesting. Other cropping rules you can apply

include the golden ratio, golden spiral, triangle, and diagonal crops.

Resizing an Image
The exact tool necessary to change an image’s size depends on the program you are using. In GIMP,

go to the Image menu and click Scale Image to open the Scale Image dialog box (see Figure 8.5).

FIGURE 8.5
Use the Scale Image dialog box to change the size of an image.

You’ll almost always want to resize using the existing aspect ratio, meaning that when you enter

the width you’d like the image to be, the height is calculated automatically (and vice versa) to

keep the image from squishing out of shape. In GIMP, the aspect ratio is locked by default, as

indicated by the chain link displayed next to the Width and Height options shown in Figure 8.5.

Clicking once on the chain unlocks it, enabling you to specify pixel widths and heights of your

own choosing—squished or not.

NOTE

As with many other features in GIMP , the Scale Image dialog box appears in front of the window
containing the image being resized. This placement enables you to make changes in the dialog box,
apply them, and see the results immediately.

Preparing Photographic Images 207

In most, if not all, graphics programs, you can also resize an image based on percentages instead

of by providing specific pixel dimensions. For example, if an image starts out as 1815 × 1721

and you don’t want to do the math to determine the values necessary to show it as half that size,

you can simply select Percent (in this instance, from the drop-down next to the pixel display in

Figure 8.5) and change the default setting from 100 to 50. The image then becomes 908 pixels

wide by 861 high—and you don’t have to do any math to make it so.

CAUTION

You should never resize an image to be larger than what you started with. While most image editors
will allow you to enlarge images, they typically don’t do a good job of it. This is because enlarging an
image beyond the starting image requires that the editor make guesses about what the additional pixels
should be. This can result in ugly, blurry images. Instead, you should start with images that are much
larger than you think you would ever need and then resize and crop them down to fit your web designs.

Deciding the right size for a web page image can be challenging. You need to always consider down-

load speeds and the size of the device or screen viewing the page, plus the amount of space available

in the design for the image. A good rule of thumb is to create images that are slightly larger than the

largest width at which they might display. While people do have large 4K monitors, 1920 × 1080 is

the most common large size monitor. So, resizing your images to be no more than 2000 pixels wide

will ensure that they look good even on large monitors while keeping the file size small. Later in this

lesson you will learn how to use the same image at several sizes for responsive web design.

NOTE

It can be tempting to crop and resize your images down as small as possible, and for best speed
you should. But always keep a copy of the original, full-sized file offline or in a backup location. This
way, if two years from now you want to resize your website to be larger, you’re not limited by the
640 × 480 images you created for the old design.

Tweaking Image Colors
If you are editing photographic images instead of creating your own graphics, you might need to

use some color-correction tools to get photos just right. Like many other image-editing programs,

GIMP offers several options for adjusting an image’s brightness, contrast, and color balance, as

well as a filter to reduce the dreaded red-eye. To remove red-eye using GIMP, go to Filters, click

Enhance, and then click Red Eye Removal.

Most of these options are pretty intuitive. If you want an image to be brighter, adjust the bright-

ness. If you want more red in your image, adjust the color balance. In GIMP, the Colors menu

gives you access to numerous tools. As with the Scale Image dialog box described in the preced-

ing section, each tool displays a dialog box in the foreground of your workspace. As you adjust

208 LESSON 8: Working with Colors, Images, and Multimedia

the colors, the image reflects those changes. This preview function is a feature included in most

image-editing software.

Figure 8.6 shows the Adjust Hue/Lightness/Saturation tool, one of the many tools provided on the

Colors menu. As shown in the figure, you can achieve many color-related changes by using vari-

ous sliders in dialog boxes to adjust the values you are working with. The Preview feature enables

you to see what you are doing as you are doing it. The Reset Color button returns the image to its

original state without applying any changes.

FIGURE 8.6
The Adjust Hue/Lightness/Saturation tool is one of many slider-based color-modification tools available
in GIMP . (Credit: Scott Prokop/Shutterstock)

Because of the numerous tools available to you, and the preview function available with each

tool, a little playful experimentation is the best way to find out what each tool does.

Preparing Photographic Images 209

Controlling JPEG Compression
Photographic images on the web work best when saved in the JPEG file format rather than GIF;

JPEG enables you to retain the number of colors in the file while still keeping the overall file size

to a manageable level. When you’re finished adjusting the size and appearance of a photo, select

File, Export, and choose JPEG as the file type. Your graphics program will likely provide you with

another dialog box for controlling various JPEG options, such as compression.

Figure 8.7 shows the Export Image as JPEG dialog box you see when you export a JPEG in GIMP.

You can see here that you can control the compression ratio for saving JPEG files by adjusting the

Quality slider between 1 (low quality, small file size) and 100 (high quality, large file size).

FIGURE 8.7
GIMP enables you to reduce file size while still retaining image quality by saving in the JPEG format.

You might want to experiment a bit to see how various JPEG compression levels affect the quality

of your images, but 85% quality (or 15% compression) is generally a good compromise between

file size (and, therefore, download speed) and quality for most photographic images. If your site

caters more to mobile devices, you should opt for a lower quality/higher compression option to

reduce download times.

210 LESSON 8: Working with Colors, Images, and Multimedia

Creating Banners and Buttons
Graphics that you create from scratch, such as banners and buttons, require you to make consid-

erations uniquely different from those that apply to photographs.

The first decision you need to make when you produce a banner or button is how big it should be.

Most people accessing the web now have a computer with a screen that is at least 1024 × 768

 pixels in resolution, if not considerably larger. Other popular resolutions are 1440 × 900 and

1366 × 768 pixels.

It’s important to design your graphics to fit on mobile devices. In late 2017, the most popular

resolution was 360 × 640. While people have larger desktop and laptop screens, they are more

and more often viewing web pages on their phones. But in general, you should focus less on the

dimensions of your images and more on the file size. An image that is 2000 × 3000 pixels but only

80Kb will load quickly and look great on a mobile device and a desktop screen.

NOTE

For many years, designing for 800 × 600 screen resolution was the norm. Now, people tend to
browse web pages on their phones with resolutions as low as 360 × 640. With responsive web
design (RWD) you can create designs that support both the small screens and the big ones. You will
learn more about RWD in Lesson 16, “Understanding the Importance of Responsive Web Design,”
and how to do it in Lesson 17, “Designing for Mobile Devices.”

Assuming that you target a maximum resolution of 1920 × 1080 pixels, full-size banners and

title graphics should be no more than 2000 pixels wide. This gives the images space to be slightly

larger than the browser window or smaller, depending on the needs of the design and the device

viewing it.

To create a new image in GIMP, go to File and choose New. The Create a New Image dialog box

displays (see Figure 8.8). If you aren’t sure how big the image needs to be, just accept the default

size of 640 × 480. Or you can choose one of the other predetermined sizes in the Template drop-

down, such as Web Banner Common 468 × 60 or Web Banner Huge 728 × 90. Those two settings

are conservative, yet perfectly acceptable, interpretations of “common” and “huge” for banners.

In this dialog box, you can also enter your own width and height for the new image.

For the image’s background color, you should usually choose white to match the background

that most web browsers use for web pages (although, as you learned previously, that color can be

changed). When you know that you’ll be creating a page with a background other than white,

you can choose a different background color for your image. Or you might want to create an

image with no background at all, in which case you select Transparency as the background color.

When the final, Web-ready image includes a transparent background, the web page (and its

background color) behind the image is allowed to show through. In GIMP, select the background

color for your new image by opening Advanced Options in the Create a New Image dialog box.

Optimizing Images by Reducing or Removing Colors 211

FIGURE 8.8
You must decide on the size of an image before you start working on it, but you can always resize it later.

After you enter the width and height of the image in pixels and click OK, you are faced with

a blank canvas—an intimidating sight if you’re as art-phobic as most of us! However, so many

image-creation tutorials (not to mention entire books) are available to lead you through the

process that we’re comfortable leaving you to your own creative devices. This section is all about

introducing you to the things you want to keep in mind when creating graphics for use in your

sites. This section does not necessarily teach you exactly how to do it because being comfortable

with the tool you choose is the first step to mastering it.

Optimizing Images by Reducing or
Removing Colors
It’s easy to get hung up on the dimensions of images as you create them, but it’s more important

to focus on the file size. More and more people use mobile devices such as smartphones to view

the web, and bandwidth limits and charges make large images annoyingly slow to load at best.

By optimizing your images as much as possible, you make your pages more mobile friendly. And

they will load more quickly on desktops and laptops, too.

One of the most effective ways to reduce the size of an image—and, therefore, its download time—

is to reduce the number of colors used in the image. This can drastically reduce the visual quality

of some photographic images, but it works great for most banners, buttons, and other icons.

You’ll be glad to know that there is a special file format for images with a limited number of

colors, the Graphics Interchange Format (GIF). When you save or export an image as a GIF, you

212 LESSON 8: Working with Colors, Images, and Multimedia

might be prompted to flatten layers or reduce the number of colors by converting to an indexed

image because those are requirements for GIFs; check your software’s Help file regarding layers

and indexed colors for a full understanding of what you might need to do.

Remember that the GIF image format is designed for images that contain areas of solid colors,

such as web page titles and other illustrated graphics; the GIF format is not ideal for photographs;

use JPEG or PNG files for photos instead.

PNG (pronounced “ping”) is a useful file format that is supported in all major web browsers.

Whereas the GIF image format enables you to specify a single transparent color, which means the

background of the web page will show through those areas of an image, the PNG format takes

things a step further, enabling you to specify varying degrees of transparency.

You might have seen websites that use background colors or images in their container elements

but that also have images present in the foreground that allow the background to show through

parts of the foreground graphics. In these cases, the images in the foreground have portions that

are transparent so that the images themselves—which are always on a rectangular canvas—do

not show the areas of the canvas where the design does not occur. You often want to use these

types of partially transparent images to make graphics look good over any background color or

background image you have in place.

To make part of an image transparent, the image must be saved in the GIF or PNG file format. As

mentioned previously in this lesson, most graphics programs that support the GIF format enable

you to specify one color to be transparent, whereas PNG images allow for a range of transparency.

Largely because of this transparency range, the PNG format is superior to GIF. All the latest web

browsers already support PNG images.

The process of creating a transparent image depends on the type of image you are creating (GIF or

PNG) and the graphics software you are using to create it. For instructions, look in your graphics

program’s Help files or type “transparent images with [your program here]” into your search engine.

Creating Tiled Background Images
You can use any GIF, JPEG, or PNG image as a background tile within a container element, but

before you go off and create a tiled background, especially a highly patterned tiled background, ask

yourself what that tiled background adds to the overall look and feel of your website. More impor-

tantly, ask yourself whether the text of the site can be read easily when placed over that pattern.

Think about the websites you frequent every day and consider the fact that few sites use tiled, heav-

ily patterned backgrounds on their entire pages. If you restrict your browsing to websites for com-

panies, products, sports teams, or other sites in which information (primarily text) is privileged, the

number of sites with tiled, heavily patterned backgrounds decreases even further. The web affords

everyone the right of individuality in design, but if you are creating a site for your business, you

might want to avoid using a highly patterned background with contrasting colored text.

Creating Tiled Background Images 213

If you do use a tiled background image for your entire site, remember that tiled images look best

when you can’t tell they’re tiled images. In other words, you know you have a good image when

the top edge of a background tile matches seamlessly with the bottom edge and the left edge

matches with the right.

Figures 8.9 and 8.10 show background tiles in use, both with seamless backgrounds but with

varying degrees of effectiveness.

FIGURE 8.9
This is an example of a seamless background image in which you can tell the background is tiled because
you can see several identical shapes.

FIGURE 8.10
This is another example of a seamless background image, but you can’t tell that it’s tiled.

214 LESSON 8: Working with Colors, Images, and Multimedia

Later in this lesson, you’ll learn how to place background images within container elements.

Despite our warnings so far in this section, background images can be powerful weapons in your

design arsenal—just not when heavily patterned. You can find some great (and freely available)

examples of background images—often referred to as textures—at the Subtle Patterns website

(www.toptal.com/designers/subtlepatterns/).

Placing Images on a Web Page
To get started with image placement on your website, first move the image file into the same

folder as the HTML file or into a directory named images (which you might want to use for easy

organization).

NOTE

It doesn’t matter to the web server, web browser, or end user just where you put your images, as
long as you know where they are and use the correct paths in your HTML code.

We prefer to put all our images in a separate images directory or in a subdirectory of a generic
assets directory (such as assets/images) so that all the images or other assets, such as
multimedia and JavaScript files, are neatly organized.

In this first example, let’s assume you have placed an image called myimage.gif in the same

directory as the HTML file you want to use to display it. To display it, insert the following HTML

tag at the point in the text where you want the image to appear, using the name of your image

file instead of myimage.gif:

If your image file were in the images directory below the document root, you would use the

following code, which you can see now contains the full path to myimage.gif in the images

directory:

Both the src and the alt attributes of the tag are required for valid HTML web pages.

The src attribute identifies the image file, and the alt attribute enables you to specify descrip-

tive text about the image. The alt attribute is intended to serve as an alternative to the image

if a user is unable to view the image either because it is unavailable or because the user is using

a text-only browser or screen reader. You’ll read more on the alt attribute later, in the section

“Describing Images with Text.”

http://www.toptal.com/designers/subtlepatterns/

Placing Images on a Web Page 215

NOTE

The tag is one of the HTML tags that also supports a title attribute; you can use this
attribute to describe an image, much like the alt attribute. But while the alt attribute is intended
to describe the image, the title provides additional information about the image. You might see
the title attribute being used, but please do not use it in place of an alt attribute; doing so will
limit your site’s usefulness on many types of devices. And if you don’t include the alt attribute, your
HTML will not be valid.

As an example of how to use the tag, Listing 8.2 inserts an image at the top of the page,

before a paragraph of text. Whenever a web browser displays the HTML file in Listing 8.2, it

 automatically retrieves and displays the image file, as shown in Figure 8.11.

LISTING 8.2 Using the Tag to Place Images on a Web Page

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Spectacular Yosemite View</title>
 </head>
 <body>
 <section>
 <header>
 <h1>A Spectacular Yosemite View</h1>
 </header>

 <p>Half Dome is a granite dome in Yosemite
 National Park, located in northeastern Mariposa County,
 California, at the eastern end of Yosemite Valley. The
 granite crest rises more than 4,737 ft (1,444 m) above the
 valley floor.</p>
 <p>This particular view is of Half Dome as seen from Washburn
 Point.</p>
 </section>
 </body>
</html>

If you guessed that img refers to “image,” you’re right. Likewise, src refers to “source,” or a

 reference to the location of the image file. As discussed in the first few lessons, an image is always

stored in a file separate from the text of your web page (your HTML file), even though it appears

to be part of the same page when viewed in a browser.

216 LESSON 8: Working with Colors, Images, and Multimedia

FIGURE 8.11
When a web browser displays the HTML shown in Listing 8.2, it renders the hd.jpg image.
(Credit: Bernhard Richter/Shutterstock)

NOTE

You can include an image from any website within your own pages. In those cases, the image is
retrieved from the other page’s web server whenever your page is displayed. Although you could do this,
you shouldn’t! Not only is it bad manners (and probably a copyright violation) because you are using
the other person’s bandwidth for your own personal gain, but it also can make your pages display more
slowly. In addition, you have no way of controlling when the image might be changed or deleted.

If you are granted permission to republish an image from another web page, always transfer a copy of
that image to your computer and use a local file reference, such as
instead of . This advice is
not applicable, however, when you host your images—such as photographs—at a service specifically
meant as an image repository, such as Flickr (www.flickr.com). Services such as Flickr provide you
with a URL for each image, and each URL includes Flickr’s domain in the address. The same is true if
you want to link to images you have taken with mobile applications such as Instagram; these types of
services also provide you with a full URL to an image that you can then link to in your own website.

http://www.flickr.com

Describing Images with Text 217

As with the <a> tag used for hyperlinks, you can specify any complete Internet address as the

location of an image file in the src attribute of the tag. You can also use relative addresses,

such as /images/birdy.jpg or ../smiley.gif.

Describing Images with Text
The tag in Listing 8.2 includes a short text description—in this case, alt="Half Dome".

The alt stands for alternate text, which is the message that appears in place of the image itself if

it does not load. An image might not load if its address is incorrect, if the Internet connection is

very slow and the data has not yet transferred, or if the user is using a text-only browser or screen

reader. Figure 8.12 shows one example of alt text used in place of an image. Each web browser

renders alt text differently, but the information is still provided when it is part of your HTML

document.

FIGURE 8.12
Users will see alt messages when images do not appear.

Even when graphics have fully loaded and are visible in the web browser, the alt message might

appear in a little box (known as a tooltip) whenever the mouse pointer passes over an image. The

alt message also helps any user who is visually impaired (or is using a voice-based interface to

read the web page).

218 LESSON 8: Working with Colors, Images, and Multimedia

You must include a suitable alt attribute in every tag on your web pages, keeping in

mind the variety of situations in which people might see that message. A very brief description of

the image is usually best, but web page authors sometimes put short advertising messages, key-

word phrases for SEO, or subtle humor in their alt messages; too much humor and not enough

information is frowned upon as being not all that useful. And search engines may view too many

keywords as SEO spam. For small or unimportant images, it’s tempting to omit the alt mes-

sage altogether, but the alt attribute is a required attribute of the tag. If you omit it, it

doesn’t mean your page won’t display properly, but it does mean you’ll be in violation of HTML

standards. We recommend assigning an empty text message to alt if you absolutely don’t need it

(alt=""), which is sometimes the case with small or decorative images.

Specifying Image Height and Width
Because text moves over the Internet much faster than graphics, most web browsers end up dis-

playing the text on a page before they display images. This gives users something to read while

they’re waiting to see the pictures, which makes the whole page seem to load faster.

You can make sure that everything on your page appears as quickly as possible and in the right

places by explicitly stating each image’s height and width. That way, a web browser can immedi-

ately and accurately make room for each image as it lays out the page and while it waits for the

images to finish transferring.

For each image you want to include in your site, you can use your graphics program to determine

its exact height and width in pixels. You might also be able to find these image properties by

using system tools. For example, in Windows, you can see an image’s height and width by right-

clicking the image, selecting Properties, and then selecting Details. When you know the height

and width of an image, you can include its dimensions in the CSS, like this:

NOTE

The height and width specified for an image don’t have to match the image’s actual height and
width. A web browser tries to squish or stretch the image to display whatever size you specify. The
best way to adjust the dimensions of your images is to set width to a percentage of the container
and height to auto, as shown here:

style="width:100%; height:auto;"

This ensures that the image will fit in the design width and the aspect ratio will remain the same as
the original size.

Just as with other design elements such as background color or font size, you should not specify

the exact dimensions of images in the HTML. Instead, you should set the width and height by

Aligning Images 219

using CSS style sheets. You can use any measurement you want for the width and height, but to

ensure that the image doesn’t look bad, it’s best to set one of the dimensions to auto.

NOTE

HTML5 has introduced the <picture> element and the srcset and sizes attributes. The
<picture> element lets designers control which image should be displayed to which browser. And
the srcset and sizes attributes define multiple image resources for browsers of different sizes.
These will be discussed in more detail in Lesson 17. These new features are well supported in
modern browsers and give designers more options for images.

Aligning Images
Just as you can align text on a page, you can align images on a page by using special attributes.

You can align images both horizontally and vertically with respect to text and other images that

surround them.

Horizontal Image Alignment
As discussed in Lesson 6, “Working with Fonts, Text Blocks, Lists, and Tables,” you can use the

text-align CSS property to align content within an element as centered, aligned with the right

margin, or aligned with the left margin. These style settings affect both text and images, and they

can be used in any block element, such as <p>.

Like text, images are normally lined up with the left margin unless another alignment setting

indicates that they should be centered or right-justified. In other words, left is the default value

of the text-align CSS property.

You can also wrap text around images by applying the float CSS property to the tag.

In Listing 8.3, aligns the first image to the left and wraps text

around the right side of it, as you might expect. Similarly,

aligns the second image to the right and wraps text around the left side of it. Figure 8.13 shows

how these images align on a web page. There is no concept of floating an image to the center

because there would be no way to determine how to wrap text on each side of it.

LISTING 8.3 Using float Style Properties to Align Images on a Web Page

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>More Spectacular Yosemite Views</title>
 </head>

220 LESSON 8: Working with Colors, Images, and Multimedia

 <body>
 <section>
 <header>
 <h1>More Spectacular Yosemite Views</h1>
 </header>
 <p><img src="elcap_sm.jpg" alt="El Capitan"
 style="float:left;padding:12px;width:100px;height:75px;">El
 Capitan is a 3,000-foot (910 m) vertical rock formation
 in Yosemite National Park, located on the north side of Yosemite
 Valley, near its western end. The granite monolith is one of the
 world's favorite challenges for rock climbers. The formation was
 named "El Capitan" by the Mariposa Battalion when it explored the
 valley in 1851.</p>
 <p><img src="tunnelview_sm.jpg" alt="Tunnel View"
 style="float:right;padding:12px;width:100px;height:80px;">Tunnel
 View is a viewpoint on State Route 41 located directly east
 of the Wawona Tunnel as one enters Yosemite Valley from the south.
 The view looks east into Yosemite Valley including the southwest face
 of El Capitan, Half Dome, and Bridalveil Falls. This is, to many, the
 first views of the popular attractions in Yosemite.</p>
 </section>
 </body>
</html>

FIGURE 8.13
Showing the image alignment from Listing 8.3.

Aligning Images 221

NOTE

Notice the addition of padding in the style attribute for both tags used in Listing 8.3.
This padding provides some breathing room between the image and the text—12 pixels on all four
sides of the image. You’ll learn more about padding in Lesson 9, “Working with Margins, Padding,
Alignment, and Floating.”

Vertical Image Alignment
Sometimes you want to insert a small image in the middle of a line of text, or you want to put a

single line of text next to an image as a caption. In either case, having some control over how the

text and images line up vertically would be handy. Should the bottom of the image line up with

the bottom of the letters, or should the text and images all be arranged so that their middles line

up? You can choose between these and several other options:

 N To line up the top of an image with the top of the tallest image or letter on the same line,

use this:

 N To line up the bottom of an image with the bottom of the text, use this:

 N To line up the middle of an image with the overall vertical center of everything on the line,

use this:

 N To line up the bottom of an image with the baseline of the text, use this:

NOTE

The vertical-align CSS property also supports the values top and bottom, which can align
images with the overall top or bottom of a line of elements, regardless of any text on the line.

All four of these options are used in Listing 8.4 and displayed in Figure 8.14. Four thumbnail

images are now listed vertically down the page, and descriptive text appears next to each image.

Various settings for the vertical-align CSS property are used to align each image and its rel-

evant text. This is certainly not the most beautiful page, but it should help make the various

alignments clear.

222 LESSON 8: Working with Colors, Images, and Multimedia

LISTING 8.4 Using vertical-align Styles to Align Text with Images

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Small But Mighty Spectacular Yosemite Views</title>

 </head>

 <body>

 <section>

 <header>

 <h1>Small But Mighty Yosemite Views</h1>

 </header>

 <p><img src="elcap_sm.jpg" alt="El Capitan"

 style="width:100px;height:75px;vertical-align:text-top;">El

 Capitan is a 3,000-foot (910 m) vertical rock formation

 in Yosemite National Park.</p>

 <p><img src="tunnelview_sm.jpg" alt="Tunnel View"

 style="width:100px;height:80px;vertical-align:text-bottom;">

 Tunnel View looks east into Yosemite Valley.</p>

 <p><img src="upperyosefalls_sm.jpg" alt="Upper Yosemite Falls"

 style="width:87px;height:100px;vertical-align:middle;">Upper

 Yosemite Falls are 1,430 ft and are among the twenty highest

 waterfalls in the world. </p>

 <p><img src="hangingrock_sm.jpg" alt="Hanging Rock"

 style="width:100px;height:75px;vertical-align:baseline;">

 Hanging Rock, off Glacier Point, used to be a popular

 spot for people to, well, hang from. Crazy people.</p>

 </section>

 </body>

</html>

NOTE

If you don’t assign any vertical-align CSS property in an tag or class used with an
 tag, the bottom of the image will line up with the baseline of any text next to it. This means
you never have to use vertical-align:baseline; because it is assumed by default. However,
if you specify a margin for an image and intend for the alignment to be a bit more exact in relation-
ship to the text, you might want to explicitly set the vertical-align property to text-bottom.

Turning Images into Links 223

FIGURE 8.14
Showing the vertical image alignment options used in Listing 8.4.

Turning Images into Links
You probably noticed in Figure 8.11 that the image on the page is quite large. This is fine in this

particular example, but it isn’t ideal when you’re trying to present multiple images. It makes

more sense to create smaller image thumbnails that link to larger versions of each image. Then

you can arrange the thumbnails on the page so that visitors can easily see all the written content,

even if they see only a smaller version of the actual (larger) image. Using thumbnails is one of the

many ways you can use image links to spice up your pages.

To turn any image into a clickable link to another page or image, you can use the <a> tag that

you learned about in Lesson 7 to make text links. Listing 8.5 contains the code to display thumb-

nails of images within text, with those thumbnails linking to larger versions of the images. To

ensure that the user knows to click the thumbnails, the image and some helper text are enclosed

in a <div>, as shown in Figure 8.15.

224 LESSON 8: Working with Colors, Images, and Multimedia

LISTING 8.5 Using Thumbnails for Effective Image Links

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>More Spectacular Yosemite Views</title>
 <style>
 div.imageleft {
 float: left;
 text-align: center;
 font-size: 10px;
 font-style: italic;
 }
 div.imageright {
 float: right;
 text-align: center;
 font-size: 10px;
 font-style: italic;
 }
 img {
 padding: 6px;
 border: none;
 }
 </style>
 </head>
 <body>
 <section>
 <header>
 <h1>More Spectacular Yosemite Views</h1>
 </header>
 <div class="imageleft">
 <img
 src="elcap_sm.jpg" alt="El Capitan"
 style="width:100px; height:75px;">

click image to enlarge
 </div>
 <p>El Capitan is a 3,000-foot (910 m) vertical rock
 formation in Yosemite National Park, located on the north side of
 Yosemite Valley, near its western end. The granite monolith is one
 of the world's favorite challenges for rock climbers. The formation
 was named "El Capitan" by the Mariposa Battalion when it explored
 the valley in 1851.</p>
 <div class="imageright">
 <img
 src="tunnelview_sm.jpg" alt="Tunnel View"
 style="width:100px; height:80px;">

click image to enlarge

Turning Images into Links 225

 </div>
 <p>Tunnel View is a viewpoint on State Route 41
 located directly east of the Wawona Tunnel as one enters Yosemite
 Valley from the south. The view looks east into Yosemite Valley
 including the southwest face of El Capitan, Half Dome, and
 Bridalveil Falls. This is, to many, the first views of the
 popular attractions in Yosemite.</p>
 </section>
 </body>
</html>

FIGURE 8.15
Using thumbnails as links improves the layout of a page that uses large images.

The code in Listing 8.5 uses additional styles that are explained in more detail in other lessons,

but you should be able to figure out the basics:

 N The <a> tags link these particular images to larger versions, which, in this case, are stored

on an external server (at Flickr).

 N The <div> tags, and their styles, are used to align those sets of graphics and caption text

(and also include some padding).

Unless instructed otherwise, web browsers display a colored border around the edge of

each image link. As with text links, the rectangle usually appears blue for links that haven’t

been visited recently and purple for links that have been visited recently—unless you specify

226 LESSON 8: Working with Colors, Images, and Multimedia

 different-colored links in your style sheet. Because you seldom, if ever, want this unsightly line

around your linked images, you should usually include style="border:none;" in any

tag within a link. In this instance, the border:none style is made part of the style sheet entry for

the img element because we use the same styles twice.

When you click one of the thumbnail images on the sample page shown, the link opens in the

browser, as shown in Figure 8.16.

FIGURE 8.16
Clicking a linked thumbnail image opens the target of the link.

Using Background Images
As you learned earlier in this lesson, you can use background images to act as a sort of wallpaper

in a container element so that the text or other images appear on top of this underlying design.

The basic CSS properties that work together to create a background are listed here:

 N background-color—Specifies the background color of the element. Although it is not

image related, it is part of the set of background-related properties. If an image is transpar-

ent or does not load, the user will see the background color instead.

 N background-image—Specifies the image to use as the background of the element, using

the following syntax: url('imagename.gif').

Using Image Maps 227

 N background-repeat—Specifies how the image should repeat, both horizontally and

vertically. By default (without specifying anything), background images repeat both

horizontally and vertically. Other options are repeat (same as default), repeat-x

(horizontal), repeat-y (vertical), and no-repeat (only one appearance of the graphic).

 N background-position—Specifies where the image should be initially placed, relative to

its container. Options include top-left, top-center, top-right, center-left,

center-center, center-right, bottom-left, bottom-center, bottom-right,

and specific pixel and percentage placements.

When specifying a background image, you can put all these specifications together into the

background property, like so:

body {
 background: #ffffff url('imagename.gif') no-repeat top right;
}

In the preceding style sheet entry, the body element of the web page will be white and will

include a graphic named imagename.gif at the top right. Another use for the background

property is to create custom bullets for your unordered lists. To use images as bullets, first define

the style for the tag as shown here:

ul {
 list-style-type: none;
 padding-left: 0;
 margin-left: 0;
}

Next, change the declaration for the tag to this:

li {
 background: url(mybullet.gif) left center no-repeat
}

Make sure that mybullet.gif (or whatever you name your graphic) is on the web server and

accessible; in this case, all unordered list items will show your custom image instead of the

standard filled-disc bullet.

We return to the specific use of background properties in Part III, “Advanced Web Page Design

with CSS,” when using CSS for overall page layouts.

Using Image Maps
Sometimes you want to use an image as navigation—but beyond the simple button-based or link-

based navigation that you often see in websites. For example, perhaps you have a website with

medical information, and you want to show an image of the human body that links to pages that

228 LESSON 8: Working with Colors, Images, and Multimedia

provide information about various body parts. Or you might have a website that provides a world

map that users can click to access information about countries. You can divide an image into

regions that link to different documents, depending on where users click within that image. This

is called an image map, and any image can be made into an image map.

Why Image Maps Aren’t Always Necessary
The first point to know about image maps is that you probably won’t need to use them except in

very special cases. It’s almost always easier and more efficient to use several ordinary images that

are placed directly next to one another and provide a separate link for each image.

For example, Figure 8.17 shows a web page that displays 12 different corporate logos; this exam-

ple is a common type of web page in the business world, in which you give a little free advertise-

ment to your partners. You could present these logos as one large image and create an image map

that provides links to each of the 12 companies. Users could click each logo in the image to visit

each company’s site. But every time you wanted to add a new logo to the image map, you would

have to modify the entire image and remap the hotspots—which would not be a good use of any-

one’s time. In such a case, when an image map is not warranted, you simply display the images

on the page as in this example by using 12 separate images (1 for each company) and having

each image include a link to the particular company.

FIGURE 8.17
A web page with 12 different logos; this could be presented as a single image map or divided into
12 separate pieces.

Using Image Maps 229

Using an image map is the best choice for an image that has numerous parts, is oddly arranged,

or has a design that is itself too complicated to divide into separate images. Figure 8.18 shows an

image that is best suited as an image map—a public domain image provided by the U.S. CIA of

the standard time zones of the world.

FIGURE 8.18
This image wouldn’t respond well to being sliced up into perfectly equal parts; better make it an image map.

Mapping Regions Within an Image
To create any type of image map, you need to figure out the numeric pixel coordinates of each

region within the image that you want to turn into a clickable link. These clickable links are also

known as areas. Your graphics program might provide you with an easy way to find these coor-

dinates. Or you might want to use a standalone image mapping tool such as Mapedit (https://

boutell.com/mapedit/) or an online image map maker such as the one at www.image-maps.com.

In addition to helping you map the coordinates, these tools provide the HTML code necessary to

make the maps work.

Using an image mapping tool is often as simple as using your mouse to draw a rectangle (or a

custom shape) around the area you want to be a link. Figure 8.19 shows the result of one of these

rectangular selections, as well as the interface for adding the URL and the title or alternate text

for this link. Several pieces of information are necessary for creating the HTML for your image

map: coordinates, target URL, and alternate text for the link.

https://boutell.com/mapedit/
https://boutell.com/mapedit/
http://www.image-maps.com

230 LESSON 8: Working with Colors, Images, and Multimedia

FIGURE 8.19
Using an image mapping tool to create linked areas of a single graphic.

Creating the HTML for an Image Map
If you use an image map generator, it will provide the necessary HTML for creating the image

map. However, it is a good idea to understand the parts of the code so that you can check it for

accuracy. The following HTML code is required to start any image map:

<map name="mapname">

 TRY IT YOURSELF

Creating Your Own Image Map

You're more likely to remember how to make image maps if you get an image of your own and
turn it into an image map as you continue with this lesson:

 N For starters, it’s easiest to choose a fairly large image that is visually divided into roughly
rectangular regions.

 N If you don’t have a suitable image handy, use your favorite graphics program to make one.
Perhaps use a single photograph showing several people. You can use each person as an
area of the image map.

 N Try a few different image mapping tools to determine which one you like best. Start with
standalone software such as Mapedit (https://boutell.com/mapedit/) and move to the
online image map maker at www.image-maps.com. There are others; use the search engine
of your choice to find variations on the image map software theme. (Some web editors and
graphic editors can make image maps as well.)

https://boutell.com/mapedit/
http://www.image-maps.com

Using Image Maps 231

Keep in mind that you can use whatever name you want for the name of the <map> tag, although

it helps to make it as descriptive as possible. Next, you need an <area> tag for each region of the

image. Following is an example of a single <area> tag that was produced by the actions shown

in Figure 8.19:

<area shape="rect" coords="1,73,74,163"
 href="http://en.wikipedia.org/wiki/Alaska"
 alt="Alaska" title="Alaska">

This <area> tag has five attributes, which you use with every area you describe in an image map:

 N shape—Indicates whether the region is a rectangle (shape="rect"), a circle

(shape="circle"), or an irregular polygon (shape="poly").

 N coords—Gives the exact pixel coordinates for the region. For rectangles, give the x,y coor-

dinates of the upper-left corner followed by the x,y coordinates of the lower-right corner. For

circles, give the x,y center point followed by the radius in pixels. For polygons, list the x,y

coordinates of all the corners in a connect-the-dots order.

Here is an example of a mapped polygon (which can get a little crazy looking):

<area shape="poly"
coords="233,0,233,20,225,22,225,101,216,121,212,154,212,167,212,
181,222,195,220,209,226,214,226,234,232,252,224,253,223,261,231,
264,232,495,254,497,274,495,275,482,258,463,275,381,270,348,257,
338,266,329,272,313,271,301,258,292,264,284,262,262,272,263,272,
178,290,172,289,162,274,156,274,149,285,151,281,134,272,137,274,3"
href="http://en.wikipedia.org/wiki/Eastern_Time_Zone"
alt="Eastern Time Zone" title="Eastern Time Zone">

 N href—Specifies the location to which the region links. You can use any address or filename

that you would use in an ordinary <a> link tag.

 N alt—Enables you to provide a piece of text that describes the shape; as you learned previ-

ously, providing this text is important to users browsing with text-only browsers or screen

readers.

 N title—Ensures that tool tips containing the information are also visible when the user

accesses the designated area.

Each distinct clickable region in an image map must be described as a single area, which means

that a typical image map consists of a list of areas. After you’ve coded the <area> tags, you are

done defining the image map, so wrap things up with a closing </map> tag.

232 LESSON 8: Working with Colors, Images, and Multimedia

The last step in creating an image map is wiring it up to the actual map image. The map image is

placed on the page using an ordinary tag. However, an extra usemap attribute is coded,

like this:

<img src="timezonemap.png" usemap="#timezonemap"
 style="border:none; width:977px;height:498px "
 alt="World Timezone Map">

When specifying the value of the usemap attribute, use the name you put in the id of the <map>

tag (and don’t forget the # symbol). Also include the style attribute to specify the height and

width of the image and to turn off the border around the image map, which you might or might

not elect to keep in image maps of your own.

Listing 8.6 shows the complete code for a sample web page containing the map graphic, its image

map, and a few mapped areas.

LISTING 8.6 Defining the Regions of an Image Map with <map> and <area> Tags

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Testing an Image Map</title>
 </head>
 <body>
 <section>
 <header>
 <h1>Testing an Image Map</h1>
 </header>
 <div style="text-align:center;">
 Click on an area to learn more about
 that location or time zone.

 <img src="timezonemap.png" usemap="#timezonemap"
 style="border:none;width:977px;height:498px;"
 alt="World Timezone Map">
 </div>
 </section>
 <map name="timezonemap" id="timezonemap">
 <area shape="poly" coords="233,0,233,20,225,22,225,101,216,121,212,
 154,212,167,212,181,222,195,220,209,226,214,226,234,232,252,224,
 253,223,261,231,264,232,495,254,497,274,495,275,482,258,463,275,
 381,270,348,257,338,266,329,272,313,271,301,258,292,264,
 284,262,262,272,263,272,178,290,172,289,162,274,156,274,
 149,285,151,281,134,272,137,274,3"
 href="http://en.wikipedia.org/wiki/eastern_time_zone"
 alt="Eastern Time Zone" title="Eastern Time Zone">
 <area shape="rect" coords="1,73,74,163 "

Linking to Multimedia Files 233

 href="http://en.wikipedia.org/wiki/Alaska"
 alt="Alaska" title="Alaska">
 </map>
 </body>
</html>

Figure 8.20 shows the image map from Listing 8.6 in action. When you hover the mouse over an

area, the alt or title text for that area—in this example, Eastern Time Zone—is displayed

on the image map.

FIGURE 8.20
The image map defined in Listing 8.6, as it displays on the web page.

NOTE

One method of producing mapped images relies solely on CSS, not the HTML <map> tag. You will
learn more about this in Lesson 11, “Using CSS to Do More with Lists, Text, and Navigation.”

Linking to Multimedia Files
Let’s move away from static images for a moment and move into more exciting multimedia such as

audio and video. The simplest and most reliable option for incorporating a video or audio file into

your website is to simply link it in with an <a> tag, exactly as you would link to another HTML file.

234 LESSON 8: Working with Colors, Images, and Multimedia

For example, you could use the following line to offer an MOV video of a cute chickadee:

View a cute chickadee!

When the user clicks the words View a cute chickadee!, the chickadee.mov QuickTime

video file is transferred to his or her computer from your web server. Whichever helper application

or plug-in the user has installed automatically starts as soon as the file has finished downloading.

If no compatible helper or plug-in can be found, the web browser offers the user a chance to down-

load the appropriate plug-in or save the video on the hard drive for later viewing.

NOTE

In case you’re unfamiliar with helper applications (helper apps for short), they are the external pro-
grams that a web browser calls on to display any type of file it can’t handle on its own. Generally,
the helper application associated with a file type is called on whenever a web browser can’t display
that type of file on its own.

Plug-ins are a special sort of helper application installed directly into a web browser. They enable
you to view multimedia content directly in the browser window. Most browsers have video plugins
installed by default.

 TRY IT YOURSELF

Create or Find Some Multimedia to Use in Your Website

Before you learn how to place multimedia on your web pages, you need to have some multimedia
content.

Creating multimedia of any kind can be a challenging and complicated task. If you’re planning to
create your own content from scratch, you need far more than these lessons to become the next
crackerjack multimedia developer. When you have some content, however, you can use the tips in
this lesson to show you how to place your new creations into your web pages.

If you’re artistically challenged, you can obtain useful multimedia assets in several alternative
ways. Aside from the obvious (such as hiring an artist), here are a few suggestions:

 N Much of the material on the Internet is free. Of course, it’s still a good idea to double-check
with the author or current owner of the content; you don’t want to be sued for copyright
infringement. In addition, various offices of the U.S. government generate content that, by law,
belongs to all Americans. (For example, any NASA footage found online is free for your use.)

 N Many search engines have specific search capabilities for finding multimedia files. As long
as you are careful about copyright issues, this can be an easy way to find multimedia relat-
ed to a specific topic. A simple search for “sample MP4 movie” or “sample audio files” will
produce more results than you can handle.

 N If you are creatively inclined, determine the medium you like most—video production,
audio production, or animation, for example. When you have a starting point, look into the
various types of software that will enable you to create such artistic masterpieces. Many
companies, including Adobe (www.adobe.com) and Apple (www.apple.com), provide multi-
media software. One popular tool available for Windows and Macintosh is Camtasia
(www.techsmith.com/video-editor.html).

http://www.adobe.com
http://www.apple.com
http://www.techsmith.com/video-editor.html

Linking to Multimedia Files 235

Listing 8.7 contains the code for a web page that uses a simple image link to play a video in

Windows Media file format. In addition to the image link, a link is placed within the text to

 provide context for the user.

LISTING 8.7 Linking an Image to a Windows Media Video

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>This Chickadee Thinks It’s a Hummingbird!</title>
 </head>

 <body>
 <h1>This Chickadee Thinks It’s a Hummingbird!</h1>
 <div style="border-style:none; float:left; padding:12px;">
 <img src="projector.gif"
 alt="Chickadee Video">
 </div>
 <p>Chickadees have to eat too! But most don’t eat hummingbird
 nectar.</p>
 <p>Click here or on the projector graphic to
 see a movie clip of this chickadee in action.</p>
 </body>
</html>

This code simply uses the projector.gif GIF image as a link to the chickadee.wmv video clip.

Figure 8.21 shows the chickadee sample page with the projector image in view. When the image

is clicked, the Windows Media Player is invoked and begins to play the movie.

FIGURE 8.21
The projector.gif GIF image is used as an image link to a Windows Media file that launches an external
helper application. Note that not all computers support WMV files.

236 LESSON 8: Working with Colors, Images, and Multimedia

To view the video, you need only click the animated projector (or the text link in the paragraph).

This action results in the browser either playing the video with the help of a plug-in (if one is

found that can play the clip) or deferring to a suitable helper application or downloading the

image to the hard drive.

If you change the link from chickadee.wmv (Windows Media) to chickadee.mov (QuickTime),

your browser handles the link differently. Instead of launching another program, the QuickTime

 plug-in enables you to view the movie clip directly in the browser window (see Figure 8.22).

FIGURE 8.22
When you follow the image link, the chickadee.mov QuickTime movie is played using
the QuickTime browser plug-in.

NOTE

If your browser has no support for QuickTime, you can download the QuickTime player free from
Apple at www.apple.com/quicktime/. Even if you do have QuickTime installed, some browsers play
QuickTime movies differently based on whether a plug-in is installed. For example, on my Windows
computer, Internet Explorer and Firefox both play QuickTime movies directly in the browser window
via a plug-in, whereas Opera launches QuickTime as a helper application.

As you might have guessed, this approach of using a simple link to play multimedia files offers

the best backward compatibility because the browser bears all the responsibility of figuring out

how to play a multimedia clip. The downside to this is that you don’t have much control over how

a clip is played, and the clip won’t play directly in the context of a page.

http://www.apple.com/quicktime/

Embedding Multimedia Files 237

Embedding Multimedia Files
HTML5 introduced two new tags for embedding media files in a web page: <video> and

<audio>. These tags are widely supported in both desktop and mobile browsers and are used

like the tag to embed either video or audio files. These tags also use the <source> tag to

define the source files for the video or audio to play.

Using the <video> Element to Play Video on Web Pages
Embedding a video file into a web page produces a set of software controls that enable the file to

be played directly; no secondary window is necessary, and there’s no need to navigate away from

the page you are on. Following is code to embed a chickadee video using the <video> tag:

<video controls style="width: 400px; height: auto;"
 src="chickadee.wmv" type="video/x-ms-wmv">
 <p>Your browser does not support HTML5 video.</p>
</video>

The <video> element contains the fallback text Your browser does not support HTML5
video. that is displayed only if the tag doesn’t display—much like the alt attribute in the

tag. In most browsers, the video will display, and many designers don’t include this alternative text.

That is all you need to embed a video file, but that HTML won’t work reliably across computers

because the video is embedded as a Windows Media file. You could change the HTML to just point

to the MP4 file, you could convert the file to an MP4 file, or you could use the <source> tag to

define alternatives, like so:

<video controls>
 <source src="images/chickadee.wmv" type="video/x-ms-wmv">
 <source src="images/chickadee.mp4" type="video/mp4">
 <p>Your browser does not support HTML5 video.</p>
</video>

CAUTION

There are many video codecs and containers out there, including MOV, AVI, Flash, and WMV. But
there are only three that work reliably in web pages:

 N MP4 or H264 has the best support with all modern browsers able to play these files.

 N WebM is well supported by Firefox and Chrome. It is partially supported in Edge and works
with installed codecs for Safari and Internet Explorer.

 N Ogg or Ogg/Theora is supported by Firefox and Chrome, and it will be supported by Edge, but
doesn’t have good support in other browsers.

It’s best to convert any video files you have to MP4. Search your favorite search engine to find free
online converters.

238 LESSON 8: Working with Colors, Images, and Multimedia

You can see the result of this code in Figure 8.23. The <source> element allows you to define as

many source files as you need or want. You still have to create and upload those videos, but the

browsers will only download and use the one they support. This makes your videos more

cross-compatible.

NOTE

There are many different video formats you can use. Most designers use MP4 because it is sup-
ported across all modern browsers, including mobile devices. Other formats you might see on web
pages include WebM, HEVC, and OggTheora or OggV.

FIGURE 8.23
The <video> tag enables you to embed a video clip on a web page.

The width and height style properties of the <video> element determine the size of the

embedded player. Some browsers automatically size the embedded player to fit the content if you

leave these off, whereas others don’t show anything. Play it safe by always defining the dimen-

sions of the video to suit the multimedia content being played. Just as with images, you can set

the width to a relative value such as 100% of the container width and then set the height to auto

so that it isn’t distorted.

The other attribute most designers use on the <video> tag is controls. This tells the browser to

display the video with play/pause control buttons. But there are a couple other attributes that can

be useful:

Embedding Multimedia Files 239

 N preload—Has three possible values: none, auto, and metadata. Use none if you do not

want to buffer the file, use auto to buffer the file, and use metadata if you want to buffer

only the metadata for the file.

 N loop—Tells the browser to start the video from the beginning when it gets to the end.

 N poster—Points to an image file that is shown when the video isn’t available, such as when

it is still downloading.

 N autoplay—Causes the video to start playing as soon as it is ready.

Listing 8.8 shows the relevant code for the chickadee web page, and you can see the <video>

element as it appears in context.

LISTING 8.8 Using a <video> Element to Directly Embed a Video Clip

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Chickadee Wants Food!</title>
 <style>
 video {
 width: 50%; height: auto; float: left; padding: 1rem;
 }
 </style>
 </head>
 <body>
 <h1>Chickadee Wants Food!</h1>
 <video controls>
 <source src="images/chickadee.wmv" type="video/x-ms-wmv">
 <source src="images/chickadee.mp4" type="video/mp4">
 <p>Your browser does not support HTML5 video.</p>
 </video>
 <p>All birds eat, but this chickadee would like you to know
 that it's not happy with hummingbird food as the only option.
 </p>
 <p>Chickadees also drink the hummingbird water at times, so if
 you want to feed only hummers, you should watch the other birds.
 </p>
 </body>
</html>

240 LESSON 8: Working with Colors, Images, and Multimedia

Using the <audio> Element for Audio Playback
In the preceding section, you learned about how to embed video files with the HTML5 <video>

element. The <audio> element works in much the same way. You just put the <audio> element

where you want your player to display, and the browser will include it.

Listing 8.9 shows how to use the <audio> element to embed an audio file that will be played by

the browser. The <audio> element is quite simple and requires only one attribute: src, or the

location of the resource you want to play. However, as you see in Listing 8.9, you’ll probably want

to use a few other handy attributes.

LISTING 8.9 Using the <audio> Element to Embed and Play an Audio File

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Let's Hear Some Music</title>
 </head>
 <body>
 <h1>Let's Hear Some Music</h1>
 <p>Better yet, let's use the HTML5 <audio> element
 to do so!</p>
 <audio
 src="manhattan_beach.mp3"
 preload="auto"
 controls
 autoplay
 loop>
 <p>Your browser does not support the audio element.</p>
 </audio>
 </body>
</html>

NOTE

Notice the inclusion of a message to users inside the <audio> element. Although current versions
of all major browsers support the <audio> element, just as with the <video> element, if a user’s
browser does not support it, that user will instead see the message within the <p></p> tags. The
message can be any combination of HTML, including links, images, or scripts.

In addition to the src attribute, which, in this case, has the value manhattan_beach.mp3

because that is the name of the audio file we want to play, we’re using four other attributes in this

<audio> element:

Embedding Multimedia Files 241

 N preload—Has three possible values: none, auto, and metadata. Use none if you do not

want to buffer the file, use auto to buffer the file, and use metadata if you want to buffer

only the metadata for the file.

 N controls—If present, shows the controls for the audio player.

 N autoplay—If present, plays the file as soon as it loads.

 N loop—If present, continues to play the file repeatedly until it is manually stopped.

Figure 8.24 shows the page in Listing 8.9 as rendered by the Chrome web browser.

FIGURE 8.24
Using the <audio> element to play a sound file.

In practice, you probably wouldn’t want to automatically play and loop a sound file in your

 website as doing so is typically considered a particularly negative user experience. However, if you

do automatically play a sound file (please don’t!), be sure to include the player controls so that

users can immediately turn off the sound.

Just as with videos, you should define the MIME type for the audio files you want to include.

Following are the MIME types for several popular audio formats you might want to use in your

web pages:

 N WAV audio—audio/vnd.wave

 N MP3 audio—audio/mpeg

 N MP4 audio—audio/mp4

242 LESSON 8: Working with Colors, Images, and Multimedia

Additional Tips for Using Multimedia
Before you add video, audio, or animations to your website, ask yourself whether you really

should do so. When you use these types of multimedia, be sure to do so for a reason. Gratuitous

sound and video, just like gratuitous images, can detract from your overall message. Then again,

if your message is “Look at the videos I’ve made” or “Listen to my music and download some

songs,” then multimedia absolutely must play a role in your website.

Keep a few additional tips in mind:

 N Don’t include multimedia in a page and set it to automatically play when the page loads.

Always give users the option to start (and stop) your sound or video. If you’re using a video

background, make sure the sound is muted or removed; video is distracting, and sound is

often more so.

 N When providing files for direct download, give users a choice of file type. Don’t limit your-

self to providing multimedia content playable by only one type of player on only one oper-

ating system. Use the <source> tag to provide multiple options on your embedded media

as well.

 N Multimedia files are larger than typical graphics and text files, which means you need to

have the space on your web server to store them, as well as the bandwidth allotment to

transfer them to whomever requests them via your website. Check with your hosting pro-

vider if you plan to serve more than a few videos on your website; it may have restrictions or

offer deals for better hosting of large files.

 N If your site is entirely audio or video and offers very little by way of text or graphics, under-

stand that a certain segment of your audience won’t see or hear what you want to present

because of the limitations of their system or bandwidth. Provide these users with additional

options to get your information. This is also good for accessibility.

 N Leverage free online video hosting services, such as YouTube (www.youtube.com). Not only

does YouTube provide storage for your video clips, it also gives you the code necessary to

embed the video in your own web page.

Summary
In this lesson, you learned a few best practices for color use, and you learned how to use the color

wheel to find colors that will complement your text. In addition, you learned about hexadecimal

notation for colors—where all colors are expressed in notations related to the amount of red,

green, and blue in them—and saw how hexadecimal notation enables you to apply nuanced col-

ors to your elements. You also learned how to add transparency to your colors with the RGBa color

model. More importantly, you learned about the three color-related style properties that you can

http://www.youtube.com

243Summary

use to apply color to container backgrounds, borders, and text using CSS. In addition, you learned

the basics of preparing graphics for use on web pages. You saw that this is a complex topic, and

you learned just enough in this lesson to whet your appetite. The examples in this lesson use the

popular (and free!) GIMP software package, but feel free to use the graphics software that best

suits your needs. Among the actions you learned were how to crop, resize, and tweak image col-

ors, and you also learned about the different file formats. You must keep in mind many consider-

ations when including graphics in your site, including graphic size and resolution, as well as how

to use transparency, animated GIFs, and tiled backgrounds.

After creating images, you also learned how to use images in your web pages. You learned how

to place them in your pages using the tag and how to include a short text message that

appears in place of the image as it loads and that also appears whenever users move the mouse

pointer over the image. You also learned how to control the horizontal and vertical alignment of

each image and how to wrap text around the left or right of an image. To make your pages more

interactive, you learned how to use images as links—either by using the <a> tag around the imag-

es or by creating image maps. Finally, you learned how to embed video and sound in a web page.

You learned how to use a simple link to a multimedia file, which is the most broadly supported

but least flexible option for playing media content. You then learned how to use the <video>

and <source> elements to embed a media player directly in a web page. You also learned about

the <audio> element in HTML5, which enables the browser to render audio files. In addition,

you got some tips for including multimedia in your pages.

Table 8.1 summarizes the tags and attributes covered in this lesson.

TABLE 8.1 Tags and Attributes Covered in Lesson 8

Tag Function

 Places an image file within the page.

Attribute/Style Function

style="background-
color:color;"

Sets the background color of an element (such as
<body>, <p>, <div>, <blockquote>, and other
containers).

style="color:color;" Sets the color of text within an element.

style="border:size type
color;"

Sets the color of the four borders around an element.
Border colors cannot be used without also specifying the
width and type of the border.

src="address" Gives the address or filename of the image.

alt="altdescription" Gives an alternative description of the image that is
displayed in place of the image, primarily for users who
can’t view the image itself.

244 LESSON 8: Working with Colors, Images, and Multimedia

Tag Function

title="title" Specifies a text message that is displayed as an image
title, typically in a small pop-up box (tooltip) over the image.

style="width:length;" Specifies the width of the image (in pixels).

style="height:length;" Specifies the height of the image (in pixels).

style="border:size type
color;"

Gets rid of the border around the image if the image is
serving as a link.

style="vertical-
align:alignment;"

Aligns the image vertically to text-top, top,
text-bottom, bottom, middle, or baseline.

style="float:location;" Floats the image to one side so that text can wrap around
it. Possible values are left, right, and none (default).

Tag Function

<map>…</map> Defines a client-side image map referenced by <img
usemap="...">. Includes one or more <area> tags.

<area> Defines a clickable link within a client-side image map.

Attribute/Style Function

usemap="name" Defines the name of an image map for client-side image
mapping. Used with <map> and <area>.

shape="value" Within the <area> tag, specifies the shape of the click-
able area. Valid options for this attribute are rect,
poly, and circle.

coords="values" Within the <area> tag, specifies the coordinates of the
clickable region within an image. Its meaning and setting
vary according to the type of area.

href="linkurl" Within the <area> tag, specifies the URL that should be
loaded when the area is clicked.

Tag Function

<audio>…</ audio > Plays an audio file natively in the browser.

Attribute/Style Function

src="mediaurl" Gives the URL of the file to embed.

preload="preloadtype" Tells whether to preload the media file. Options are
none, auto, and metadata.

controls Instructs the browser to show the audio player controls.

autoplay Instructs the browser to play the file when it has finished
loading.

Q&A 245

loop Instructs the browser to play the file until it is explicitly
stopped.

Tag Function

<video>…</ video > Plays a video file natively in the browser.

Attribute/Style Function

src="mediaurl" Gives the URL of the file to embed.

preload="preloadtype" Tells whether to preload the media file. Options are
none, auto, and metadata.

style="width:length;" Specifies the width of the embedded object, in pixels.

style="height:length;" Specifies the height of the embedded object, in pixels.

controls Instructs the browser to show the video player controls.

autoplay Instructs the browser to play the file when it has finished
loading.

loop Instructs the browser to play the file until it is explicitly
stopped.

Q&A
 Q. I’ve produced graphics for printing on paper. Are web page graphics any different?

 A. Yes. In fact, many of the rules for print graphics are reversed on the Web. Web page graph-
ics should be low resolution to keep the file size small, whereas print graphics should be
the highest resolution possible. White washes out black on computer screens, whereas
black bleeds into white on paper. Also, someone might stop a web page from loading
when only half the graphics have been downloaded, which isn’t a consideration when one
is looking at images in print. Try to avoid falling into old habits if you’ve done a lot of print
graphics design.

 Q. I used the tag just as you advised, but when I view the page, all I see is a little box

with some shapes in it. What’s wrong?

 A. The broken image icon you’re seeing can mean one of two things: Either the web browser
couldn’t find the image file or the image isn’t saved in a format the browser recognizes.
To solve these problems, first check to make sure the image is where it is supposed to
be. If it is, then open the image in your graphics editor and save it again as a GIF, JPEG,
or PNG.

246 LESSON 8: Working with Colors, Images, and Multimedia

 Q. What happens if I overlap areas on an image map?

 A. You are allowed to overlap areas on an image map. Just keep in mind that, in the deter-
mination of which link to follow, one area has precedence over the other area. Precedence
is assigned according to which areas are listed first in the image map. For example, the
first area in the map has precedence over the second area, which means that a click in
the overlapping portion of the areas will link to the first area. If you have an area within an
image map that doesn’t link to anything (known as a dead area), you can use this overlap
trick to deliberately prevent this area from linking to anything. To do this, just place the
dead area before other areas so that the dead area overlaps them and then set its href
attribute to "" (blank).

 Q. I hear a lot about streaming video and audio. What does that mean?

 A. In the past, video and audio files took minutes and sometimes hours to be retrieved
through most modems, which severely limited the inclusion of video and audio on web
pages. The goal everyone is moving toward is streaming video or audio, which plays while
the data is being received. In other words, you don’t have to completely download the clip
before you can start to watch it or listen to it.

 Streaming playback is now widely supported through most media players, in both stand-
alone versions and plug-ins. When you embed a media object using the <video> element,
you have fine-grained control over the buffering and playback of your multimedia resource,
and the underlying media player automatically streams the media clip if the player supports
streaming.

 For live streaming, most modern browsers support the Media Source Extensions (MSE)
specification (www.w3.org/TR/media-source/). This extends the <audio> and <video>
elements to let you dynamically change the source files without using plug-ins. This allows
for live streaming, splicing, and video editing right from the web page.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. How would you give a web page a black background and make all text bright green? Based

on what you’ve learned in this lesson, would you even want to use that color combination?

 2. What CSS properties and values would you use to ensure that a paragraph has a white
background, orange text, and a 3-pixel-wide dashed green border?

 3. If you have a square image of a blue flower on a transparent background, and the
 background color of the containing element is gray, will your flower image appear on the
page as a square or as some other shape?

http://www.w3.org/TR/media-source/

Workshop 247

 4. If you have an image called myimage.png and you want to align it so that a line of text
lines up at the middle of the image, what style property should you use?

 5. What’s the simplest method to provide access to a video on your website for the widest
possible audience?

 6. What is the CSS to create a background that is red with 50% transparency?

 7. What is a rule for cropping an image effectively?

 8. What is the most important aspect of an image for web pages: the dimensions, the file
size, the colors, or the content?

 9. What are two ways to align images vertically?

 10. What element do you use to define a file to play in a <video> tag?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. Although it is highly recommended that you don’t do it, you would put the following at the

beginning of the web page or use a style rule for the body element:

<body style="background-color:#000000; color:#00FF00">

 2. The following properties and values would work:

background-color: #ffffff;
color: #ffa500;
border: 3px dashed #00ff00;

 3. It will appear as the shape of the flower because the image has a transparent background.
The gray background of the containing element will show through.

 4. You can use vertical-align:middle to ensure that the text lines up at the middle of
the image.

 5. Just link to it:

my video

 6. The background-color: rgba(255, 0, 0, 0.5); property uses RGBa to define the
red color with 50% alpha transparency.

http://www.informit.com/register

248 LESSON 8: Working with Colors, Images, and Multimedia

 7. You can apply cropping rules such as the rule of thirds, the golden ratio, the golden spiral,
triangle, and diagonal crops.

 8. The most important aspect of a web page image is the file size: You want it to download as
quickly as possible without sacrificing quality.

 9. You can align images vertically to the text top, text bottom, middle, baseline, top, and
 bottom.

 10. You use the <source> element to define the file to play. You can also use the src
 attribute on the <video> tag itself.

Exercises
 N Select a base color that you like—perhaps a lovely blue or an earthy tone—and use the

Color Scheme Designer at http://paletton.com to come up with a set of colors that you
can use in a website. I recommend the tetrad or accented analogic scheme types.

 N When you have a set of colors—or a few options for sets of colors—create a basic
HTML page with an <h1> element, a paragraph of text, and perhaps some list items.
Use the color-related styles you learned about in this lesson to change the background
color of the page and the text of the various block-level elements to see how these sets
of colors might work together. See how they interact and determine which colors are
best used for containers and which are best used for plain text, header text, and link
text.

 N Practicing any of the image placement methods in this lesson will go a long way toward
helping you determine the role that images can, and will, play in the websites you
design. Using a few sample images, practice using the float style to place images and
text in relationship to one another. Remember that the possible values for float are
left, right, and none (default).

 N Find some freely available audio and video clips on the web and practice placement
within your text by using the HTML5 <audio> and <video> elements.

http://paletton.com

LESSON 9
Working with Margins, Padding,

Alignment, and Floating

What You’ll Learn in This Lesson:

N How to add margins around elements

N How to add padding within elements

N How to keep everything aligned

N How to use the float property

Now that you’ve learned some of the basics of creating web content, in this lesson you’ll learn the

nitty-gritty of using CSS to enhance the display of that content. In the lessons that follow, you’ll

dive in to using CSS to control aspects of your entire web page rather than just individual pieces of

text or graphics.

Before you tackle page layout, however, it is important to understand four particular CSS

 properties individually before putting them all together:

N margin and padding—For adding space around elements

N align and float—For placing your elements in relationship to others

The examples provided in this lesson are not the most stylish examples of web content ever cre-

ated, but they are not intended to be. Instead, the examples clearly show just how HTML5 and CSS

are working together. Although this lesson is short in terms of page count, the concepts deserve

careful reading and hands-on practice. When you master CSS through this and other sections of

the course, as well as through ongoing practice of what you’ve learned, you’ll be able to use your

own design skills to enhance what can be (and often is) the relatively basic underlying scaffolding.

Using Margins
Style sheet margins enable you to add empty space around the outside of the rectangular area for

an element on a web page. It is important to remember that the margin property works with

space outside the element.

250 LESSON 9: Working with Margins, Padding, Alignment, and Floating

Following are the style properties for setting margins:

N margin-top—Sets the top margin

N margin-right—Sets the right margin

N margin-bottom—Sets the bottom margin

N margin-left—Sets the left margin

N margin—Sets the top, right, bottom, and left margins as a single property

You can specify margins by using any of the individual margin properties or by using the margin

property. Margins can be specified as auto, meaning that the browser sets the margins in specific

lengths (pixels, points, or ems, among others) or in percentages. If you decide to set a margin as

a percentage, keep in mind that the percentage is calculated based on the size of the containing

element. So, if you set the margin-left property of an element within the body to 25%, the left

margin of the element will end up being 25% of the width of the entire page. However, if you set

the margin-left property of an element within that element to 25%, it will be 25% of whatever

that original 25% was calculated to be.

The code in Listing 9.1 produces four rectangles on the page, each 250 pixels wide and 100 pixels

high, with a 5-pixel solid black border (see Figure 9.1). Each rectangle—or <div>, in this case—

has a different background color. If you want the margin around each <div> to be 15 pixels on

all sides, you can use the following:

margin-top: 15px;
margin-right: 15px;
margin-bottom: 15px;
margin-left: 15px;

NOTE

You can remember the shorthand order in at least two different ways. First, if you think of an ele-
ment as being a rectangle, start at the top and work your way clockwise around the sides: top side,
right side, bottom side, left side. Or you can use a first-letter mnemonic device and remember TRBL
(pronounced “trouble” or “tribble,” if you’re a Star Trek fan), which also represents a possible state
of being in case you forget the order of the margin properties.

Also note that the TRBL order is valid for padding properties and border properties as well.

You can also write that in shorthand, using the margin property:

margin: 15px 15px 15px 15px;

When you use the margin property (or padding or border) and you want all four values to be

the same, you can simplify this even further and use the following:

margin: 15px;

Using Margins 251

When using shorthand for setting margins, padding, or borders, three approaches apply, which

vary based on how many values you use when setting the property:

N One value—The size of all the margins

N Two values—The size of the top/bottom margins and the left/right margins (in that order)

N Three values—The size of the top margin, the left and right margins (they are given the

same value), and the bottom margin (in that order)

N Four values—The size of the top, right, bottom, and left margins (in that order)

You might find it easiest to consistently use one value or consistently use all four values, but that’s

certainly not a requirement.

LISTING 9.1 Simple Code to Produce Four Colored <div> Elements with Borders

and Margins

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Color Blocks</title>
 <style>
 div {
 width: 250px;
 height: 100px;
 border: 5px solid #000000;
 color: black;
 font-weight: bold;
 text-align: center;
 }
 div#d1 {
 background-color: red;
 margin: 15px;
 }
 div#d2 {
 background-color: green;
 margin: 15px;
 }
 div#d3 {
 background-color: blue;
 margin: 15px;
 }
 div#d4 {
 background-color: yellow;
 margin: 15px;
 }

252 LESSON 9: Working with Margins, Padding, Alignment, and Floating

 </style>
 </head>
 <body>
 <div id="d1">DIV #1</div>
 <div id="d2">DIV #2</div>
 <div id="d3">DIV #3</div>
 <div id="d4">DIV #4</div>
 </body>
</html>

You can see the output of Listing 9.1 in Figure 9.1.

FIGURE 9.1
The basic color blocks sample page shows four color blocks, each with equal margins.

Using Margins 253

Next, working with just the margin property in the style sheet entries in Listing 9.1, let’s shift

the margins. In this example, you can’t really see the right-side margin on any of these

<div> elements because there’s nothing to the right of them, and they’re not aligned to the

right. With that in mind, you can set margin-right to 0px in all of these. Beyond that, the

next set of goals is to produce the following:

N No margin around the first color block

N A left-side margin of 15 pixels, a top margin of 5 pixels, and no bottom margin around the

second color block

N A left-side margin of 75 pixels and no top margin or bottom margin around the third

color block

N A left-side margin of 250 pixels and a top margin of 25 pixels around the fourth color block

This seems as though it would be straightforward—no margin is being set around the first block.

But if there is a margin at the top of the second block, there really will be a visible margin

between the first and second blocks, even if you do not specify a margin for the first block.

The new style sheet entries for the four named <div> elements now look like this:

div#d1 {
 background-color: red;
 margin: 0px;
}
div#d2 {
 background-color: green;
 margin: 5px 0px 0px 15px;
}
div#d3 {
 background-color: blue;
 margin: 0px 0px 0px 75px;
}
div#d4 {
 background-color: yellow;
 margin: 25px 0px 0px 250px;
}

The result of the code changes (see Figure 9.2) seems random but is actually quite useful for point-

ing out a few other important points. For example, recall that one of the goals was to produce no

margin around the first color block, and you might expect the border of the color block to be flush

with the browser window. But as Figure 9.2 shows, there is a clear space between the content of

the page and the frame of the browser window.

254 LESSON 9: Working with Margins, Padding, Alignment, and Floating

FIGURE 9.2
Modifications to the color blocks sample page display some different margins.

If you were working on element placement—which we get to in the next lesson—this would cause

a problem in the layout. To ensure that your placements and margins are counted from a position

flush with the browser, you need to address the margin of the <body> element itself. In this case,

you add the following to your style sheet:

body {
 margin: 0px;
}

Another “gotcha” to remember is that if you have two bordered elements stacked on top of each

other but no margin between them, the point at which they touch appears to have a double

border. You might therefore consider making the top element’s border-bottom half the width

and then also make the bottom element’s border-top half the width. If you do this, the borders

appear to be the same width as the other sides when the elements are stacked on top of

each other.

In addition, you might think that using a left-side margin of 250 pixels—the width of the <div>

elements—would begin the fourth color block where the third color block ended. That is not the

Using Margins 255

case, however, because the third color block has a margin-left of 75 pixels. For those elements

to be even close to lining up, the margin-left value for the fourth div would have to be

325 pixels.

Changing the styles to those shown in the following code produces the spacing shown in

Figure 9.3:

body {
 margin: 0px;
}
div {
 width: 250px;
 height: 100px;
 color: black;
 font-weight: bold;
 text-align: center;
}
div#d1 {
 border: 5px solid #000000;
 background-color: red;
 margin: 0px;
}
div#d2 {
 border-width: 6px 6px 3px 6px;
 border-style: solid;
 border-color: #000000;
 background-color: green;
 margin: 10px 0px 0px 15px;
}
div#d3 {
 border-width: 3px 6px 6px 6px;
 border-style: solid;
 border-color: #000000;
 background-color: blue;
 margin: 0px 0px 0px 15px;
}
div#d4 {
 border: 5px solid #000000;
 background-color: yellow;
 margin: 0px 0px 0px 265px;
}

These changes give the <body> element a zero margin, thus ensuring that a margin-left value

of 25 pixels truly is 25 pixels from the edge of the browser frame. It also shows the second and

third color blocks stacked on top of each other, but with modifications to the border element so

256 LESSON 9: Working with Margins, Padding, Alignment, and Floating

that a double border does not appear. In addition, the fourth color block begins where the third

color block ends.

FIGURE 9.3
A third modification to the color blocks pulls items into closer relationship with each other.

As you can see in Figure 9.3, some overlap occurs between the right edge of the third color block

and the left edge of the fourth color block. Why is that the case, if the color blocks are 250 pixels

wide, the third color block has a margin-left value of 15 pixels, and the fourth color block is

supposed to have a 265-pixel margin to its left? Well, it does have that 265-pixel margin, but that

margin size is not enough because you also have to factor in the 6 pixels of border. Changing

the margin property for the fourth color block to reflect the following code makes the third and

fourth blocks line up according to plan (see Figure 9.4):

margin:0px 0px 0px 276px;

Padding Elements 257

FIGURE 9.4
Changing the margin to allow for 11 pixels of border width.

As shown in these examples, margin specifications are incredibly useful for element placement,

but you must use caution when setting these specifications.

Padding Elements
Adding padding is similar to using margins, in that both add extra space to elements. The big dif-

ference is where that space is located. Recall that margins are added to the outsides of elements.

On the other hand, padding adds space inside the rectangular area of an element. Because the

padding of an element appears within the element’s content area, it assumes the same style as

the content of the element, including the background color.

258 LESSON 9: Working with Margins, Padding, Alignment, and Floating

CAUTION

Most designers assume that if you create an element with a width of 50 pixels and a height of
30 pixels and then set the padding to 5 pixels, the remaining content area will be 40 pixels by
20 pixels. But this is not the default action in most web browsers or the HTML/CSS specifications.
Instead, the width of the content area will be 50 pixels, but the entire box will take up 60 pixels
in width (50 + 5 for the left padding + 5 for the right padding). If there are any borders defined,
they are added to the total rendered width as well. The height acts the same way. In Lesson 10,
“Understanding the CSS Box Model and Positioning,” you will learn how to deal with this and make
boxes behave as you expect.

You specify the padding of a style rule by using one of the padding properties, which work much

like the margin properties. The following properties are available for use in setting the padding

of style rules:

N padding-top—Sets the top padding

N padding-right—Sets the right padding

N padding-bottom—Sets the bottom padding

N padding-left—Sets the left padding

N padding—Sets the top, right, bottom, and left padding as a single property

As with margins, you can set the padding of style rules by using individual padding properties

or the padding property. You can also express padding by using either a unit of measurement

or a percentage.

Following is an example of how you might set the left and right padding for a style rule so that

there are 10 pixels of padding on each side of an element’s content:

padding-left: 10px;
padding-right: 10px;

As with margins, you can set all the padding for an element with a single property (the padding

property). To set the padding property, you can use the same three approaches available for

the margin property. Following is an example of how you would set the vertical padding

(top/bottom) to 12 pixels and the horizontal padding (left/right) to 8 pixels in a style rule:

padding: 12px 8px;

Following is more explicit code that performs the same task by specifying all four padding values:

padding: 12px 8px 12px 8px;

In all the figures so far in this lesson, note that the text DIV #1, DIV #2, and so on appears at

the top of the colored block, with just a little space between the border and the text. That amount

of space hasn’t been specified by any padding value, but it appears as a sort of default within the

Padding Elements 259

element. Listing 9.2 shows some examples of the specific control you can have over your element

padding. All the color blocks are 250 pixels wide and 100 pixels high, have a 5-pixel solid black

border, and have 25 pixels of margin (see Figure 9.5). The fun stuff happens within the padding

values for each individual <div>.

LISTING 9.2 Simple Code to Produce Four Colored <div> Elements with Borders,

Margins, and Padding

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Color Blocks</title>
 <style>
 body {
 margin: 0px;
 }
 div {
 width: 250px;
 height: 100px;
 border: 5px solid #000000;
 color: black;
 font-weight: bold;
 margin: 25px;
 }
 div#d1 {
 background-color: red;
 text-align: center;
 padding: 15px;
 }
 div#d2 {
 background-color: green;
 text-align: right;
 padding: 25px 50px 6px 6px;
 }
 div#d3 {
 background-color: blue;
 text-align: left;
 padding: 6px 6px 6px 50px;
 }
 div#d4 {
 background-color: yellow;
 text-align: center;
 padding: 50px;
 }
 </style>
 </head>
 <body>

260 LESSON 9: Working with Margins, Padding, Alignment, and Floating

 <div id="d1">DIV #1</div>
 <div id="d2">DIV #2</div>
 <div id="d3">DIV #3</div>
 <div id="d4">DIV #4</div>
 </body>
</html>

FIGURE 9.5
The basic color blocks sample page shows four color blocks with variable padding.

You should immediately recognize that something is amiss in this example. The color blocks are

all supposed to be 250 pixels wide and 100 pixels high. The color blocks in Figure 9.5 are not uni-

form because the width and height declarations apply only to the content box. Any padding or

border lengths are added to those dimensions in the final rendered display.

Keeping Everything Aligned 261

If you place the text in a <p> element and give that element a white background (see Figure 9.6),

you can see where the padding is in relationship to the text. You will learn about this effect in

detail in Lesson 10, as well as how to fix it.

FIGURE 9.6
Showing the padding in relationship to the text.

The greatest number of tweaks or nudges you make in your web design with CSS will have to do

with margins and padding. Just remember: Margins are outside the element; padding is inside it.

Keeping Everything Aligned
Because content on a web page doesn’t always fill the entire width of the rectangular area in

which it is displayed, it is often helpful to control the alignment of the content. Even if text within

a rectangular area extends to multiple lines, alignment enters the picture because you might want

262 LESSON 9: Working with Margins, Padding, Alignment, and Floating

the text left-justified, right-justified, or centered. Two style properties enable you to control the

alignment of elements inside a box: text-align and vertical-align.

You saw examples of these style properties in action (when aligning images) in Lesson 8,

“Working with Colors, Images, and Multimedia,” but it doesn’t hurt to mention these properties

again here because alignment plays a role in overall page design as well.

As a refresher, using text-align aligns an element horizontally within its bounding area, and it

can be set to left, right, center, or justify.

The vertical-align property is similar to text-align except that it is used to align elements

vertically. The vertical-align property specifies how an element is aligned with its parent or,

in some cases, the current line of elements on the page. “Current line” refers to the vertical place-

ment of elements that appear within the same parent element—in other words, inline elements.

If several inline elements appear on the same line, you can set their vertical alignments the same

to align them vertically. A good example is a row of images that appear one after the next; the

vertical-align property enables you to align them vertically.

Following are common values for use with the vertical-align property:

N top—Aligns the top of an element with the current line

N middle—Aligns the middle of an element with the middle of its parent

N bottom—Aligns the bottom of an element with the current line

N text-top—Aligns the top of an element with the top of its parent

N baseline—Aligns the baseline of an element with the baseline of its parent

N text-bottom—Aligns the bottom of an element with the bottom of its parent

Alignment works in conjunction with margins, padding, and (as you’ll learn shortly) the float

property to enable you to maintain control over your design.

Centering Blocks of Content
One thing you may have noticed when you were working in the previous section is that center-

ing, especially centering blocks of content, can be challenging. While you can center text and

other inline elements (such as links or buttons) with text-align: center; getting things like

images or text boxes to center is difficult. Many novice web designers fall back on the old and very

outdated <center> tag. But please: Don’t use the <center> tag.

As we just mentioned, it’s old and outdated; it’s also been deprecated, which means it’s been

removed from the HTML specification. Browser makers can support it (and other deprecated

263Understanding the float Property

 syntax) if they wish, but they don’t have to, and in the future, it may stop working completely. But

more importantly, the <center> tag does only one thing: It defines the presentation of the con-

tents as centered. It doesn’t provide any semantic meaning or otherwise affect the structure of the

document. Instead of using the <center> tag, you should use CSS.

If you’re trying to center an image or a block of content in your design, the easiest way is to

change the horizontal (left and right) margins to auto, like so:

margin-left: auto;
margin-right: auto;

You can also use the margin shorthand property:

margin: 0 auto;

This works only on elements that have a width set that is smaller than the current container. If

you try to center a <div> that does not have the width set, nothing will happen. But if you add a

width or maximum width value and then the margin: 0 auto; style, the browser will auto-

matically add space on the left and right to center it. You will learn other ways to center block

elements in Lesson 12, “Creating Layouts Using Modern CSS Techniques.”

Understanding the float Property
The float property is an important tool for understanding a popular type of CSS-based layout

and design. Briefly stated, the float property allows elements to be moved around in the design

so that other elements can wrap around them. You often find float used in conjunction with

images (as you saw in Lesson 8), but you can—and many designers do—float all sorts of elements

in the layout.

Elements float horizontally, not vertically, so you have to concern yourself with just two possible

values: right and left. An element that floats will float as far right or as far left (depending on

the value of float) as the containing element will allow it. For example, if you have three <div>

elements with float set to left, they will all line up to the left of the containing body element.

If you have these <div> elements within another <div>, they will line up to the left of that
 element, even if that element itself is floated to the right.

You can best understand floating by seeing a few examples, so take a look at Listing 9.3. This

listing simply defines three rectangular <div> elements and floats them next to each other

(floating to the left).

264 LESSON 9: Working with Margins, Padding, Alignment, and Floating

LISTING 9.3 Using float to Place <div> Elements

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Color Blocks</title>
 <style>
 body {
 margin:0px;
 }
 div {
 width: 250px;
 height: 100px;
 border: 5px solid #000000;
 color: black;
 font-weight: bold;
 margin: 25px;
 }
 div#d1 {
 background-color: red;
 float: left;
 }
 div#d2 {
 background-color: green;
 float: left;
 }
 div#d3 {
 background-color: blue;
 float: left;
 }
 </style>
 </head>

 <body>
 <div id="d1">DIV #1</div>
 <div id="d2">DIV #2</div>
 <div id="d3">DIV #3</div>
 </body>
</html>

Figure 9.7 shows the resulting page. Already you can see a problem: These three color blocks were

supposed to be floated next to each other. Well, actually they are floated next to each other, but

the browser window is not wide enough to display these three 250-pixel-wide blocks with 25 pixels

of margin between them. Because they are floating, the third one simply floats to the next line.

265Understanding the float Property

FIGURE 9.7
Using float to place the color blocks.

You can imagine that this could be a problem in a specifically designed visual layout, so pay

attention to your margins, padding, alignment, and floating while also testing within a target

browser window size. Granted, the browser window in Figure 9.7 is a small one to make this point

about floating elements moving to the next line when there is no room for them to fit where they

should. In other words, if you open the same HTML file with a larger browser window, you might

not see the issue; this is why you should always check your sites at different resolutions to see

whether a fix is needed. The fix here is to adjust the margins and other size-related properties of

your <div> elements.

Figure 9.8 shows another interesting possibility when the float property is used. This figure

shows what happens with just a few changes to the code from Listing 9.3: making the color blocks

only 100 pixels wide, reducing the margins to 10px, and changing the float alignment of the

second color block to right (instead of left).

266 LESSON 9: Working with Margins, Padding, Alignment, and Floating

FIGURE 9.8
Using float to place the color blocks.

However, something interesting has happened. The second color block now appears visually as

the third color block because it is flush right. The second color block has a float value of right,

so it has floated all the way to the right. The first and third color blocks are floating as far to the

left as possible, regardless of the way in which the <div> code appears in the HTML, which is as

follows:

<div id="d1">DIV #1</div>
<div id="d2">DIV #2</div>
<div id="d3">DIV #3</div>

Getting used to floating takes a lot of practice, especially when your page has additional elements

rather than just a few colored blocks. For example, what happens when you add a basic para-

graph to the mix? All elements placed after the floating element then float around that element.

To avoid that problem, use the clear property.

The clear property has five possible values: left, right, both, none, and inherit. The most

common values are left, right, and both. Specifying clear:left; ensures that no other

floating elements are allowed to the left, clear:right; ensures that no other floating elements

are allowed to the right, and so on. Using floating and clearing is a learn-by-doing process, so

look for more situations in the Workshop at the end of this lesson.

267Workshop

Summary
This lesson introduced you to some of the most fundamental style properties in CSS-based design:

margin, padding, and float. You learned how the margin property controls space around the

outside of elements and how the padding property works with space within the elements.

After getting a refresher on the text-align and vertical-align properties you learned

about in a previous lesson, you learned about the float property. The float property allows for

specific placement of elements and additional content around those elements.

Q&A
 Q. The examples of margins and padding in this lesson all had to do with boxes and text. Can I

apply margins and padding to images as well?

 A. Yes, you can apply margins and padding to any block-level element, such as a <p>, a
<div>, an , and lists such as and , as well as list items ()—just
to name a few. You can also apply margins and padding to inline elements, but the results
may not be as you expect, so always test your pages in multiple browsers.

 Q. Is there a good rule of thumb for when you should use margins versus padding?

 A. You need to understand two differences between CSS margins and padding. The first
difference is that padding on a link can be clicked or tapped to interact with it, while
a margin cannot. Because of this, you should use padding, rather than margins, around
links to make them easier to click.

 There is also another difference you should be aware of. For block-level elements, the verti-
cal margins will collapse together into a single margin that is equal to the largest individual
margin. You saw this in this lesson. In Listing 9.1, each of the <div> elements had a
top and bottom margin of 15 pixels, but the vertical space between the elements was not
30 pixels; it was just 15 pixels. If you change one of the elements to have a bottom or top
margin of 20 pixels, the space between the elements will grow only 5 pixels. Vertical pad-
ding, because it is inside the element, does not collapse. Because vertical padding does
not collapse, you should use the padding property whenever you want a set amount of
space around the element, regardless of where it displays on the page. Otherwise, you
should use margins.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

268 LESSON 9: Working with Margins, Padding, Alignment, and Floating

Quiz
 1. To place two <div> elements next to each other, but with a 30-pixel margin between them,

what entry or entries can you use in the style sheet?

 2. Which CSS style property and value are used to ensure that content does not appear to the
left of a floating element?

 3. What style sheet entry is used to place text within a <div> to appear 12 pixels from the
top of the element?

 4. What is the shorthand property to set the vertical margins to 1rem and the horizontal
 margins to 2rem?

 5. Where is the padding applied to an element?

 6. What non-shorthand properties would you use to set the padding of an element to 1 pixel
from the top, 2 pixels from the right, and 6 pixels from the left?

 7. What property would you use to align text to the vertical middle of the line?

 8. What does the text-align: justify; property do?

 9. How can you position a 50% wide paragraph to line up on the right side of the screen
(with the text aligned to the left)?

 10. Where would the text YOU ARE HERE display in the following HTML in a 640 × 480
screen?

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Where does the text go?</title>
 <style>
 div {
 width: 100px;
 height: 100px;
 border: solid red 2px;
 }
 p {
 width: 300px;
 text-align: center;
 }
 .left { float: left; }
 .right { float: right; }
 </style>
 </head>

Workshop 269

 <body>
 <div class="left"></div>
 <div class="right"></div>
 <p>YOU ARE HERE</p>
 </body>
</html>

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. You can use several entries. The first <div> uses the style property margin-right:15px.

The second <div> uses the style property margin-left:15px. Or you can assign the full
30 pixels to either <div> by using margin-right or margin-left, as appropriate. In
addition, at least the first <div> needs to have float:left assigned to it.

 2. In this instance, use clear:left.

 3. You would use padding-top:12px.

 4. You would use margin: 1rem 2rem;.

 5. The padding is applied inside the element.

 6. You would use padding-top: 1px;, padding-right: 2px;, and
padding-left: 6px;.

 7. You would use vertical-align: middle;.

 8. It lines up the text so that it is straight on both the right and left edges, with no rag.

 9. You would use p { float: right; }.

 10. The text would appear between the two boxes but closer to the left one.

http://www.informit.com/register

270 LESSON 9: Working with Margins, Padding, Alignment, and Floating

Exercises
N Fully understanding margins, padding, alignment, and floating takes practice. Using

your own color blocks code or <div> elements, practice all manner and sorts of
 spacing and floating before moving on to the next lesson. The next lesson discusses
the CSS box model as a whole, which encompasses the individual items discussed in
this lesson.

N While you’re at it, practice applying margins and padding to every block-level element
you’ve learned so far. Get used to putting images within blocks of text and putting
margins around the images so that the text does not run right up to the edge of
the graphic.

LESSON 10
Understanding the CSS Box

Model and Positioning

What You’ll Learn in This Lesson:

 N How to conceptualize the CSS box model

 N How to change the box model the browser uses

 N How to position your elements

 N How to control the way elements stack up

 N How to manage the flow of text

In the preceding lesson, we mentioned the CSS box model a few times. This lesson begins with

a discussion of the box model and explains how the information you learned in the preceding

 lesson helps you understand this model. It’s important to spend some time focusing on and prac-

ticing working with the box model because if you have a good handle on how the box model

works, you won’t tear your hair out when you create a design and then realize that the elements

don’t line up or that they seem a little “off.” You’ll know that, in almost all cases, something—the

margin, the padding, the border—just needs a little tweaking, or you may need to just check

which box model your page is using.

You’ll also learn more about CSS positioning, including stacking elements on top of each other

in a three-dimensional way (instead of a vertical way). Finally, you’ll learn a little more about

 controlling the flow of text around elements by using the float property.

The CSS Box Model
Every element in HTML is considered a “box,” whether it is a paragraph, a <div>, an image, or

something else. Boxes have consistent properties, whether we see them or not and whether the

style sheet specifies them or not. They’re always present, and as designers, we have to keep their

presence in mind when creating a layout.

Figure 10.1 is a diagram of the box model. The box model describes the way in which every HTML

block-level element has the potential for a border, padding, and margin and, specifically, how

the border, padding, and margin are applied. In other words, all elements have some padding

272 LESSON 10: Understanding the CSS Box Model and Positioning

between the content and the border of the element. In addition, the border might or might not

be visible, but space for it is there, just as there is a margin between the border of the element and

any other content outside the element.

MARGIN

BORDER

PADDING

CONTENT GOES HERE

FIGURE 10.1
Every element in HTML is represented by the CSS box model.

Here’s yet another explanation of the box model, going from the outside inward:

 N The margin is the area outside the element. It never has color; it is always transparent.

 N The border extends around the element, on the outer edge of any padding. The border can

be of several types, widths, and colors.

 N The padding exists around the content and inherits the background color of the content

area.

 N The content is surrounded by padding.

Here’s where the tricky part comes in: In the default box model, to know the true or rendered

height and width of an element, you have to take into account all the elements of the box model.

Think back to the example from the preceding lesson: Despite the specific indication that a <div>

should be 250 pixels wide and 100 pixels high, that <div> had to grow larger to accommodate

the padding in use. If you had added a border, those dimensions would have added to the width

and height of the rendered element as well.

The CSS Box Model 273

You already know how to set the width and height of an element by using the width and

height properties. The following example shows how to define a <div> that is 250 pixels wide

and 100 pixels high, with a red background and a black single-pixel border:

div {
 width: 250px;
 height: 100px;
 background-color: #ff0000;
 border: 1px solid #000000;
}

Figure 10.2 shows this simple <div>.

FIGURE 10.2
This is a simple <div>.

If we define a second element with these same properties but also add margin and padding

properties of a certain size, we begin to see how the size of the element changes. This is because of

the box model.

The second <div> is defined as follows, just adding 10 pixels of margin and 10 pixels of padding

to the element:

div#d2 {
 width: 250px;
 height: 100px;
 background-color: #ff0000;
 border: 5px solid #000000;
 margin: 10px;
 padding: 10px;
}

274 LESSON 10: Understanding the CSS Box Model and Positioning

The second <div>, shown in Figure 10.3, is defined as the same height and width as the first one,

but the overall height and width of the entire box surrounding the element itself is much larger

when margins and padding are put in play.

FIGURE 10.3
This is another simple <div>, but the box model affects the rendered size of the second <div>.

The total width the element takes up on the page is the sum of the following:

width + padding-left + padding-right + border-left + border-right +
margin-left + margin-right

The total height the element takes up on the page is the sum of the following:

height + padding-top + padding-bottom + border-top + border-bottom +
margin-top + margin-bottom

Therefore, the second <div> has an actual width of 300 (250 + 10 + 10 + 5 + 5 + 10 + 10) and an

actual height of 150 (100 + 10 + 10 + 5 + 5 + 10 + 10).

NOTE

Throughout this course, you’ve been drilled in the use of the doctype declaration, and each bit of
sample code includes a doctype. Continue this practice not only so that your code validates but
because a very specific issue arises with some older versions of Internet Explorer and the CSS box
model: If a doctype is not defined, some older versions of Internet Explorer manipulate the height
and width of your elements in a way you did not intend. This causes browser incompatibility issues
with your layout. So, remember to include a doctype.

Changing the Box Model 275

By now, you can begin to see how the box model affects your design. Let’s say that you have only

250 pixels of horizontal space, but you’d like 10 pixels of margin, 10 pixels of padding, and 5 pix-

els of border on all sides. To strike a balance between what you’d like and what you have room to

display, you must specify the width of your <div> as only 200 pixels so that 200 + 10 + 10 + 5 +

5 + 10 + 10 adds up to that 250 pixels of available horizontal space.

The mathematics of the model are important as well. In dynamically driven sites or sites in which

user interactions drive the client-side display (such as through JavaScript events), your server-side

or client-side code could draw and redraw container elements on the fly. In other words, your

code will produce the numbers, but you have to provide the boundaries.

NOTE

There is one other set of properties in the CSS box model: the outline properties:

 N outline

 N outline-width

 N outline-style

 N outline-color

 N outline-offset

The outline properties act just like the border properties except that they do not take up any space
in the box model. They also may not be rectangular.

Use these properties if you want to add a visible edge to elements without affecting the layout or
changing the box model. Note that outlines do not have rounded corners (with the border-radius
property) because they are not borders.

Changing the Box Model
At this point, you are probably wondering what the people who designed the CSS box model were

thinking. In most design models, you start out with a given amount of space and work within it

to position your elements. But with the default box model, you can stretch out well beyond your

given amount of space completely without realizing it.

This is especially true with layouts that use flexible widths such as percentages, rems, or ems. Take

this example:

div {
 width: 50%;
 height: 300px;
 float: left;
 padding: 0.25rem;
 border: solid 1px aqua;
}

276 LESSON 10: Understanding the CSS Box Model and Positioning

If you place two <div> elements in your HTML, you would expect them to line up side by side

as they both should take up 50%. But they do not. This is because, as you learned in the previous

section, the space the elements take up includes the padding, border, and margin. Luckily, CSS3

gives us a tool to change that: the box-sizing property.

This property takes one of two values:

 N content-box—The width and height values are assigned to the content box only, and

padding and border are added afterward. This is the default.

 N border-box—Any defined padding and border are included inside the assigned width

and height values. This used to be called “quirks mode.”

To make the previous example work, just add box-sizing: border-box;, and the two <div>

elements float side by side as expected.

NOTE

The box-sizing property does not have a “margin-box” value. If you need to create layouts with
variable widths or heights and fixed margins, you need to use a different layout style, such as
 flexible boxes. You will learn more about these in Lesson 12, “Creating Layouts Using Modern
CSS Techniques.”

Now that you’ve been schooled in the way of the box model, keep it in mind throughout the rest

of the work you do in these lessons and in your web design. Among other things, it will affect

 element positioning and content flow, which are the two topics we tackle next.

The Whole Scoop on Positioning
Relative positioning is the default type of positioning HTML uses. You can think of relative posi-

tioning as being akin to laying out checkers on a checkerboard: The checkers are arranged from

left to right, and when you get to the edge of the board, you move on to the next row. Elements

that are styled with the block value for the display style property are automatically placed

on a new row, whereas inline elements are placed on the same row, immediately next to the

element preceding them. As an example, <p> and <div> tags are considered block elements,

whereas the and <code> tags are considered inline elements. There is also a third type

of element—the inline-block element. The tag is the most commonly used element of

this type. Inline block elements are placed on the same row as other inline elements, but they can

have width and height associated with them, whereas inline elements cannot.

The other type of positioning CSS supports is known as absolute positioning because it enables you

to set the exact position of HTML content on a page. Although absolute positioning gives you the

freedom to spell out exactly where an element is to appear, the position is still relative to any

The Whole Scoop on Positioning 277

 parent elements that appear on the page. In other words, absolute positioning enables you to

specify the exact location of an element’s rectangular area with respect to its parent’s area, which

is very different from relative positioning.

With the freedom of placing elements anywhere you want on a page, you can run into the prob-

lem of overlap, when an element takes up space another element is using. Nothing is stopping

you from specifying the absolute locations of the elements so that they overlap. In this case, CSS

relies on the z-index of each element to determine which element is on the top and which is on

the bottom. You’ll learn more about the z-index of elements later in this lesson. For now, let’s look

at exactly how you control whether a style rule uses relative or absolute positioning.

The type of positioning a particular style rule uses is determined by the position property,

which can have any of the following four values:

 N relative—The element is positioned relative to its current position in the document flow.

 N absolute—The element is positioned based on its container element.

 N fixed—The element is positioned relative to the browser window.

 N static—The element is placed as it appears in the normal flow. This is the default.

NOTE

There is also another value, position: sticky;, which causes the element to toggle between
relative and fixed, depending on the scroll position. It is relative until a scrolling offset
 position is reached, and then it is fixed. You should use this with the -webkit browser prefix
(position: -webkit-sticky;) for widest support.

After specifying the type of positioning, you provide the specific position by using the following

properties:

 N left—The left position offset

 N right—The right position offset

 N top—The top position offset

 N bottom—The bottom position offset

You might think that these position properties make sense only for absolute positioning, but they

actually apply to all types of positioning except static. With relative positioning, the position of

an element is specified as an offset relative to the original position of the element. So, if you set

the left property of an element to 25px, the left side of the element shifts over 25 pixels from

its original (relative) position. An absolute position, on the other hand, is specified relative to the

parent of the element to which the style is applied. So, if you set the left property of an element

278 LESSON 10: Understanding the CSS Box Model and Positioning

to 25px under absolute positioning, the left side of the element appears 25 pixels to the right of

the parent element’s left edge. On the other hand, using the right property with the same value

positions the element so that its right side is 25 pixels to the right of the parent’s right edge.

You cannot set both horizontal or both vertical position properties on the same element. If you set

both the left and the right positions (or both top and bottom) on an element, the left and

top properties will take precedence in left-to-right documents.

Let’s return to the color-blocks example to see how positioning works. In Listing 10.1, the four

colored blocks have relative positioning specified. As you can see in Figure 10.4, the blocks are

positioned vertically.

LISTING 10.1 Showing Relative Positioning with Four Color Blocks

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Positioning the Color Blocks</title>
 <style>
 div {
 position: relative;
 width: 250px;
 height: 100px;
 border: 5px solid #000;
 color: black;
 font-weight: bold;
 text-align: center;
 }
 div#d1 {
 background-color: red;
 }
 div#d2 {
 background-color: green;
 }
 div#d3 {
 background-color: blue;
 }
 div#d4 {
 background-color: yellow;
 }
 </style>
 </head>
 <body>
 <div id="d1">DIV #1</div>
 <div id="d2">DIV #2</div>
 <div id="d3">DIV #3</div>

The Whole Scoop on Positioning 279

 <div id="d4">DIV #4</div>
 </body>
</html>

FIGURE 10.4
The colored blocks are positioned vertically, one on top of the other.

The style sheet entry for the <div> element sets the position style property for the <div>

 element to relative. Because the remaining style rules are inherited from the <div> style rule,

they inherit its relative positioning. In fact, the only difference between the div rule and the other

div#d1 through div#d4 rules is the different background colors.

Notice in Figure 10.4 that the <div> elements are displayed one after the next, which is what you

would expect with relative positioning. But to make things more interesting, which is what we’re

here to do, you can change the positioning to absolute and explicitly specify the placement of the

blocks. In Listing 10.2, the style sheet entries are changed to use absolute positioning to arrange

the color blocks.

LISTING 10.2 Using Absolute Positioning of the Color Blocks

<!doctype html>
<html lang="en">
 <head>

280 LESSON 10: Understanding the CSS Box Model and Positioning

 <meta charset="utf-8">
 <title>Positioning the Color Blocks</title>
 <style>
 div {
 position: absolute;
 width: 250px;
 height: 100px;
 border: 5px solid #000;
 color: black;
 font-weight: bold;
 text-align: center;
 }
 div#d1 {
 background-color: red;
 left: 0px;
 top: 0px;
 }
 div#d2 {
 background-color: green;
 left: 75px;
 top: 25px;
 }
 div#d3 {
 background-color: blue;
 left: 150px;
 top: 50px;
 }
 div#d4 {
 background-color: yellow;
 left: 225px;
 top: 75px;
 }
 </style>
 </head>
 <body>
 <div id="d1">DIV #1</div>
 <div id="d2">DIV #2</div>
 <div id="d3">DIV #3</div>
 <div id="d4">DIV #4</div>
 </body>
</html>

This style sheet sets the position property to absolute, which is necessary for the style sheet to

use absolute positioning. In addition, the left and top properties are set for each of the inher-

ited <div> style rules. However, the position of each of these rules is set so that the elements are

displayed overlapping each other, as Figure 10.5 shows.

Controlling the Way Things Stack Up 281

FIGURE 10.5
The color blocks are displayed using absolute positioning.

Now we’re talking layout! Figure 10.5 shows how absolute positioning enables you to place ele-

ments exactly where you want them. It also reveals how easy it is to arrange elements so that they

overlap. You might be curious about how a web browser knows which elements to draw on top

when they overlap.

The fixed position places an element inside the browser window and leaves it there. This is often

used as a type of watermark on web pages because the element will remain where it is positioned

on the page, and other page elements will scroll past it. Other elements will overlap the fixed

 element, but you can control where the element appears in the stack. The next section covers how

you can control stacking order.

Controlling the Way Things Stack Up
In certain situations, you want to carefully control the manner in which elements overlap each

other on a web page. The z-index style property enables you to set the order of elements with

respect to how they stack on top of each other. The name z-index might sound a little strange,

but it refers to the notion of a third dimension (z) that points into the computer screen, in addi-

tion to the two dimensions that go across (x) and down (y) the screen. Another way to think of

the z-index is to consider the relative position of a single magazine within a stack of magazines.

A magazine nearer the top of the stack has a higher z-index than a magazine lower in the stack.

Similarly, an overlapped element with a higher z-index is displayed on top of an element with a

lower z-index.

282 LESSON 10: Understanding the CSS Box Model and Positioning

The z-index property is used to set a numeric value that indicates the relative z-index of a style

rule. The number assigned to z-index has meaning only with respect to other style rules in a

style sheet, which means that setting the z-index property for a single rule doesn’t mean much.

On the other hand, if you set z-index for several style rules that apply to overlapped elements,

the elements with higher z-index values appear on top of elements with lower z-index values.

If you don’t set the z-index for an element, it is assumed to have a value of 0 with respect to

other elements with set z-index values.

NOTE

Regardless of the z-index value you set for a style rule, an element displayed with the rule will
always appear on top of its parent.

Listing 10.3 contains another version of the color-blocks style sheet and HTML that uses z-index

settings to alter the natural overlap of elements.

LISTING 10.3 Using z-index to Alter the Display of Elements in the Color-Blocks

Sample

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Positioning the Color Blocks</title>
 <style>
 div {
 position: absolute;
 width: 250px;
 height: 100px;
 border: 5px solid #000;
 color: black;
 font-weight: bold;
 text-align: center;
 }
 div#d1 {
 background-color: red;
 left: 0px;
 top: 0px;
 z-index: 0;
 }
 div#d2 {
 background-color: green;
 left: 75px;
 top: 25px;
 z-index: 3;
 }

Controlling the Way Things Stack Up 283

 div#d3 {
 background-color: blue;
 left: 150px;
 top: 50px;
 z-index: 2;
 }
 div#d4 {
 background-color: yellow;
 left: 225px;
 top: 75px;
 z-index: 1;
 }
 </style>
 </head>
 <body>
 <div id="d1">DIV #1</div>
 <div id="d2">DIV #2</div>
 <div id="d3">DIV #3</div>
 <div id="d4">DIV #4</div>
 </body>
</html>

The only change in this code from what you saw in Listing 10.2 is the addition of the z-index

property in each of the numbered div style classes. Notice that the first numbered div has a

z-index setting of 0, which should make it the lowest element in terms of the z-index, whereas

the second div has the highest z-index. Figure 10.6 shows the color-blocks page as displayed with

this style sheet, which clearly shows how the z-index affects the displayed content and makes it

possible to carefully control the overlap of elements.

FIGURE 10.6
Using z-index to alter the display of the color blocks.

284 LESSON 10: Understanding the CSS Box Model and Positioning

NOTE

The z-index property can be either positive or negative. So, if you want to force an item to be
below another, you would change the z-index to a negative integer such as -1. This allows you
to place positioned elements below other elements without explicitly setting the z-index for all of
them.

Although the examples show colored blocks that are simple <div> elements, the z-index style

property can affect any HTML content, including images.

Managing the Flow of Text
Now that you’ve seen some examples of placing elements relative to other elements or placing

them absolutely, it’s time to revisit the flow of content around elements. The conceptual current
line is an invisible line used to place elements on a page. This line has to do with the flow of ele-

ments on a page; it comes into play as elements are arranged next to each other across and

down the page. Part of the flow of elements is the flow of text on a page. When you mix text with

other elements (such as images), it’s important to control how the text flows around those other

 elements.

You’ve already seen two of these style properties in Lesson 9, “Working with Margins, Padding,

Alignment, and Floating.” Following are some style properties that give you control over

text flow:

 N float—Determines how text flows around an element

 N clear—Stops the flow of text around an element

 N overflow—Controls the overflow of text when an element is too small to contain

all the text

The float property controls how text flows around an element. It can be set to either left or

right. These values determine where to position an element with respect to flowing text. So, set-

ting an image’s float property to left positions the image to the left of flowing text.

As you learned in the preceding lesson, you can prevent text from flowing next to an element by

using the clear property, which you can set to none, left, right, or both. The default value

for the clear property is none, indicating that text is to flow with no special considerations

for the element. The left value causes text to stop flowing around an element until the left side

of the page is free of the element. Likewise, the right value means that text is not to flow

around the right side of the element. The both value indicates that text isn’t to flow around

either side of the element.

Q&A 285

The overflow property handles overflow text, which is text that doesn’t fit within its rectangular

area; this can happen if you set the width and height properties of an element too small. The

overflow property can be set to visible, hidden, or scroll. The visible setting automati-

cally enlarges the element so that the overflow text fits within it; this is the default setting for

the property. The hidden value leaves the element the same size, allowing the overflow text to

remain hidden from view. Perhaps the most interesting value is scroll, which adds scrollbars to

the element so that you can move around and see the text.

Summary
This lesson began with an important discussion about the CSS box model and how to calculate the

width and height of elements when considering margins, padding, and borders. You also learned

how to change the default box model by using the box-sizing property. The lesson continued

by tackling absolute positioning of elements, and you learned about positioning using z-index.

You then learned about a few nifty style properties that enable you to control the flow of text on

a page.

This lesson is brief but chock-full of fundamental information about controlling the design of your

site. It is worth rereading and working through the examples so that you have a good foundation

for your work.

Q&A
 Q. An awful lot of web pages talk about the “box model hack” regarding margins and padding.

Are you sure I don't have to use a hack?

 A. At the beginning of this lesson, you learned that the HTML and CSS in this lesson (and
others) all look the same in the current versions of the major web browsers. This is the
product of several years of web developers having to do code hacks and other tricks before
modern browsers began handling things according to CSS specifications rather than their
own idiosyncrasies. In addition, there is a growing movement to rid Internet users of the
very old web browsers that necessitated most of these hacks in the first place. So although
we wouldn’t necessarily advise you to design only for the current versions of the major web
browsers, we also wouldn’t recommend that you spend a ton of time implementing hacks
for the older versions of browsers—which fewer than 2% of those on the Internet use, by
the way. You should continue to write solid code that validates and adheres to design prin-
ciples, test your pages in a suite of browsers and devices that best reflect your audience,
and release your site to the world.

286 LESSON 10: Understanding the CSS Box Model and Positioning

 Q. How would I determine when to use relative positioning and when to use absolute

 positioning?

 A. Although there are no set guidelines regarding the use of relative versus absolute position-
ing, the general idea is that absolute positioning is required only when you want to exert
a finer degree of control over how content is positioned. This has to do with the fact that
absolute positioning enables you to position content down to the exact pixel, whereas rela-
tive positioning is much less predictable in terms of how it positions content. This isn’t
to say that relative positioning can’t do a good job of positioning elements on a page; it
just means that absolute positioning is more exact. Of course, this also makes absolute
positioning potentially more susceptible to changes in screen size, which you can’t really
 control.

 Q. If I don’t specify the z-index of two elements that overlap each other, how do I know which

element will appear on top?

 A. If the z-index property isn’t set for overlapping elements, the element that appears later
in the web page will appear on top. The easy way to remember this is to think of a web
browser drawing each element on a page as it reads it from the HTML document; elements
read later in the document are drawn on top of those that were read earlier.

Workshop
The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered.

Quiz
 1. What’s the difference between relative positioning and absolute positioning?

 2. Which CSS style property controls the manner in which elements overlap each other?

 3. What HTML code could you use to display the words Where would you like to
starting exactly at the upper-left corner of the browser window and display the words GO
TODAY? in large type exactly 80 pixels down and 20 pixels to the right of the same corner?

 4. How do you place an element so that it stays halfway down the browser window and on the
right side and doesn’t move with scrolling?

 5. What is another term for the border-box box model?

 6. What are the four parts of the box model?

 7. What is the default box-sizing value?

 8. Can you specify both the left and right or both the top and bottom positions in absolute
positioning?

Workshop 287

 9. How can you stop text from flowing around a left floated element?

 10. What happens to content that overfills the content area when the overflow: hidden;
property is set?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. In relative positioning, content is displayed according to the flow of a page, with each

 element physically appearing after the element preceding it in the HTML code. Absolute
positioning, on the other hand, enables you to set the exact position of content on a page.

 2. The z-index style property controls the manner in which elements overlap each other.

 3. You can use this code:

Where would you like to
<h1 style="position:absolute;left:80px;top:20px;">GO TODAY?</h1>

 4. Use the following CSS:

position: fixed;
top: 50%;
right: 0;

 5. The border-box box model is sometimes called “quirks mode.”

 6. The four parts of the box model are margin, border, padding, and content.

 7. The default box-sizing value is content-box.

 8. No, if you set both, the left or top statements will have precedence in left-to-right
 documents.

 9. Set the clear: left; property.

 10. The content disappears from sight on the screen. However, it is still visible in the
HTML code.

http://www.informit.com/register

288 LESSON 10: Understanding the CSS Box Model and Positioning

Exercises
 N Practice working with the intricacies of the CSS box model by creating a series of

elements with different margins, padding, and borders and see how these properties
affect their height and width.

 N Find a group of images that you like and use absolute positioning and maybe even some
z-index values to arrange them in a sort of gallery. Try to place your images so that
they form a design (such as a square, triangle, or circle).

 N Add a watermark image to a page with the position: fixed; and z-index
properties.

LESSON 11
Using CSS to Do More with
Lists, Text, and Navigation

What You’ll Learn in This Lesson:

 N How the CSS box model affects lists

 N How to customize the list item indicator

 N How to use list items and CSS to create an image map

 N How navigation lists differ from regular lists

 N How to create vertical navigation with CSS

 N How to create horizontal navigation with CSS

In Lesson 6, “Working with Fonts, Text Blocks, Lists, and Tables,” you were introduced to three

types of HTML lists, and in Lesson 9, “Working with Margins, Padding, Alignment, and Floating,”

you learned about margins, padding, and alignment of elements. In this lesson, you will learn

how margins, padding, and alignment styles can be applied to different types of HTML lists,

which will help you produce some powerful design elements purely in HTML and CSS.

Specifically, you will learn how to modify the appearance of list elements—beyond the use of the

list-style-type property that you learned in Lesson 6—and how to use a CSS-styled list to

replace the client-side image maps you learned about in Lesson 8, “Working with Colors, Images,

and Multimedia.” You will put into practice many of the CSS styles you’ve learned thus far, and

the knowledge you will gain in this lesson will lead directly into using lists for more than just sim-

ply presenting a bulleted or numbered set of items. You will learn a few of the many ways to use

lists for vertical or horizontal navigation, including how to use lists to create drop-down menus.

The methods explained in this lesson represent a very small subset of the numerous and varied

navigation methods you can create using lists. However, the concepts are all similar; different

results come from your own creativity and application of these basic concepts. To help you get

your creative juices flowing, we will provide pointers to other examples of CSS-based navigation at

the end of this lesson.

290 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

HTML List Refresher
As you learned in Lesson 6, there are three basic types of HTML lists. Each presents content in a

slightly different way, based on its type and the context:

 N Ordered list—This type of list is an indented list that displays numbers or letters before each

list item. An ordered list is surrounded by and tags, and list items are enclosed

in the tag pair. This list type is often used to display numbered steps or levels

of content.

 N Unordered list—This type of list is an indented list that displays a bullet or another symbol

before each list item. An unordered list is surrounded by and tags, and list

items are enclosed in the tag pair. This list type is often used to provide a visual

cue that brief, yet specific, bits of information will follow.

 N Definition list—This type of list is often used to display terms and their meanings, thereby

providing information hierarchy within the context of the list itself—much like an ordered

list but without the numbering. A definition list is surrounded by <dl> and </dl> tags,

with <dt> and </dt> tags enclosing the term and <dd> and </dd> tags enclosing the

definitions.

When the content warrants it, you can nest your ordered and unordered lists—or place lists within

other lists. Nested lists produce a content hierarchy, so reserve their use for when your content

actually has a hierarchy you want to display (such as content outlines or tables of contents). Or,

as you will learn later in this lesson, you can use nested lists when your site navigation contains

 sub-navigational elements.

How the CSS Box Model Affects Lists
Specific list-related styles include list-style-image (for placement of an image as a list-item

marker), list-style-position (indicating where to place the list-item marker), and

list-style-type (the type of list-item marker itself). But while these styles control the struc-

ture of the list and list items, you can use margin, padding, color, and background-color

styles to achieve even more specific displays with your lists.

NOTE

Some older browsers handle margins and padding differently, especially around lists and list items.
However, at the time of writing, the HTML and CSS in this and other lessons in this course are
displayed identically in current versions of the major web browsers (Apple Safari, Google Chrome,
Microsoft Edge, Mozilla Firefox, and Opera). Of course, you should still review your web content in all
browsers before you publish it online, but the need for “hacking” style sheets to accommodate the
rendering idiosyncrasies of browsers is effectively a thing of the past.

How the CSS Box Model Affects Lists 291

In Lesson 9, you learned that every element has some padding between the content and the bor-

der of the element; you also learned there is a margin between the border of the element and any

other content. This is true for lists, and when you are styling lists, you must remember that a “list”

is actually made up of two elements: the parent list element type (or) and the indi-

vidual list items themselves. Each of these elements has margins and padding that can be affected

by a style sheet.

The examples in this lesson show you how different CSS styles affect the visual display of HTML

lists and list items. Keep these basic differences in mind as you practice working with lists in this

lesson, and you will be able to use lists to achieve advanced visual effects in site navigation.

Listing 11.1 creates a basic list containing three items. In this listing, the unordered list itself (the

) is given a blue background, a black border, and a specific width of 100 pixels, as shown in

Figure 11.1. The list items (the individual items) have a gray background and a yellow

border. The list item text and indicators (the bullet) are black.

LISTING 11.1 Creating a Basic List with Color and Border Styles

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List Test</title>
 <style>
 ul {
 background-color: #6666ff;
 border: 1px solid #000000;
 width: 100px;
 }
 li {
 background-color: #cccccc;
 border: 1px solid #ffff00;
 }
 </style>
 </head>
 <body>
 <h1>List Test</h1>

 Item #1
 Item #2
 Item #3

 </body>
</html>

292 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

FIGURE 11.1
Styling the list and list items with colors and borders.

As Figure 11.1 shows, the creates a box in which the individual list items are placed. In this

example, the entirety of the box has a blue background (background-color: #6666ff;).

But also note that the individual list items—in this example, they use a gray background

 (background-color: #cccccc;) and a yellow border (border: 1px solid #000000;)—

do not extend to the left edge of the box created by the .

This is because browsers automatically add a certain amount of padding to the left side of the

. Browsers don’t add padding to the margin, because that would appear around the out-

side of the box. They add padding inside the box and only on the left side. That padding value is

approximately 40 pixels.

NOTE

You can test the default padding-left value as displayed by different browsers by creating a
simple test file such as the one shown in Listing 11.1 and then adding padding-left: 40px;
to the declaration for the ul selector in the style sheet. If you reload the page and the display
does not change, you know that your test browser uses 40 pixels as a default value for
padding-left.

The default left-side padding value remains the same, regardless of the type of list and regardless

of what box model you use (see box-sizing in Lesson 10, “Understanding the CSS Box Model

and Positioning”). If you add the following line to the style sheet, creating a list with no item

indicators, you will find that the padding remains the same (see Figure 11.2):

list-style-type: none;

How the CSS Box Model Affects Lists 293

FIGURE 11.2
The default left-side padding remains the same with or without list item indicators.

When you are creating a page layout that includes lists of any type, play around with padding to

place the items “just so” on the page. Similarly, just because no default margin is associated with

lists doesn’t mean you can’t assign some to the display; adding margin values to the declaration

for the ul selector provides additional layout control.

But remember that so far, we’ve worked with only the list definition itself; we haven’t worked

with the application of styles to the individual list items. In Figures 11.1 and 11.2, the gray back-

ground and yellow border of the list item show no default padding or margin. Figure 11.3 shows

the different effects created by applying padding or margin values to list items rather than the

overall list “box” itself.

FIGURE 11.3
Different values affect the padding and margins on list items.

294 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

The first list item is the base item, with no padding or margin applied to it. The second list item

uses a class called padded, defined in the style sheet as padding: 6px;, and you can see the

6 pixels of padding on all sides (between the content and the yellow border surrounding the ele-

ment). Note that the placement of the bullet remains the same as the placement of the first list

item. The third list item uses a class called margined, defined in the style sheet as margin:
6px;, to apply 6 pixels of margin around the list item; this margin allows the blue background of

the to show through.

Placing List Item Indicators
All this talk of margins and padding raises another issue: the control of list item indicators (when

used) and how text should wrap around them (or not). The default value of the list-style-
position property is outside. This placement means that the bullets, numbers, and other

 indicators are kept to the left of the text, outside the box created by the tag pair. When

text wraps within the list item, it wraps within that box and remains flush left with the left border of

the element.

But when the value of list-style-position is inside, the indicators are inside the box cre-

ated by the tag pair. Not only are the list item indicators then indented further (they

essentially become part of the text), the text wraps beneath each item indicator.

Figure 11.4 shows an example of both outside and inside list style positions. The only changes

between Listing 11.1 and the code used to produce the example in Figure 11.4 (not including the

filler text added to Item #2 and Item #3) is that the second list item uses a class called outside,

defined in the style sheet as list-style-position: outside;, and the third list item uses a

class called inside, defined in the style sheet as list-style-position: inside;.

FIGURE 11.4
The difference between outside and inside values for list-style-position.

Placing List Item Indicators 295

The additional filler text used for the second list item shows how the text wraps when the width

of the list is defined as a value that is too narrow to display all on one line. You could achieve

the same result without using list-style-position: outside; because that is the default

value of list-style-position without any explicit statement in the code.

However, you can clearly see the difference when the inside position is used. In the third list

item, the bullet and the text are both within the gray area bordered by yellow—the list item itself.

Margins and padding affect list items differently when the value of list-style-position is

inside (see Figure 11.5).

FIGURE 11.5
Margins and padding change the display of items using the inside value for list-style-position.

In Figure 11.5, the second and third list items both have a list-style-position value of

inside. However, the second list item has a margin-left value of 12 pixels (12px), and

the third list item has a padding-left value of 12 pixels. Although both content blocks (list

 indicator plus the text) show text wrapped around the bullet, and the placement of these blocks

within the gray area defining the list item is the same, the affected area is the list item within

the list itself.

As you would expect, the list item with the margin-left value of 12 pixels displays 12 pixels of

blue showing through the transparent margin surrounding the list item. Similarly, the list item

with the padding-left value of 12 pixels displays 12 pixels of gray background (of the list item)

before the content begins. Padding is within the element; the margin is outside the element.

By understanding the way margins and padding affect both list items and the list in which they

appear, you can create navigation elements in your website that are pure CSS and do not rely on

external images. Later in this lesson, you’ll learn how to create both vertical and horizontal navi-

gation menus, as well as menu drop-downs.

296 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

NOTE

Remember that you can always use background colors when you’re testing your designs to remind
yourself which margins and paddings affect what inside lists. Once you’ve got the settings correct,
remove the background colors or change them to fit your design.

Creating Image Maps with List Items and CSS
In Lesson 8 you learned how to create client-side image maps using the <map> element in HTML.

Image maps enable you to define an area of an image and assign a link to that area (rather than

having to slice an image into pieces, apply links to individual pieces, and stitch the image back

together in HTML). However, you can also create an image map purely out of valid HTML and CSS.

The code in Listing 11.2 produces the image map that Figure 11.6 shows. When the code is ren-

dered in a web browser, it simply looks like a web page with an image placed in it. The actions

happen when your mouse hovers over a “hot” area, as you can see in Figure 11.6: The thick,

dashed yellow border and image alt text show the area the mouse is hovering over, and in the

lower left of the browser window, you can see the URL assigned to that hotspot.

LISTING 11.2 Creating an Image Map Using CSS

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>CSS Image Map Example</title>
 <style>
 #theImg {
 width: 400px;
 height: 500px;
 background: url(pets-collage.jpg) no-repeat;
 position: relative;
 border: 1px solid #000000;
 margin: 0 auto;
 }
 #theImg ul {
 margin: 0px;
 padding: 0px;
 list-style: none;
 }
 #theImg a {
 position: absolute;
 text-indent: -1000em;
 }
 #theImg a:hover {
 border: 4px dashed #ffff00;
 }
 #mc a {
 top: 0px;
 left: 0px;

Creating Image Maps with List Items and CSS 297

 width: 231px;
 height: 146px;
 }
 #su a {
 top: 0px;
 left: 236px;
 width: 164px;
 height: 250px;
 }
 #st a {
 top: 150px;
 left: 0px;
 width: 231px;
 height: 100px;
 }
 #di a {
 top: 255px;
 left: 0px;
 width: 160px;
 height: 245px;
 }
 #sh a {
 top: 255px;
 left: 165px;
 width: 235px;
 height: 110px;
 }
 #au a {
 top: 370px;
 left: 165px;
 width: 235px;
 height: 130px;
 }
 </style>
 </head>
 <body>
 <div id="theImg">

 <li id="mc"><a href="[some URL]"
 title="McKinley">McKinley
 <li id="su"><a href="[some URL]"
 title="Suni">Suni
 <li id="st"><a href="[some URL]"
 title="Stormageddon">Stormageddon
 <li id="di"><a href="[some URL]"
 title="Diamond">Diamond
 <li id="sh"><a href="[some URL]"
 title="Shasta">Shasta / Inara
 <li id=”au”><a href=”[some URL]”
 title=”Auto”>Suni / Auto

298 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

 </div>
 </body>
</html>

FIGURE 11.6
CSS enables you to define hotspots in an image map.

As Listing 11.2 shows, the style sheet has quite a few entries, but the actual HTML is quite short.

List items are used to create several distinct clickable areas; those “areas” are list items that are

assigned a specific height and width and then placed over an image that sits in the background.

If the image is removed from the background of the <div> that surrounds the list, the list items

still exist and are still clickable.

Let’s walk through the style sheet so that you understand the pieces that make up this HTML and

CSS image map, which is—at its most basic level—just a list of links.

The list of links is enclosed in a <div> named theImg. In the style sheet, this <div> is defined as

a block element that is 400 pixels wide and 500 pixels high, with a 1-pixel solid black border. The

background of this element is an image named pets-collage.jpg that is placed in one posi-

tion and does not repeat (background: url (‘pets-collage.jpg’) no-repeat;). The

next bit of HTML that you see is the beginning of the unordered list (). In the style sheet, this

unordered list is given margin and padding values of 0 pixels all around and a list-style of

none—list items will not be preceded by any icon.

How Navigation Lists Differ from Regular Lists 299

The list item text itself never appears to the user because of this trick in the style sheet entry for all

<a> tags within the <div>:

text-indent: -1000em;

By indenting the text negative 1,000 ems, you can be assured that the text will never appear. It

does exist, but it exists in a nonviewable area 1,000 ems to the left of the browser window.

In other words, if you raise your left hand and place it to the side of your computer moni-

tor, text-indent:-1000em; places the text somewhere to the left of your pinky finger. But

that’s what we want because we don’t need to see the text link. We just need an area to be

defined as a link so that the user’s cursor changes as it does when rolling over any link in

a website.

When the user’s cursor hovers over a list item containing a link, that list item shows a 4-pixel

 border that is dashed and yellow, thanks to this entry in the style sheet:

#theImg a:hover {
 border: 4px dashed #ffff00;
}

The list items themselves are then defined and placed in specific positions based on the areas of

the image that are supposed to be the clickable areas. For example, the list item with the di ID,

for Diamond—the name of the item shown in the figure—has its top-left corner placed 255 pixels

from the top of the <div> and 0 pixels in from the left edge of the <div>. This list item is

160 pixels wide and 245 pixels high. Similar style declarations are made for the #mc, #su,

#st, #sh, and #au list items so that the linked areas associated with those IDs appear in certain

positions relative to the image.

How Navigation Lists Differ from
Regular Lists
When we talk about using lists to create navigation elements, we really mean using CSS to display

content in the way website visitors expect navigation to look—in short, different from simple bul-

leted or numbered lists. Although it is true that a set of navigation elements is essentially a list

of links, those links are typically displayed in a way that makes it clear that users should interact

with the content:

 N The user’s mouse cursor will change to indicate that the element is clickable.

 N The area around the element changes appearance when the mouse hovers over it.

 N The content area is visually set apart from regular text.

Older methods of creating navigation tended to rely on images—such as graphics with beveled

edges and the use of contrasting colors for backgrounds and text—plus client-side programming

300 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

with JavaScript to handle image swapping based on mouse actions. But using pure CSS to cre-

ate navigation from list elements produces a more usable, flexible, and search engine–friendly

 display that is accessible by users using all manner and sorts of devices.

Regardless of the layout of your navigational elements—horizontal or vertical—this lesson

 discusses two levels of navigation: primary and secondary. Primary navigation takes users to the

introductory pages of main sections of the site; secondary navigation takes users to pages within

a certain section of the site.

Creating Vertical Navigation with CSS
Depending on your site architecture—both the display template you have created and the manner

in which you have categorized the information in the site—you might find yourself using vertical

navigation for either primary navigation or secondary navigation.

For example, suppose you have created a website for your company and the primary sections are

About Us, Products, Support, and Press. Within the primary About Us section, you might have sev-

eral other pages, such as Mission, History, Executive Team, and Contact Us; these other pages are

the secondary navigation within the primary About Us section.

Listing 11.3 sets up a basic secondary page with vertical navigation on the side of the page and

content in the middle of the page. The links in the side and the links in the content area of the

page are basic HTML list elements.

Listing 11.3 and the example shown in Figure 11.7 provide a starting point for showing how CSS

enables you to transform two similar HTML structures into two different visual displays (and thus

two different contexts).

LISTING 11.3 Basic Page with Vertical Navigation in a List

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>About Us</title>

 <style>

 body {

 font: 12pt Verdana, Arial, Georgia, sans-serif;

 }

 nav {

 width: 150px;

 float: left;

Creating Vertical Navigation with CSS 301

 margin-top: 12px;

 margin-right: 18px;

 }

 section {

 width: 550px;

 float: left;

 }

 </style>

 </head>

 <body>

 <nav>

 Mission

 History

 Executive Team

 Contact Us

 </nav>

 <section>

 <header>

 <h1>About Us</h1>

 </header>

 <p>On the introductory pages of main sections, it can be useful

 to repeat the secondary navigation and provide more context,

 such as:</p>

 Mission: Learn more about our corporate

 mission and philanthropic efforts.

 History: Read about our corporate history

 and learn how we grew to become the largest widget maker

 in the country.

 Executive Team: Our team of executives makes

 the company run like a well-oiled machine (also useful for

 making widgets).

 Contact Us: Here you can find multiple

 methods for contacting us (and we really do care what you

 have to say).

 </section>

 </body>

</html>

302 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

FIGURE 11.7
The starting point: an unstyled list navigation.

The contents of this page are set up in two sections: a <nav> element containing navigation and

a single <section> element containing the primary text of the page. The only styles assigned

to anything in this basic page are the width, margin, and float values associated with each

 element. No styles have been applied to the list elements.

To differentiate between the links present in the list in the content area and the links present in

the list in the side navigation, add the following styles to the style sheet:

nav a {
 text-decoration: none;
}
section a {
 text-decoration: none;
 font-weight: bold;
 }

These styles simply say that all <a> links in the <nav> have no underline, and all <a> links in the

<section> have no underline and are bold. Figure 11.8 shows the difference.

Creating Vertical Navigation with CSS 303

FIGURE 11.8
Differentiating the list elements using CSS.

But to really make the side navigation list look like something special, you have to dig deeper into

the style sheet.

Styling the Single-Level Vertical Navigation
The goal with this particular set of navigation elements is simply to present them as a block of

links without bullets and with background and text colors that change depending on their link

state (regular link, visited link, hovering over the link, or activated link—covered in Lesson 7,

“Using External and Internal Links”). The first step in the process is already complete: separat-

ing the navigation from the content. We’ve done that by putting the navigation in a <nav>

 element.

Next, we need to modify the that defines the link within the <nav> element. Let’s take

away the list indicator and ensure that there is no extra margin or padding hanging around

besides the top margin. That top margin is used to line up the top of the navigation with the top

of the “About Us” header text in the content area of the page:

nav ul {
 list-style: none;
 margin: 12px 0px 0px 0px;;
 padding: 0px;
}

304 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

Because the navigation list items themselves will appear as colored areas, we give each list item a

bottom border so that some visual separation of the content can occur:

nav li {
 border-bottom: 1px solid #ffffff;
}

Now on to building the rest of the list items. The idea is that when the list items simply sit there

acting as links, they are a special shade of blue with bold white text (although they are a smaller

font size than the body text itself). To achieve that effect, we add the following:

nav li a:link, nav li a:visited {
 font-size: 10pt;
 font-weight: bold;
 display: block;
 padding: 3px 0px 3px 3px;
 background-color: #628794;
 color: #ffffff;
}

All the styles used previously should be familiar to you, except perhaps for display: block;

in the style sheet entry. Setting the display property to block ensures that the entire

 element is in play when a user hovers a mouse over it. Figure 11.9 shows the vertical list menu

with these new styles applied to it.

FIGURE 11.9
The vertical list is starting to look like a navigation menu.

Creating Vertical Navigation with CSS 305

When the user’s mouse hovers over a navigational list element, the idea is for some visual

change to take place so that the user knows that the element is clickable. This is akin to how

most software menus change color when a user’s cursor hovers over the menu items. In this

case, we’ll change the background color of the list item and change the text color of the list

item so that they are different from the blue and white shown previously:

nav li a:hover, nav li a:active {
 font-size: 10pt;
 font-weight: bold;
 display: block;
 padding: 3px 0px 3px 3px;
 background-color: #c1a02e;
 color: #000000;
}

Figure 11.10 shows the results of all the stylistic work so far. A few entries in a style sheet have

transformed the simple list into a visually differentiated menu.

FIGURE 11.10
The list items now change color when the mouse hovers over them.

Styling the Multilevel Vertical Navigation
What if the site architecture calls for another level of navigation that we want users to see at

all times? That is represented by nested lists (which you learned about in previous lessons) and

306 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

more style sheet entries. In this case, assume that there are four navigation elements under the

Executive Team link. In the HTML, modify the list as shown here:

 Mission
 History
 Executive Team

 » CEO
 » CFO
 » COO
 » Other Minions

 Contact Us

This code produces a nested list under the Executive Team link (see Figure 11.11). The »

HTML entity produces the right-pointing arrows that are displayed before the text in the new links.

FIGURE 11.11
Creating a nested navigation list (but one that is not yet styled well).

The new items appear as block elements within the list, but the hierarchy of information is not visually

represented. To add some sort of visual element that identifies these items as sub-navigational ele-

ments attached to the Executive Team link, we modify the style sheet again to add some indentation.

But before doing that, we need to modify some of the other style sheet entries as well. In the pre-

ceding section, we added selectors such as nav ul and nav li, which indicate “all in the

Creating Vertical Navigation with CSS 307

<nav> element” and “all in the <nav> element,” respectively. However, we now have two

instances of and another set of elements within the <nav> element, all of which we

want to appear different from the original set.

To ensure that both sets of list items are styled appropriately, make sure that the style sheet

 selectors clearly indicate the hierarchy of the lists. To do that, use entries such as nav ul and

nav ul li for the first level of lists and use nav ul ul and nav ul ul li for the second

level of lists. Listing 11.4 shows the new version of style sheet entries and the HTML that produces

the menu shown in Figure 11.12.

LISTING 11.4 Multilevel Vertical Navigation in a List

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>About Us</title>
 <style>
 body {
 font: 12pt Verdana, Arial, Georgia, sans-serif;
 }
 nav {
 width: 150px;
 float: left;
 margin-top: 12px;
 margin-right: 18px;
 }
 section {
 width: 550px;
 float: left;
 }
 nav a {
 text-decoration: none;
 }
 section a {
 text-decoration: none;
 font-weight: bold;
 }
 nav ul {
 list-style: none;
 margin: 12px 0px 0px 0px;
 padding: 0px;
 }
 nav ul li {
 border-bottom: 1px solid #ffffff;
 }
 nav ul li a:link, nav ul li a:visited {
 font-size: 10pt;
 font-weight: bold;

308 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

 display: block;
 padding: 3px 0px 3px 3px;
 background-color: #628794;
 color: #ffffff;
 }
 nav ul li a:hover, nav ul li a:active {
 font-size: 10pt;
 font-weight: bold;
 display: block;
 padding: 3px 0px 3px 3px;
 background-color: #c1a02e;
 color: #000000;
 }
 nav ul ul {
 margin: 0px;
 padding: 0px;
 }
 nav ul ul li {
 border-bottom: none;
 }
 nav ul ul li a:link, nav ul ul li a:visited {
 font-size: 8pt;
 font-weight: bold;
 display: block;
 padding: 3px 0px 3px 18px;
 background-color: #628794;
 color: #ffffff;
 }
 nav ul ul li a:hover, nav ul ul li a:active {
 font-size: 8pt;
 font-weight: bold;
 display: block;
 padding: 3px 0px 3px 18px;
 background-color: #c1a02e;
 color: #000000;
 }
 </style>
 </head>
 <body>
 <nav>

 Mission
 History
 Executive Team

 » CEO
 » CFO
 » COO
 » Other Minions

Creating Vertical Navigation with CSS 309

 Contact Us

 </nav>
 <section>
 <header>
 <h1>About Us</h1>
 </header>
 <p>On the introductory pages of main sections, it can be useful
 to repeat the secondary navigation and provide more context,
 such as:</p>

 Mission: Learn more about our corporate
 mission and philanthropic efforts.
 History: Read about our corporate history
 and learn how we grew to become the largest widget maker
 in the country.
 Executive Team: Our team of executives makes
 the company run like a well-oiled machine (also useful for
 making widgets).
 Contact Us: Here you can find multiple
 methods for contacting us (and we really do care what you
 have to say.)

 </section>
 </body>
</html>

FIGURE 11.12
Creating two levels of vertical navigation using CSS.

310 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

The different ways of styling vertical navigation are limited only by your creativity. You can

use colors, margins, padding, background images, and any other valid CSS to produce vertical

 navigation that is quite flexible and easily modified. If you type CSS vertical navigation in your

search engine, you will find thousands of examples—and they are all based on the simple prin-

ciples you’ve learned in this lesson.

Creating Horizontal Navigation with CSS
The lessons on navigation began with vertical navigation because the concept of converting a list

into navigation is easier to grasp when the navigation still looks like a list of items that you might

write vertically on a piece of paper, like a grocery list. When creating horizontal navigation, you

still use HTML list elements, but instead of a vertical display achieved by using the inline value

of the display property for both the and the elements, use the block value of the

display property. It really is as simple as that.

Listing 11.5 shows a starting point for a page featuring horizontal navigation. The page contains

a <header> element for a logo and navigation and a <section> element for content. Within

the <header> element, a <div> containing a logo is floated next to a <nav> element containing

the navigational links. The list that appears in the <nav> element has a display property value

of inline for both the list and the list items. You can see these elements and their placement in

Figure 11.13.

LISTING 11.5 Basic Horizontal Navigation from a List

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>ACME Widgets LLC</title>
 <style>
 body {
 font: 12pt Verdana, Arial, Georgia, sans-serif;
 }
 header {
 width: auto;
 }
 #logo {
 float: left;
 }
 nav {
 float: left;
 }

Creating Horizontal Navigation with CSS 311

 nav ul {
 list-style: none;
 display: inline;
 }
 nav li {
 display: inline;
 }
 section {
 width: auto;
 float: left;
 clear: left;
 }
 section a {
 text-decoration: none;
 font-weight: bold;
 }
 </style>
 </head>
 <body>
 <header>
 <div id="logo">

 </div>
 <nav>

 About Us
 Products
 Support
 Press

 </nav>
 </header>
 <section>
 <p>ACME Widgets LLC is the greatest widget-maker
 in all the land.</p>
 <p>Don't believe us? Read on...</p>

 About Us: We are pretty great.
 Products: Our products are the best.
 Support: It is unlikely you will need support,
 but we provide it anyway.
 Press: Read what others are saying (about how
 great we are).

 </section>
 </body>
</html>

312 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

FIGURE 11.13
Creating functional—but not necessarily beautiful—horizontal navigation using inline list elements.
(Credit: Kjpargeter/Shutterstock)

Modifying the display of this list occurs purely through CSS; the structure of the content within

the HTML itself is already set. To achieve the desired display, use the following CSS:

nav {
 float:left;
 margin: 85px 0px 0px 0px;
 width: 400px;
 background-color: #628794;
 border: 1px solid black;
}

First, the <nav> element is modified to be a particular width, it displays a background color and

border, and uses a top margin of 85 pixels (so that it displays near the bottom of the logo).

The definition for the remains the same as in Listing 11.5 except for the changes in margin

and padding:

nav ul {
 margin: 0px;
 padding: 0px;
 list-style: none;
 display: inline;
}

The definition for the remains the same as in Listing 11.5 except that it has been given a

line-height value of 1.8em:

nav li {

Creating Horizontal Navigation with CSS 313

 display: inline;
 line-height: 1.8em;
}

The link styles are similar to those used in the vertical navigation; these entries have different

padding values, but the colors and font sizes remain the same:

nav ul li a:link, nav ul li a:visited {
 font-size: 10pt;
 font-weight: bold;
 text-decoration: none;
 padding: 7px 10px 7px 10px;
 background-color: #628794;
 color: #ffffff;
}
nav ul li a:hover, nav ul li a:active {
 font-size: 10pt;
 font-weight: bold;
 text-decoration: none;
 padding: 7px 10px 7px 10px;
 background-color: #c6a648;
 color: #000000;
}

Putting these styles together produces the display shown in Figure 11.14.

FIGURE 11.14
Creating horizontal navigation with some style. (Credit: Kjpargeter/Shutterstock)

314 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

When the user rolls over the navigation elements, the background and text colors change in the

same way they did when the user hovered the mouse over the vertical navigation menu earlier

in this lesson. Also, just as with the vertical navigation menu, you can use nested lists to produce

drop-down functionality in your horizontal menu. Try it yourself!

Summary
This lesson began with examples of how lists and list elements are affected by padding and mar-

gin styles. You first learned about the default padding associated with lists and how to control

that padding. Next, you learned how to modify padding and margin values and how to place the

list item indicator either inside the list item or outside it, so you could begin to think about how

styles and lists can affect your overall site design. Finally, you learned how to leverage lists and list

elements to create a pure HTML and CSS image map, thus reducing the need for slicing up linked

images or using the <map> element.

After learning to “think outside the (list) box,” if you will, you learned how to use unordered lists

to produce horizontal or vertical navigation within your website. By using CSS instead of graph-

ics, you have more flexibility in both the display and maintenance of your site. In this lesson, you

learned that with a few entries in your style sheet, you can turn plain underlined text links into

areas with borders and background colors and other text styles. In addition, you learned how to

present nested lists within menus.

Q&A
 Q. Creating CSS image maps seems like a lot of work. Is the <map> element so bad?

 A. The <map> element isn’t at all bad, and it is valid HTML5. The determination of coordinates
used in client-side image maps can be difficult, however, especially without graphics soft-
ware or software intended for the creation of client-side image maps. The CSS version gives
you more options for defining and displaying clickable areas, only one of which you’ve
seen here.

 Q. Can I use graphics in the navigation menus as a custom list indicator?

 A. Yes. You can use graphics within the HTML text of the list item or as background images
within the element. You can style your navigation elements just as you style any
other list element. The only differences between an HTML unordered list and a CSS-based
 horizontal or vertical navigation list is that you are calling it that, and you are using the
unordered list for a specific purpose outside the body of the text. Also, you style the list
to show the user that it is indeed something different—and you can do that with small
 graphics to accentuate your lists.

Workshop 315

 Q. Where can I find more examples of what I can do with lists?

 A. The last time we checked, typing CSS navigation in a search engine returned approximately
88 million results. Here are a few starting places:

 A List Apart’s CSS articles, at www.alistapart.com/topics/css/, Maxdesign’s CSS
Listamatic, at http://css.maxdesign.com.au/listamatic/, and Vitaly Friedman’s CSS
Showcase, at www.alvit.de/css-showcase/.

Workshop
The workshop contains quiz questions and activities to help you solidify your understanding of the
material covered.

Quiz
 1. What is the difference between the inside and outside values for list-style-

position? Which is the default value?

 2. Does a list-style with a value of none produce a structured list, either ordered or
 unordered?

 3. When creating list-based navigation, how many levels of nested lists can you use?

 4. When creating a navigation list of any type, can the pseudo-classes for the a selector have
the same values?

 5. What style do most browsers apply to and elements by default?

 6. What is a good way to test the margins and paddings on lists?

 7. How do you hide list contents when creating an image map from a list of links?

 8. Where is the image in an image map that is built using a list?

 9. In what way does a navigation list differ from a regular list?

 10. What is the one thing you need to do to create a horizontal list?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

http://www.alistapart.com/topics/css/
http://css.maxdesign.com.au/listamatic/
http://www.alvit.de/css-showcase/
http://www.informit.com/register

316 LESSON 11: Using CSS to Do More with Lists, Text, and Navigation

Answers
 1. The list-style-position value inside places the list item indicator inside the block

created by the list item. The value outside places the list item indicator outside the block.
With inside, content wraps beneath the list item indicator. The default value is outside.

 2. Yes. The only difference is that no list item indicator is present before the content within
the list item.

 3. Technically, you can nest your lists as deeply as you want to. But from a usability stand-
point, there is a limit to the number of levels that you would want to use to nest your lists.
Three levels is typically the limit. More than that, and you run the risk of creating a poorly
organized site or simply giving users more options than they need to see at all times.

 4. Sure, but then you run the risk of users not realizing that your beautiful menus are indeed
menus (because no visual display would occur for a mouse action).

 5. Most browsers apply a left padding of 40 pixels to lists, written padding-left: 40px;.

 6. Use CSS to color the background of the lists and list items.

 7. Use text-indent:-1000em; to push the text off the screen to the left.

 8. The image is a background on the list element itself.

 9. A navigation list makes it clear that the users should interact with it by changing the cursor,
changing the area around the element, and setting it apart from the regular content.

 10. To create a horizontal list, set the display property to inline on the and
 elements.

Exercises
 N Find an image and try your hand at mapping areas using the technique shown in this

lesson. Select an image that has areas in which you could use hotspots or clickable
areas leading to other web pages on your site or to someone else’s site. Then create
the HTML and CSS to define the clickable areas and the URLs to which they
should lead.

 N Using the techniques shown for a multilevel vertical list, add sub-navigation items to the
vertical list created at the end of the lesson.

 N Look at the numerous examples of CSS-based navigation used in websites and find
some tricky-looking actions. Using the View Source function of your web browser, look at
the CSS used by these sites, and try to implement something similar for yourself.

LESSON 12
Creating Layouts Using
Modern CSS Techniques

What You’ll Learn in This Lesson:

N How fixed layouts work

N How liquid layouts work

N How to create a fixed/liquid hybrid layout

N How to create CSS flexible box layouts

N How to use CSS grid layouts

So far, you’ve learned a lot about styling web content, from font sizes and colors to images, block

elements, lists, and more. But what we haven’t yet discussed is a high-level overview of page lay-

out. Page layout is how a whole web page looks to the viewer. Most beginning web designers think

of this as a static feature and have a goal of creating web pages that look identical in every web

browser and device that views it. But that’s only one way to design web pages, and it’s not a very

good way.

There are two basic types of layouts: fixed and liquid. But it’s also possible to use a combination

of the two, with some elements fixed and others liquid. In this lesson, you’ll first learn about the

characteristics of these two types of layouts and see a few examples of websites that use them.

You’ll then see a basic template that combines elements of both types of layouts, using an older

style of web design.

Modern CSS gives you more tools for building web page layouts, and in this lesson you will learn

how to design pages using the CSS Flexible Box Layout module and the CSS Grid Layout module.

Ultimately, the type of layout you choose is up to you; it’s hard to go wrong as long as your sites

follow HTML and CSS standards.

318 LESSON 12: Creating Layouts Using Modern CSS Techniques

Getting Ready to Do Page Layout
In the previous lessons, you have learned how to build HTML and CSS web pages, but in order to

create effective layouts, you need to be very clear about the following things:

N CSS box model—If you don’t feel completely comfortable with margins, padding, borders,

and content boxes, you should take another look at Lesson 9, “Working with Margins,

Padding, Alignment, and Floating” and Lesson 10, “Understanding the CSS Box Model and

Positioning.” These two lessons are the basis of most page layout techniques and are par-

ticularly important for building the fixed and liquid layouts in the first few sections of this

lesson.

N Progressive enhancement—Progressive enhancement is the idea that you should start by

creating web pages with the minimum required to work, and then you can enhance them

with design and interactivity elements. To do this, you need to focus your attention on

exactly what each page on your site needs to do. That one thing is what needs to be vis-

ible, functional, and accessible—no matter what. Once you have that element, you can add

CSS styles to make it look good and JavaScript scripts to make it interactive, but these steps

should never get in the way of the primary purpose of that page.

N Separation of structure from design and interactivity—Your goal should be to create web

pages where the HTML holds only the structure and content, the CSS holds only the design,

and the JavaScript holds only the interactivity.

Finding Examples of Layouts You Like

A good place for examples of liquid layouts is the WordPress Theme Directory, at https://
wordpress.org/themes/. WordPress began as a blogging platform but in recent years has
seen an increase in use as a nonblog content or site-management tool. The WordPress Theme
Directory shows hundreds of examples of both fixed-width and liquid layouts that give you ideas, if
not all the code, for what you can create. Even though you are not working with a WordPress blog
or site as part of the exercises in these lessons, the Theme Directory is a place where you can
see and interact with many variations on designs.

Spend some time looking at the WordPress examples and perhaps CSS Zen Garden as well, at
www.csszengarden.com. This will help you get a feel for the types of layouts you like without being
swayed by the content in the layout.

Once you have found some layouts you like, you can use the techniques you learn in this lesson
to re-create them on your website.

 TRY IT YOURSELF

https://wordpress.org/themes/
https://wordpress.org/themes/
http://www.csszengarden.com

Understanding Fixed Layouts 319

The Importance of Putting
Mobile Devices First
One aspect of web page layout that many designers forget is that most people are not viewing

their web pages the way the designers are viewing them. Most designers use large computer mon-

itors (sometimes multiple monitors) with web browsers that, if not maximized, are at least filling

up a lot of space. For example, my default browser is currently open to around 1500px by 900px,

and I’m using it on a 5120 × 2880 display, so I could make it much larger.

However, according to StatCounter, as of this writing, the most popular resolution worldwide

is 360 × 640, with 23% share. And even in the United States, while the most popular resolution

is 1920 × 1080, it accounts for only 10.4% of users, and smaller resolutions like 360 × 640 and

375 × 667 are right behind, at 10.2% and 9.8% of users, respectively. Using mobile devices

is becoming a more and more popular way to consume web content, and your pages should

reflect that.

In the previous section, you learned about progressive enhancement, and it is critical that your

page layouts use this technique with regard to mobile devices. You should design your pages for

the smallest devices first and then add enhancements for larger and larger screens.

CAUTION

It may be easy to ignore this advice, as designing for small screens can be tedious, and your pages
may seem ugly. But if you rely on search engines for any of your traffic, you will need to keep this
in mind. Google and other search engines are starting to give sites that function well on mobile
 devices priority over sites that do not.

In this lesson, you’ll learn about specific layout techniques that may not be mobile friendly or that

may not put mobile design first. But you need to know how to do them so that you can implement

mobile first techniques. You will learn more about how to make your designs more mobile

friendly in Part IV, “Responsive Web Design.”

Understanding Fixed Layouts
A fixed layout, or fixed-width layout, is just what it sounds like: a layout in which the body of the

page is set to a specific width. That width is typically controlled by a master “wrapper” element

that contains all the content. The width property of a wrapper element, such as a <div>, is set

in the style sheet entry if the <div> was given an ID value such as main or wrapper (although

the name is up to you).

320 LESSON 12: Creating Layouts Using Modern CSS Techniques

NOTE

If you have been paying attention, you may realize that the minute you give an HTML element an ID
such as wrapper, you are moving the design of the page into the HTML instead of keeping it in
the CSS. One way to evaluate this is to ask yourself the question “Does the meaning or function of
this element’s ID change if the layout changes?” If the answer is yes, then you’ve given it an ID that
is more design than structure. It’s better to use a more semantic ID, such as main, which tells the
browser that the contained content is the main part of the page. Then, if the layout changes, that
content will still be the main part of the page, although it might be in a different location in
the layout.

When creating a fixed-width layout, the most important decision is determining the minimum

screen resolution to accommodate. The best way to decide how to set a fixed-width layout is to

look at the stats for the visitors to your website. If the majority of your viewers use a small screen

such as 800 × 600, then your layout should reflect that. But if you don’t have stats from your

site because it is new or for some other reason, you can use a service like StatCounter

(http://gs.statcounter.com/screen-resolution-stats/) to get a more generic view.

For many years, 800 × 600 was the “lowest common denominator” for web designers, resulting in

a typical fixed width of approximately 760 pixels. However, the percentage of people using

800 × 600 screen resolution for nonmobile browsers is now less than 1%. Many web designers

now consider 1280 × 800 the minimum screen resolution, so if they create fixed-width layouts,

the fixed width typically is somewhere between 1100 and 1200 pixels.

CAUTION

Remember that the web browser window contains non-viewable areas, including the scrollbar. So, if
you are targeting a 1280-pixel-wide screen resolution, you really can’t use all 1280 of those pixels.

A main reason for creating a fixed-width layout is so that you can have precise control over the

appearance of the content area. However, if users visit your fixed-width site with smaller or much

larger screen resolutions than the resolution you had in mind while you designed it, they will

encounter scrollbars (if their resolution is smaller) or a large amount of empty space (if their

 resolution is greater). Finding fixed-width layouts is difficult among the most popular websites

these days because site designers know they need to cater to the largest possible audience

(and therefore make no assumptions about browser size). However, fixed-width layouts still have

wide adoption, especially by site administrators using content management systems with strict

 templates.

The following figures show one such site, for San Jose State University. University websites com-

monly use a strict template and content management system, so this was an easy example to

find. It has a wrapper element fixed at 960 pixels wide. In Figure 12.1, the browser window is a

shade under 900 pixels wide. On the right side of the image, important content is cut off (and at

the bottom of the figure, a horizontal scrollbar displays in the browser).

http://gs.statcounter.com/screen-resolution-stats/

Understanding Fixed Layouts 321

FIGURE 12.1
A fixed-width example with a smaller screen size (note the horizontal scrollbar).

Figure 12.2 shows how this site looks when the browser window is more than 1500 pixels wide:

You see a lot of empty space (or “real estate”) on both sides of the main body content, which some

consider aesthetically displeasing.

FIGURE 12.2
A fixed-width example with a larger screen size.

322 LESSON 12: Creating Layouts Using Modern CSS Techniques

In addition to deciding whether to create a fixed-width layout in the first place, you need to deter-

mine whether to place the fixed-width content flush left or centered. Placing the content flush

left produces extra space on the right side only; centering the content area creates extra space on

both sides. However, centering at least provides balance, whereas a flush-left design could end

up looking like a small rectangle shoved in the corner of the browser, depending on the size and

 resolution of a user’s monitor.

Understanding Liquid Layouts
A liquid layout—also called a fluid layout—is a layout in which the body of the page does not use

a specified width in pixels, although it might be enclosed in a master wrapper element that uses a

percentage width. The idea behind a liquid layout is that it can be perfectly usable and still retain

the overall design aesthetic, even if the user has a very small or very wide screen.

Figures 12.3, 12.4, and 12.5 show three examples of a liquid layout in action.

FIGURE 12.3
A liquid layout viewed in a relatively small screen.

Understanding Liquid Layouts 323

FIGURE 12.4
A liquid layout viewed in a very small screen.

FIGURE 12.5
A liquid layout viewed in a wide screen.

324 LESSON 12: Creating Layouts Using Modern CSS Techniques

In Figure 12.3, the browser window is approximately 770 pixels wide. This example shows a rea-

sonable minimum screen width before a horizontal scrollbar appears. In fact, the scrollbar does

not appear until the browser is 735 pixels wide. On the other hand, Figure 12.4 shows a very

small browser window (less than 600 pixels wide).

In Figure 12.4, you can see a horizontal scrollbar; in the header area of the page content, the logo

graphic is beginning to take over the text and appear on top of it. But the bulk of the page is still

quite usable. The informational content on the left side of the page is still legible and is sharing

the available space with the input form on the right side.

Figure 12.5 shows how this same page looks in a very wide screen. In Figure 12.5, the browser

window is approximately 1330 pixels wide. There is plenty of room for all the content on the

page to spread out. This liquid layout is achieved because all the design elements have a percent-

age width specified instead of a fixed width. This way, the layout makes use of all the available

browser real estate.

The liquid layout approach might seem like the best approach at first glance; after all, who

wouldn’t want to take advantage of all the screen real estate available? But there’s a fine line

between taking advantage of space and not allowing the content to breathe. Too much content

is overwhelming; not enough content in an open space is underwhelming. Plus, if the screen gets

too wide, the text will be much harder to read.

A purely liquid layout can be quite impressive, but it requires a significant amount of testing to

ensure that it is usable in a wide range of browsers at varying screen resolutions. You might not

have the time and effort available to produce such a design; in that case, a reasonable compro-

mise is a fixed/liquid hybrid layout, or a fully responsive design, as we’ll discuss later on.

Creating a Fixed/Liquid Hybrid Layout
A fixed/liquid hybrid layout contains elements of both types of layouts. For example, you could

have a fluid layout that includes fixed-width content areas either within the body area or as

anchor elements (such as a left-side column or as a top navigation strip). You can even create

a fixed content area that acts like a frame, in which a content area remains fixed even as users

scroll through the content.

Starting with a Basic Layout Structure
In this example, you’ll learn to create a template that is liquid but with two fixed-width columns,

one on each side of the main body area (which is a third column, if you think about it, only much

wider than the others). The template also has a delineated header and footer area. Listing 12.1

shows the basic HTML structure for this layout.

Creating a Fixed/Liquid Hybrid Layout 325

LISTING 12.1 Basic Fixed/Liquid Hybrid Layout Structure

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Sample Layout</title>
 <link href="layout.css" rel="stylesheet">
 </head>
 <body>
 <header>HEADER</header>
 <section id="main">
 <article id="main_content">CONTENT</article>
 <aside id="secondary_content">LEFT SIDE</aside>
 <aside id="tertiary_content">RIGHT SIDE</aside>
 </section>
 <footer>FOOTER</footer>
 </body>
</html>

First, note that the style sheet for this layout is linked to with the <link> tag instead of included

in the template. A template is used for more than one page, and you want to be able to control

the display elements of the template in the most organized way possible. This means you need to

change the definitions of those elements in only one place—the style sheet.

Next, notice that the basic HTML is just that: extremely basic. Truth be told, this basic HTML

structure can be used for a fixed layout, a liquid layout, or the fixed/liquid hybrid in this

example because all the actual styling that makes a layout fixed, liquid, or hybrid happens in

the style sheet.

Even the IDs on the elements say nothing about where the content should live in the layout; they

just provide semantic information about the content itself. Right now the secondary_content

<aside> element is being displayed on the left side (according to the content itself), but there is

no reason you couldn’t move it to the right side or below the footer or anywhere else on the page

you wanted to put it.

With the HTML structure in Listing 12.1, you actually have an identification of the content areas

you want to include in your site. This planning is crucial to any development; you have to know

what you want to include before you can think about the type of layout you are going to use, let

alone the specific styles that will be applied to that layout.

326 LESSON 12: Creating Layouts Using Modern CSS Techniques

At this stage, the layout.css file includes only this entry:

body {
 margin:0;
 padding:0;
}

If you look at the HTML in Listing 12.1 and say to yourself, “But those elements will just stack

on top of each other without any styles,” you are correct. As shown in Figure 12.6, there is no

layout to speak of.

FIGURE 12.6
A basic HTML template with no styles applied to the container elements.

Defining Two Columns in a Fixed/Liquid Hybrid Layout
Because this layout is supposed to be liquid, we know that whatever we put in the header and

footer areas will extend the width of the browser window, regardless of how narrow or wide the

window might be.

Adding the following code to the style sheet gives the header and footer area each a width of

100% as well as the same background color and text color:

header, footer {
 float: left;
 width: 100%;

Creating a Fixed/Liquid Hybrid Layout 327

 background-color: #7152f4;
 color: #ffffff;
}

Now things get a little trickier. We have to define the two fixed columns on either side of the page,

plus the column in the middle. In the HTML we’re using here, note that a <section> element,

called main, surrounds all the columns. This element is defined in the style sheet as follows:

#main {
 float: left;
 padding-left: 200px;
 padding-right: 125px;
}

The two padding definitions essentially reserve space for the two fixed-width columns on the left

and right of the page. The column on the left will be 200 pixels wide, the column on the right

will be 125 pixels wide, and each will have a different background color. But we also have to posi-

tion the items relative to where they would be placed if the HTML remained unstyled (refer to

Figure 12.6). This means adding position: relative; to the style sheet entries for each of

these columns.

But in the case of the secondary_content <aside>, we also indicate that we want the right-

most margin edge to be 200 pixels in from the edge. (This is in addition to the column being

defined as 200 pixels wide.) We also want the margin on the left side to be a full negative margin;

this will pull it into place (as you will soon see). The tertiary_content <aside> does not

include a value for right, but it does include a negative margin on the right side:

#secondary_content {
 position: relative;
 float: left;
 width: 200px;
 background-color: #52f471;
 right: 200px;
 margin-left: -100%;
}
#tertiary_content {
 position: relative;
 float: left;
 width: 125px;
 background-color: #f452d5;
 margin-right: -125px;
}

328 LESSON 12: Creating Layouts Using Modern CSS Techniques

At this point, let’s also define the content area so that it has a white background, takes up 100%

of the available area, and floats to the left relative to its position:

#main_content {
 position: relative;
 float: left;
 background-color: #ffffff;
 width: 100%;
}

At this point, the basic layout should look something like Figure 12.7, with the areas clearly

 delineated.

FIGURE 12.7
A basic HTML template after some styles have been put in place.

However, there’s a problem with this template if the window is resized below a certain width.

Because the left column is 200 pixels wide and the right column is 125 pixels wide, and you want

at least some text in the content area, you can imagine that this page will break if the window

is only 350 to 400 pixels wide. There is also an issue if the browser is too wide. We address these

issues in the next section.

Setting the Minimum and Maximum Width of a Layout
Although users won’t likely visit your site with a desktop browser that displays less than 400 pixels

wide, many people might view it on a small mobile phone that size. You can extrapolate and

apply this information broadly: Even in fixed/liquid hybrid sites, at some point, your layout will

break down unless you do something to prevent that outcome.

Creating a Fixed/Liquid Hybrid Layout 329

One of those “somethings” is to use the min-width CSS property. The min-width property sets

the minimum width of an element, not including padding, borders, or margins. Figure 12.8 shows

what happens when min-width is applied to the <body> element.

FIGURE 12.8
The basic HTML template resized to under 400 pixels, with a minimum width applied.

Figure 12.8 shows a small portion of the right column after the screen has been scrolled to the

right, but the point is that the layout does not break apart when resized below a minimum width.

In this case, the minimum width is 525 pixels:

body {
 margin: 0;
 padding: 0;
 min-width: 525px;
}

The horizontal scrollbar appears in this example because the browser window itself is less than

500 pixels wide. The scrollbar disappears when the window is slightly larger than 525 pixels wide.

You can use the max-width CSS property in the same way to ensure that elements of the page

with percentage widths don’t get too wide. This property lets the element expand up to a point

and then stop.

Handling Column Height in a Fixed/Liquid Hybrid Layout
This example is all well and good except for one problem: It has no content. When content is

added to the various elements, more problems arise. As Figure 12.9 shows, the columns become as

tall as necessary for the content they contain.

330 LESSON 12: Creating Layouts Using Modern CSS Techniques

FIGURE 12.9
Columns are only as tall as their contents. (Credit: Kjpargeter/Shutterstock)

NOTE

In Figure 12.9, we have moved beyond the basic layout example. So, we also took the liberty of
removing the background and text color properties for the header and footer, which is why the
 example no longer shows white text on a very dark background. In addition, we’ve centered the text
in the <footer> element, which now has a light gray background.

Because you cannot count on a user’s browser being a specific height or the content always being

the same length, you might think this poses a problem with the fixed/liquid hybrid layout. Not

so. If you think a little outside the box, you can apply a few more styles to bring all the pieces

together.

First, add the following declarations in the style sheet entries for the secondary_content,

tertiary_content, and main_content IDs:

margin-bottom: -2000px;
padding-bottom: 2000px;

Creating a Fixed/Liquid Hybrid Layout 331

These declarations add a ridiculous amount of padding and assign a too-large margin to the

 bottom of all three elements. You must also add position:relative; to the footer element

definitions in the style sheet so that the footer is visible despite this padding.

At this point, the page looks as shown in Figure 12.10, which is still not what we want but is closer.

FIGURE 12.10
The columns now extend to the bottom of the page, despite the amount of content in the columns.
(Credit: Kjpargeter/Shutterstock)

To clip off the bottom of the columns, add the following to the style sheet for the main ID:

overflow: hidden;

Figure 12.11 shows the final result: a fixed-width/liquid hybrid layout with the necessary column

spacing. Here we took the liberty of styling the navigational links and adjusting the margin

around the welcome message. You can see the complete style sheet in Listing 12.3.

332 LESSON 12: Creating Layouts Using Modern CSS Techniques

FIGURE 12.11
Congratulations! It’s a fixed-width/liquid hybrid layout. (Credit: Kjpargeter/Shutterstock)

The full HTML code appears in Listing 12.2, and Listing 12.3 shows the final style sheet.

LISTING 12.2 Basic Fixed/Liquid Hybrid Layout Structure (with Content)

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Sample Layout</title>
 <link href="layout.css" rel="stylesheet">
 </head>
 <body>
 <header>

 </header>
 <section id="main">
 <article id="main_content">
 <h1>Welcome to ACME Widgets!</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Nam tincidunt posuere malesuada. Suspendisse ac felis ac ante
 tincidunt ullamcorper. Nulla vitae ligula vitae mi rhoncus

Creating a Fixed/Liquid Hybrid Layout 333

 adipiscing. Etiam congue felis id ante semper at imperdiet
 massa tempor. Nullam hendrerit fermentum ligula, sit amet
 pellentesque purus faucibus in. Sed molestie lacus mauris,
 ultrices accumsan sem. Phasellus facilisis malesuada sem, nec
 ornare ipsum dictum consectetur.</p>
 <p>Nulla libero nisl, consectetur eget accumsan vel, interdum
 vitae enim vitae nulla feugiat dignissim ut sit amet odio.
 Nunc non enim id sem faucibus congue. Integer ac mi in justo
 euismod sodales. Aenean imperdiet vestibulum auctor. Sed
 ullamcorper congue ipsum, eget vulputate sem scelerisque in.
 Donec ornare vestibulum congue. Etiam sapien nulla, rutrum
 mattis ut, pellentesque eget augue. Proin nisl mauris,
 suscipit quis elementum ac, vestibulum quis lacus. Ut eget
 justo vitae urna varius sodales. </p>
 </article>
 <aside id="secondary_content">

 Mission
 History
 Executive Team
 Contact Us

 </aside>
 <aside id="tertiary_content">
 <p>SPECIAL WIDGET DEAL!</p>
 <p>Buy three widgets and get a fourth for free. Act now!</p>
 </aside>
 </section>
 <footer>Copyright information usually goes here in the
 footer.</footer>
 </body>
</html>

LISTING 12.3 Full Style Sheet for the Fixed/Liquid Hybrid Layout

body {
 margin:0;
 padding:0;
 min-width: 525px;
}
header {
 float: left;
 width: 100%;
}
footer {
 position:relative;
 float: left;
 width: 100%;

334 LESSON 12: Creating Layouts Using Modern CSS Techniques

 background-color: #cccccc;
 text-align:center;
 font-style: italic;
}
#main {
 float: left;
 padding-left: 200px;
 padding-right: 125px;
 overflow: hidden;
}
#secondary_content {
 position: relative;
 float: left;
 width: 200px;
 background-color: #52f471;
 right: 200px;
 margin-left: -100%;
 margin-bottom: -2000px;
 padding-bottom: 2000px;

}
#tertiary_content {
 position: relative;
 float: left;
 width: 125px;
 background-color: #f452d5;
 margin-right: -125px;
 margin-bottom: -2000px;
 padding-bottom: 2000px;

}
#main_content {
 position: relative;
 float: left;
 background-color: #ffffff;
 width: 100%;
 margin-bottom: -2000px;
 padding-bottom: 2000px;

}
h1 {
 margin: 0;
}
#secondary_content ul {
 list-style: none;
 margin: 12px 0px 0px 12px;
 padding: 0px;
}

Using Modern CSS Layout Techniques 335

#secondary_content li a:link, #secondary_content li a:visited {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #000000;
 text-decoration: none;
 display: block;
}
#secondary_content li a:hover, #secondary_content li a:active {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #ffffff;
 text-decoration: none;
 display: block;
}

Using Modern CSS Layout Techniques
In the previous sections, you learned how web designers used to build web page layouts—methods

that many designers still use. But CSS3 offers several new ways to handle web page layout, and

most modern browsers support them without much trouble. These are the three that are most

commonly used:

N CSS table—CSS properties that change the display of page elements to tables, table rows,

and table columns.

N CSS flexible box layout—CSS properties that make it easier to lay out, align, and distribute

space among elements in a container.

N CSS grid layout—A grid-based layout system with rows and columns.

These CSS layout systems all start with the display property. Before CSS3, the display property

took the values inline, block, and none. This meant you could change how elements were dis-

played in the normal flow or hide them completely. CSS3 added a number of new values, including

list-item, to indicate that the element was a list item, and inline-block, to indicate that the

element was like an element with characteristics of inline and block elements. In the next

few sections, you will learn about more values of the display property that help with layout.

How to Use CSS display: table;
Unlike HTML tables, the CSS display: table; property is not a structural table in HTML. This

means you can convert any element into a table and use it to build your layout.

336 LESSON 12: Creating Layouts Using Modern CSS Techniques

There are several table options on the display property:

N table—Behaves like a <table> element

N inline-table—Behaves like a <table> element that is rendered inline

N table-row—Behaves like a table row (<tr>) element

N table-cell—Behaves like a table cell (<td>) element

N table-column—Behaves like a <col> element

N table-caption—Behaves like a <caption> element

N table-row-group—Behaves like a <tbody> element

N table-header-group—Behaves like a <thead> element

N table-footer-group—Behaves like a <tfoot> element

N table-column-group—Behaves like a <colgroup> element

NOTE

Some people are concerned about using CSS table styles for layout because they learned that you
should never use tables for layout. However, despite the name, CSS table properties are not HTML
table tags. The issues with accessibility are mitigated when you use CSS table styles because the
HTML can be structured in a way that is accessible, regardless of the layout.

By using CSS tables, you can create layouts similar to how web designers might have created them

using actual tables back in the “bad old days.” For example, you can take the HTML you used in

Listing 12.2 and change the CSS to create a similar three-column layout.

First, define the main <section> as a table and give it 100% width:

#main {
 width: 100%;
 display: table;
}

This tells the browsers that this element contains table content and should display like a table.

Then define the three content areas as table cells:

#main_content, #secondary_content, #tertiary_content {
 display: table-cell;
}

If you set the background colors and other styles so that you end up with the CSS in Listing 12.4,

the page will look as shown in Figure 12.12.

Using Modern CSS Layout Techniques 337

LISTING 12.4 Three-Column Layout with display: table;

#main {
 width: 100%;
 display: table;
}
#main_content, #secondary_content, #tertiary_content {
 display: table-cell;
}
footer {
 width: 100%;
 background-color: #cccccc;
 text-align:center;
 font-style: italic;
}
#secondary_content { width: 200px; background-color: #52f471; }
#tertiary_content { width: 125px; background-color: #f452d5; }
#secondary_content ul {
 list-style: none;
 margin: 12px 0px 0px 12px;
 padding: 0px;
}
#secondary_content li a:link, #secondary_content li a:visited {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #000000;
 text-decoration: none;
 display: block;
}
#secondary_content li a:hover, #secondary_content li a:active {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #ffffff;
 text-decoration: none;
 display: block;
}

One thing you will notice is that the secondary_content column is now in the middle of the

three columns. This is because that is where it is located in the HTML source. One of the draw-

backs to this layout method is that to change the positions of different elements, you need to

change the actual HTML. But as you will see in the next sections, CSS3 has answers for this, too.

338 LESSON 12: Creating Layouts Using Modern CSS Techniques

FIGURE 12.12
Creating a layout with display: table;. (Credit: Kjpargeter/Shutterstock)

 TRY IT YOURSELF

Using CSS display: table; to Vertically Align Content

One thing that the display: table-*; properties do that can be really useful is allow you to
center content vertically in the space. This is because table cells have vertical alignment.

To center content vertically in the space, simply add the display: table-cell; property to
an element with an explicit height and then set vertical-align to middle.

Using Modern CSS Layout Techniques 339

Understanding the CSS Flexible Box Layout Module
The CSS Flexible Box module gives you a way to position elements that display on a line in a con-

tainer. The container can alter the dimensions of the elements inside it to best fit the available

free space. A flexible box container, or flex container, will expand items to fill available free space

or shrink them to prevent overflow in smaller spaces.

NOTE

While you can use the flexible box layout for any web page, this model is best suited for application
components and small-scale layouts. If you are designing a full website or other larger-scale project,
you should use the grid layout model, described later in this lesson.

Normal layout in web pages is based on block and inline elements interacting with one another

in the normal flow. Normal flow in web page designs travels from left to right (or right to left on

pages with RTL formatting), filling the width of the available space and then moving down the

document until all the content is available on the page. With flexible box layout, items in the lay-

out can be placed on the page in a more flexible fashion. If the designer wants the items to stack

vertically from top to bottom, the box can accommodate that. This layout is, as its name promises,

flexible.

Building a Flexible Box Container
The first thing you need when creating a flexible layout is a container element. This is the

element that holds all the items that will be laid out on the page. You define a flex container

with the display property:

.container {
 display: flex;
}

This enables a flex context for all of the direct children of the container.

Once you have defined the container, you need to determine in what direction the elements in

the container are going to flow. For this you use the flex-direction property with one of these

values:

N row—The flex items flow left to right in ltr layouts and right to left in rtl layouts. This is

the default.

N row-reverse—The items flow right to left in ltr layouts and left to right in rtl layouts.

This is the opposite of row.

N column—Items flow from top to bottom in a column.

N column-reverse—Items flow from bottom to top in a column. This is the opposite of

 column.

340 LESSON 12: Creating Layouts Using Modern CSS Techniques

Once you have the flow direction, you need to consider how the items will wrap when they come

to a boundary. By default, flex items try to fit onto one line. But you can change this with the

flex-wrap property and these values:

N nowrap— All flex items are on one line (horizontal or vertical). This is the default.

N wrap—Flex items wrap to multiple lines from top to bottom.

N wrap-reverse—Flex items wrap to multiple lines from bottom to top. This is the opposite

of wrap.

You can define both the flex direction and wrap with the flex-flow shorthand property:

flex-flow: flex-direction || flex-wrap;

The last three properties you need to know for your flex containers are justify-content,

align-items, and align-content. These properties control how the items will be displayed

within the container.

The justify-content property defines how the items will be spaced if there is more room in

the container than the items take up. You can distribute the extra free space so that it is between

or around the items. These are the possible values:

N flex-start—The items are placed at the start of the container, and any extra space is

placed after all the items. This is the default.

N flex-end—This is the same as flex-start, only instead of placing the extra space at the

end, you place it at the beginning and push all the items to the end.

N center—The items are placed in the center of the container, and extra free space is placed

evenly at the start and end.

N space-between—The items are evenly distributed in the line, with the first item right at

the start and the last placed right at the end. Extra space is distributed evenly between all

the items.

N space-around—The items are placed evenly on the line, with equal space all around

them. This spacing does not appear equal, however, as inner items will have twice as much

space between them as the first and last items will have on the outer edges.

Figure 12.13 shows how the different justify-content values look.

Using Modern CSS Layout Techniques 341

FIGURE 12.13
Using the justify-content property.

342 LESSON 12: Creating Layouts Using Modern CSS Techniques

The justify-content property defines how items will be laid out along the main line of the

container (either horizontally or vertically). But you can also define how the items will be posi-

tioned along the perpendicular line of the container. In other words, if you have a horizontal flex-

box, the align-items will define how the items are positioned on the vertical axis. If you have a

vertical flexbox, the align-items property will define how they are positioned on the horizon-

tal axis. This property has the following possible values:

N stretch—The items should stretch to fill the whole container while respecting min-width

and max-width rules. This is the default.

N center—Items are centered along the cross axis.

N baseline—Items are aligned so that their baselines align.

N flex-start—The items are positioned at the start of the element (the top for horizontal

and the left for vertical ltr layouts).

N flex-end—The items are positioned at the end of the element (the bottom for horizontal

and the right for vertical ltr layouts).

If there are multiple lines in your container, you need to use the align-content property to

determine how any extra space between lines will be distributed. This property can have the

 following values:

N stretch—Lines stretch to take up the remaining space. This is the default.

N center—Lines are packed in the center of the container, with extra space placed evenly

before and after.

N space-between—The first line is placed at the start of the container, and the last line is at

the end, and remaining lines are evenly distributed between them.

N space-around—The lines are evenly distributed, with extra space placed before and after

each line.

N flex-start—Lines are pushed to the start of the container, with extra space placed after.

N flex-end—Lines are pushed to the end of the container, with extra space placed first.

Modifying Flex Items
Once you have a container, any element placed inside if is a flexbox item. But there are several

things you can do to control how they are displayed in the container.

Normally, flexbox items appear on the page in the same order in which they appear in the HTML,

but with the order property, you can change that. This property takes an integer. The lower

the number (including negative numbers) the closer to the start the item will appear. If items

Using Modern CSS Layout Techniques 343

have the same order value, they will be ordered the way they appear in the HTML source. (This

helps solve the problem shown in Figure 12.12.) Starting with the CSS from Listing 12.4, change

the #main element to display: flex; and remove the display: table-cell; from the

 content blocks. This gives you a layout just like the layout shown in Figure 12.12, but now you can

reorder the columns. Change the order of the columns with the CSS like so:

#secondary_content {
 order: -1;
}

This simple CSS places the #secondary_content lowest in the list order, so it comes first. The

other two columns display in the order in which they are listed in the HTML because we did not

specify an order for them. Listing 12.5 shows the CSS we used to get the layout in Figure 12.14. We

used exactly the same HTML as in Listing 12.2.

LISTING 12.5 Changing the Order of the Layout Columns with a Flexible

Box Layout

#main {
 width: 100%;
 display: flex;
}
#secondary_content {
 order: -1;
}
footer {
 width: 100%;
 background-color: #cccccc;
 text-align:center;
 font-style: italic;
}
#secondary_content { width: 200px; background-color: #52f471; }
#tertiary_content { width: 125px; background-color: #f452d5; }
#secondary_content ul {
 list-style: none;
 margin: 12px 0px 0px 12px;
 padding: 0px;
}
#secondary_content li a:link, #secondary_content li a:visited {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #000000;
 text-decoration: none;
 display: block;
}

344 LESSON 12: Creating Layouts Using Modern CSS Techniques

#secondary_content li a:hover, #secondary_content li a:active {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #ffffff;
 text-decoration: none;
 display: block;
}

FIGURE 12.14
Getting the desired layout with flexible boxes. (Credit: Kjpargeter/Shutterstock)

Using Modern CSS Layout Techniques 345

NOTE

If the order feature of flexible box layouts does not excite you, I don’t know what will. Because of the
order property, you can create designs for all sorts of layouts that rely on databased entries of con-
tent. Normally, you would have to program the order of display into the database functionality itself,
but now you can control it with CSS. Now, if you are selling shoes and want to highlight a certain
style by displaying it first, you can just change the order in the CSS—no database programming or
server-side scripting required.

The Flexible Box Layout module is very complicated and hard to use, and there are a lot more

features to it, but it can be very useful in certain situations. There are lots of places you can

learn more about CSS flexible boxes, but one fun online game is Flexbox Zombies

(https://flexboxzombies.com). It’s long but worth it.

Understanding CSS Grid Layout Module
You may not be familiar with the CSS Grid Layout module, but chances are if you’ve done any

web design, you have used grids. Most web pages are built using some form of invisible grid. If

you use tables for layout, you are using a grid. And the three-column layout used in the previous

sections is also laid out on a grid.

With the CSS3 Grid Layout module, you can define any container element as a grid with specific

row and column sizes and then place your child elements into the grid. Just as with flexible box lay-

outs, the order of items in the HTML doesn’t matter. Once they are in the grid, you can place them

wherever you want. Just as with flexible boxes, the grid layout system has full support in modern

browsers. Only Internet Explorer 11 requires a prefix (-ms), for example display: -ms-grid;.

To use the CSS Grid Layout system, you define a container element as display: grid;

and then define your columns and rows with the grid-template-columns and

grid-template-rows properties. Once you have defined the grid, you place the child

elements into the grid with grid-template-areas and the grid-area property.

Working with the Grid Container
The first thing you do when creating a grid layout is to define the container element as a grid. You

do this in the same way as with flex boxes, with the display property. There are three possible

values for grids:

N grid—Generates a block-level grid

N inline-grid—Generates an inline grid

N subgrid—With nested grids, indicates that the nested grid should take the sizes of its rows

and columns from the parent grid rather than requiring the designer to specify new ones.

https://flexboxzombies.com

346 LESSON 12: Creating Layouts Using Modern CSS Techniques

Then you define the grid columns and rows with the grid-template-columns and

grid-template-rows properties, both of which use space-separated lists of values.

The best way to think about grids created in the CSS Grid Layout module is to imagine that you’re

creating your grid in text form right in the CSS. The values of the grid-template-columns/

rows properties represent the track size, and the space between them represents the grid line.

One way to build it is to write your CSS so it represents the grid, like so:

 /* column1 column 2 column 3 column 4 */
grid-template-columns: 100px auto 100px 200px;
grid-template-rows:
 /* row 1 */ 100px
 /* row 2 */ 300px
 /* row 3 */ 100px;

The browser will ignore the whitespace, but you can immediately see that this grid will be 4 × 3

(that is, four columns by three rows).

NOTE

One useful feature of the CSS grid system is that it adds a new unit of measure—fr. This refers to
the free space inside the container. The browser first removes any space taken by non-flexible items
and then divides up the remaining space among the elements with fr units. For example, you might
have a three-column layout with a 15% left column and the remaining columns taking up three-
quarters and one-quarter of the remaining available space. This is written like so:

grid-template-columns: 15% 3fr 1fr;

While you can define your columns and rows with spacing and comments as described previously,

an easier way is to use the grid-template-areas property. To use this property, you need to

name the different items with the grid-area property. For example, you might name your

layout elements like this:

header { grid-area: header; }
footer { grid-area: footer; }
section { grid-area: main; }
aside { grid-area: sidebar; }
nav { grid-area: navigation; }

Then you define your layout grid with the grid-template-areas property. You reference the

names of a grid area in the cell in which you want them to display. If you repeat it, the content

will span those columns or rows. And a period is an empty cell in the layout.

To replicate the three-column layout from the beginning of this lesson, first we apply the style

sheet to the HTML from Listing 12.2. In it, we define the #main section as the grid container:

#main {
 display: grid;
}

Using Modern CSS Layout Techniques 347

Then we name the grid elements with the grid-area property:

#main_content {
 grid-area: main_content;
}
#secondary_content {
 grid-area: secondary_content;
 background-color: #52f471;
}
#tertiary_content {
 grid-area: tertiary_content;
 background-color: #f452d5;
}

Here we removed all the width styles as those will be defined in the grid itself. Next, we add the

columns and rows to the #main element:

 grid-template-columns: 200px auto 125px;
 grid-template-rows: auto;

And then we lay out the design with grid-template-areas. Remember that the names of the

areas should be in quotation marks:

 grid-template-areas:
 "secondary_content main_content tertiary_content";

Listing 12.6 shows the full CSS for this example, and Figure 12.15 shows the result.

LISTING 12.6 Using the CSS Grid Module to Lay Out a Web Page

#main {
 display: grid;
 grid-template-columns: 200px auto 125px;
 grid-template-rows: auto;
 grid-template-areas:
 "secondary_content main_content tertiary_content";
}
#main_content {
 grid-area: main_content;
}
footer {
 background-color: #cccccc;
 text-align:center;
 font-style: italic;
}
#secondary_content {
 grid-area: secondary_content;
 background-color: #52f471;
}

348 LESSON 12: Creating Layouts Using Modern CSS Techniques

#tertiary_content {
 grid-area: tertiary_content;
 background-color: #f452d5;
}
#secondary_content ul {
 list-style: none;
 margin: 12px 0px 0px 12px;
 padding: 0px;
}
#secondary_content li a:link, #secondary_content li a:visited {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #000000;
 text-decoration: none;
 display: block;
}
#secondary_content li a:hover, #secondary_content li a:active {
 font-size: 12pt;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 color: #ffffff;
 text-decoration: none;
 display: block;
}

CAUTION

When you turn a container element into a grid container, the grid elements are only the immediate
children of that container. In the examples in this lesson, the container is the main <section>
 element. If you turned the <body> element in these examples into the container, then the grid items
would be the <header>, <section>, and <footer> elements because these are the first children
of the <body> element.

Like the Flexible Boxes module, the CSS Grid module has a lot more to it than this lesson could

cover. You can do things like name grid lines, control how “extra” items fit in the layout, span

rows and columns, and more. One site we find useful for understanding how CSS Grid works is

Grid by Example (https://gridbyexample.com/examples/), but there are many other excellent

tutorials as well—just search for CSS Grid Layout.

https://gridbyexample.com/examples/

Summary 349

FIGURE 12.15
Creating the same layout as before with the CSS Grid module. (Credit: Kjpargeter/Shutterstock)

Summary
In this lesson, you learned about the three main types of layouts: fixed, liquid, and a fixed/liquid

hybrid. In the middle of the lesson, an extended example walked you through the process of cre-

ating a fixed/liquid hybrid layout in which the HTML and CSS all validate properly. Then you saw

how to create a similar layout by using modern CSS layout, with flexible boxes and grids. In this

lesson, you learned that the most important part of creating a layout is figuring out the sections

of content you think you might need to account for in the design.

350 LESSON 12: Creating Layouts Using Modern CSS Techniques

Q&A
 Q. Why would I want to use CSS flexible boxes or a CSS grid instead of the more “tried and

true” methods of layout?

 A. As with many other areas of web design, what you choose to do is completely up to you,
but the new CSS flexible box and grid methods give you a lot more flexibility to change
the layout right within the CSS, without changing the HTML at all. This means that you
can work on the design of a page and even create multiple iterations without affecting the
 underlying structure. If the first layout you try doesn’t work, simply swap out the CSS to
something else.

 Q. I read that flexible boxes are often called a one-dimensional layout system. What does that

mean?

 A. At its core, the flexible box layout system is meant to allow you to control the layout of
items in a single direction—either horizontally or vertically. While flex box items can flow
to a second line or column, the primary intention was for the singular dimension. In com-
parison, the CSS grid layout defines both rows and columns and allows you to place items
anywhere within the predefined grid.

 Q. I’ve heard about something called an elastic layout. How does that differ from the liquid

layout?

 A. An elastic layout is a layout whose content areas resize when the user resizes the text.
Elastic layouts use ems, which are inherently proportional to text and font size. An em
is a typographical unit of measurement equal to the point size of the current font. When
ems are used in an elastic layout, if a user forces the text size to increase or decrease in
size by using Ctrl and the mouse scroll wheel, the areas containing the text increase or
decrease proportionally. Elastic layouts are often quite difficult to achieve.

 Q. Is there one type of layout system that is better than the others?

 A. Better is a subjective term; the goal of these lessons is to help you create standards-
compliant code. Most designers will tell you that liquid layouts take longer to create (and
perfect), but the usability enhancements are worth it, especially when the process leads
to a responsive design. Grid and flexible box layouts give you more options in terms of
controlling the content display, but because they are so new, many designers are not yet
comfortable using them. In general, most designers avoid fixed layout designs because they
are not responsive and can be difficult for mobile users to navigate. You’ll learn more about
how to build responsive websites in Part IV.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered.

Workshop 351

Quiz
 1. Which is the best layout to use, in general: fixed, liquid, or hybrid?

 2. Can you position a fixed layout anywhere on the page?

 3. What does min-width do?

 4. Which would be better to use to display a group of products for sale: a CSS grid or flexible
boxes layout?

 5. Why is it important to consider mobile devices when creating your design?

 6. Which is a better ID on an element: container or primary?

 7. If you are targeting an audience with a standard browser size of 800 × 600 pixels, what
should be the maximum fixed width in pixels, and why?

 8. How do you define a container as a table?

 9. Name three modern CSS layout techniques.

 10. What does display: inline-grid; do?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. This is a trick question; there is no “best” layout. What is best depends on the content and

the needs of the audience. Note that we ultimately lean toward responsive grid layouts as
the “best” and recommend against using fixed layouts except in very limited situations.

 2. Sure. Although most fixed layouts are flush left or centered, you can assign a fixed position
on an x,y axis and could place a <div> that contains all the other layout <div> elements.

 3. The min-width property sets the minimum width of an element, not including padding,
borders, or margins.

 4. Flexible boxes were designed specifically for this type of layout, where there is a series of
objects (the products for sale) that need to be displayed neatly within a container.

 5. More and more people are accessing web pages primarily on their mobile devices, and if
your layout is hard to read on such a device, they won’t stick around.

 6. The ID primary is better because it doesn’t define a part of the layout but rather defines
that the included content is primary.

http://www.informit.com/register

352 LESSON 12: Creating Layouts Using Modern CSS Techniques

 7. It should be no more than 780 pixels or so, to account for the non-viewable areas of the
browser.

 8. Use the display: table; property.

 9. The three modern layout techniques discussed in this lesson are CSS tables, flexible boxes,
and grid layouts.

 10. It indicates that the container is a grid that should be displayed inline with the surrounding
content.

Exercises
N Figure 12.15 shows the finished CSS grid layout, but a few areas could stand to be

improved. For example, there isn’t any space around the text in the right-side column,
there aren’t any margins between the body text and either column, the footer strip is a
little sparse, and so on. Take some time to fix these design elements.

N Figure 12.14 shows the finished flexible boxes layout, but there are problems with it as
well. In addition to the issues mentioned above, the columns aren’t necessarily the right
size, and the colors are hard on the eyes. Use what you learned in this lesson to modify
this layout to better reflect your design skills. Don’t edit the HTML; do this just with CSS.

LESSON 13
Taking Control of Backgrounds

and Borders

What You’ll Learn in This Lesson:

 N How to layer backgrounds

 N How to use gradients as backgrounds

 N How to use CSS properties to create “zebra-stripe” tables automatically

 N How to create rounded corners on elements

 N How to use images as borders

 N How outlines are different from borders

In earlier lessons you learned how to add basic borders and backgrounds to your elements, but

there is much more you can do to dress up modern web pages. In many ways, CSS backgrounds

define modern designs. In this lesson you will learn how to layer background images on your

 elements and use gradients that are created by the CSS itself as backgrounds.

And borders are just as critical. Every element has a border, even if it isn’t visible. In this lesson

you will learn how to adjust the borders of your elements to make your designs more interesting.

You’ll learn how to create rounded corners as well as how to use images as borders. Plus, you’ll

learn a little more about the CSS outline property and how it differs from borders.

Reviewing Background and Border Basics
In order to go into more depth with borders and backgrounds, you need to be sure you know

the basics.

background is a shorthand property that allows you to define a number of background proper-

ties at the same time. With this property, you can set the following properties:

 N background-image—The image used as a background

 N background-position—Where the image should be placed on the element, written

as a length, a percentage, or a keyword (top, bottom, center, right, and left)

 N background-size—The size of the image in the element, either as the width, the width

and height, or a keyword (cover or contain)

354 LESSON 13: Taking Control of Backgrounds and Borders

 N background-repeat—Whether and how the image should tile in the element, using one

of the values repeat, repeat-x, repeat-y, no-repeat, space, or round

 N background-origin—Where the background image should start tiling; possible values

are border-box, padding-box, and content-box

 N background-clip—How the background should display beyond the element’s content or

 padding; possible values are border-box, padding-box, or content-box

 N background-attachment—How the background should move relative to the viewport;

 possible values are scroll, fixed, or local

 N background-color—The color of the background, using a color keyword or color code

You don’t need to include the properties in the order shown here, but best practices recommend

using this order to keep your CSS clear. Some properties, like background-position and

 background-size, can be left out. Many designers use the background property with just one

or two elements, as in these examples:

background: #dfdfdf;
background: url('paper.png') #dfdfdf;

You can apply the background property to any HTML element.

The border property is a shorthand property for setting border-width, border-style, and

border-color, like so:

border: border-width border-style border-color;

For the border-width and border-color properties, you can use 10 different border style
 keywords:

 N solid—Draws a solid, continuous line (This is the default.)

 N none—Draws no border line

 N hidden—Draws a border line but does not display it

 N dashed—Draws a line of dashes

 N dotted—Draws a line of dots

 N double—Draws two lines around the element, taking up the full border width

 N groove—Adds a bevel to make the element appear pressed into the page

 N ridge—Adds a bevel to make the element appear raised above the page

 N inset—Adds a slight bevel to make the element appear slightly depressed

 N outset—Adds a slight bevel to make the element appear slightly raised

Using Multiple Borders and Backgrounds 355

Using Multiple Borders and Backgrounds
When you’re working with borders and backgrounds, it’s easy to forget that you aren’t stuck with

just one. You can style all four borders of an element in different ways, and you can even layer

multiple backgrounds, one on top of the other, to create different effects.

NOTE

Putting more than one border around one element is not currently supported in CSS. However, you
can fake it by using pseudo-elements, using the outline property, using the box-shadow property,
or changing the background-clip property. You can learn more about how to do this online by
searching for multiple borders with CSS in your favorite search engine.

While it’s most common to use just the border property to style all four borders of an element

exactly the same, this isn’t your only option. There are four other shorthand properties that work

in the same way but each applies to only one side of the element: border-top, border-right,

border-bottom, and border-left. For example, if you wanted to style all four borders

 differently, you would write CSS for all four sides, like so:

border-top: 2px solid red;
border-right: 2px dashed aqua;
border-bottom: 5px dashed red;
border-left: 5px solid aqua;

But it’s not common to see an element that needs vastly different borders on all four sides. Instead,

you might see an element that needs three borders the same, with the fourth different. You can write

your CSS with the four border properties separated out, or you can use the cascade to your advan-

tage. To do this, define all the borders the same and then follow that with the one different one:

border: 2px solid aqua;
border-bottom: 5px dashed red;

Using multiple backgrounds on the same element is a little different. With CSS3 you can now

stack border images on your elements to create a layered effect. This is especially useful if your

images have transparent or clipped areas that allow images or color below to show through. You

specify multiple backgrounds in a comma-separated list, where each item is a background layer.

The order of the items correlates with the order of the layers: The first item is the top layer and on

down through the backgrounds.

NOTE

One of the issues designers most commonly face when using multiple backgrounds is determin-
ing the order to place them in the CSS. We can’t count how many times we have carefully created
designs only to have one of the backgrounds not show up or appear cut off because we forgot where
it belonged in the layer list. Just remember that the layer that is on top comes first.

356 LESSON 13: Taking Control of Backgrounds and Borders

To create an element with multiple backgrounds, we need multiple images. Figure 13.1 shows an

image of a howling wolf and a picture of the moon.

FIGURE 13.1
Two separate images to be combined into a background. (Credit: claudiodivizia/123RF)

Using Multiple Borders and Backgrounds 357

Both of these images have transparent areas and solid color areas, so they will work well

as layered backgrounds. We also need to add an element to place the background on. The

background property can be placed on any block-level HTML element, so we can add

a <div> with the class box to the HTML:

<div class="box"></div>

Because the <div> element currently has no content, we need to set the height and width so the

background will show up:

.box {
 width: 500px;
 height: 400px;
}

Then we can add the first background image:

background: url(images/wolf.svg)

Remember that this image will be on top, and any other images will be layered below it.

We can position this background image in the middle of the <div> and at the bottom so it looks

like the wolf is howling at the moon:

background: url(images/wolf.svg) center bottom

Then, to make sure it doesn’t look bad, we can set the image to fill up the element with the cover

and no-repeat keywords:

background: url(images/wolf.svg) center bottom / cover no-repeat

To add the second background image, we add a comma and then the second image URL:

background: url(images/wolf.svg) center bottom / cover no-repeat,
 url(images/moon.png)

We need to put the moon at the top right and make it 45% of the element, and we also need to

make sure it displays only once (and be sure to include the closing semicolon):

background: url(images/wolf.svg) center bottom / cover no-repeat,
 url(images/moon.png) right top / 45% no-repeat;

After taking all these steps, the code should look like the code in Listing 13.1, which creates the

image shown in Figure 13.2.

358 LESSON 13: Taking Control of Backgrounds and Borders

LISTING 13.1 Adding Multiple Backgrounds

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Layering Backgrounds on an Element</title>
 <style>
 .box {
 margin: 0 auto;
 width: 500px;
 height: 400px;
 background: url(images/wolf.svg) center bottom /
 cover no-repeat,
 url(images/moon.png) right top / 45% no-repeat;
 }
 </style>
 </head>
 <body>
 <div class="box"></div>
 </body>
</html>

FIGURE 13.2
Multiple background images on one element. (Credit: claudiodivizia/123RF)

Using Forgotten Background Properties 359

One of the best reasons for using multiple backgrounds on your web pages is so that you can

modify the backgrounds programmatically. For example, we could modify the background in

Figure 13.2 with a script so that at different times of day, the moon image is in a different location

on the element. With only one background image, we’d have to create multiple images for the dif-

ferent times. But by layering multiple background images, we just need to move the moon picture

with the CSS.

Using Forgotten Background Properties
There are several background properties in CSS that designers forget about or hardly ever use. But

if you use these properties, you’ll have more control over how the backgrounds display and more

tools for animation and interactivity in your web pages.

Choosing How to Place the Background
Background images are placed on boxes, and boxes on web pages are affected by the box model.

The box model defines the margins, border, padding, and content area of a box, as you learned

in Lesson 10, “Understanding the CSS Box Model and Positioning.” But when you place a back-

ground on that box, where does it go? The default placement of a background is behind the

content and right up to the border, covering the padding.

The background-clip property lets you change what parts of the box the background covers.

These are your choices:

 N border-box—This extends the background all the way under the border. If your border is

transparent, the background will show through it.

 N padding-box—This clips the background within the padding area but leaves the border

with no background.

 N content-box—This clips the background to the content area only. The padding and

border will have no background.

As with all other CSS properties, you can also use the values initial, inherit, and unset on

the background-clip property. These values set the background to the default or initial state,

the same as the parent element, and remove settings, respectively.

There is another property you can use to adjust how the image displays in the background:

the background-origin property. This property might seem like it does the same thing

as background-clip, but it is slightly different. It determines the positioning area of the

background. The background-clip property specifies whether the background will extend

under the border or padding of the element. The background-origin property uses the same

three values: border-box, padding-box, and content-box.

360 LESSON 13: Taking Control of Backgrounds and Borders

Another way to think about the difference between these two properties is that background-
origin defines where the background image starts, and background-clip defines where the

background image ends.

If you have multiple backgrounds, you can set the background-clip and

background-origin for all of them by separating the values with commas. Just as

with multiple backgrounds, the first value is for the top layer and down through the list.

Changing the Background Size
When the background-size property made it to browsers, we were in heaven. Finally, there

was a way to adjust the size of a background in an element without having to get out a graphics

program. But while you don’t need to edit the graphics, background sizes are complex. There are

four ways to define the background-size:

 N Using keywords

 N Using one value

 N Using two values

 N Using multiple values

Using background-size Keywords
There are three keywords you can use with background-size: auto, cover, and contain.

The auto keyword sets the background to be the size it would normally be. cover sets the

background image to cover the entire container. The image might be stretched or cropped, but

the entire box will have a background. contain resizes the image to fit the entire thing within

the box. This means that small images will be stretched to fit, and large images will be shrunk.

But if there is extra space (and the background-repeat property allows it), the background

will be tiled.

Using background-size Values
You can specify the exact size of a background image by putting in one or two length values.

When you use one length, that number is assumed to be the width of the background, and the

height is set to auto. When you use two numbers, the first is the width, and the second is the

height. You can use any CSS length values, including pixels, percentages, rems/ems, lengths

(centimeters, inches, and so on), and viewport relative units, such as vw and vh.

If you have multiple backgrounds layered on an element, you can set their sizes by separating the

values with commas:

background-size: 400px 400px, cover;

Using Forgotten Background Properties 361

Positioning Your Background Image
Once you have your background image sized so that it fits the element, you will probably

want to have more control over the placement than just the upper-left corner. The

background-position property lets you define where the background will be drawn

relative to the upper-left corner of the element. You can use the keywords top, bottom, right,

left, and center. Or you can use two percentage or length values. One value moves the

background right, and two values move it to the right and down.

But what if you want to position your background based on the right or bottom edges? There are

two ways to do this: Use background-position with edge offsets or use calc().

To use edge offsets, you first indicate which edge you want to offset from: top, bottom, right,

or left. You follow that with a length value. Here is an example:

background-position: top 2rem right 1rem;

This four-value syntax is well supported in all modern browsers. But if you don’t know the exact

length of an element—for example, in a responsive design—then using the calc() as a value

would make more sense. Describing how calc() works is beyond the scope of this book, but you

can search for more information in any search engine.

Changing the Scrolling of Backgrounds
On most web pages, the backgrounds are set to scroll with the browser window. When a cus-

tomer scrolls down, the background moves up, along with the rest of the content. But with the

 background-attachment property, you can change how this works. And with the popularity of

parallax designs, this is a useful property to know.

These are the values for the background-attachment property:

 N scroll

 N fixed

 N local

Most designers are familiar with the first two: scroll and fixed. A background set to scroll will

scroll with the main view (usually the browser window) but will remain fixed inside the local view

(usually a container element). A background that is fixed will stay where it is no matter what. The

third value, local, was created to allow you to scroll the background with both the main view

and the local view.

The easiest way to understand this is to follow along as we build a page with different background

attachments. First we create three <div> elements that will have the different attachments:

<div class="inner"><h1>scroll</h1></div>
<div class="inner"><h1>fixed</h1></div>
<div class="inner"><h1>local</h1></div>

362 LESSON 13: Taking Control of Backgrounds and Borders

Then we surround each of those <div> elements with another <div> and set the classes to

scroll, fixed, and local:

<div class="scroll">
 <div class="inner"><h1>scroll</h1></div>
</div>
<div class="fixed">
 <div class="inner"><h1>fixed</h1></div>
</div>
<div class="local">
 <div class="inner"><h1>local</h1></div>
</div>

We then add a paragraph at the bottom of the document with the class addscrollbar to deal

with larger browsers:

<p class="addscrollbar"></p>

We need to style all the <div> elements with a height of 300px, a width of 60%, a maximum

width of 500px, a margin of 1rem on top and bottom and centered, and hidden horizontal over-

flow and a scrollbar for the vertical overflow. We can add styles to the inner <div> elements:

100% width, 600px height, and hidden vertical overflow. We can also add a 50rem margin to the

.addscrollbar element:

div {
 height: 300px;
 width: 60%;
 max-width: 500px;
 margin: 1rem auto;
 overflow-x: hidden;
 overflow-y: scroll;
}
.inner {
 width: 100%;
 height: 600px;
 overflow-y: hidden;
}
.addscrollbar { margin-bottom: 50rem; }

In order to affect the attachment, you need a background image on the .scroll, .fixed, and

.local elements. We can use LoremPixel (http://lorempixel.com) or another random image

 generator for the images, as shown here:

.scroll, .fixed, .local {
 background-image: url('http://lorempixel.com/600/400/nature/');
}

http://lorempixel.com

Using Forgotten Background Properties 363

Then we set background-attachment on the .scroll, .fixed, and .local elements to

scroll, fixed, and local respectively:

.scroll { background-attachment: scroll; }

.fixed { background-attachment: fixed; }

.local { background-attachment: local; }

If you load this page in a browser, as you scroll, the backgrounds may or may not scroll with you.

Notice how the different values affect whether the background scrolls with the main browser

scrollbar or the element scrollbar or both. Listing 13.2 shows the complete HTML and CSS for this

example.

LISTING 13.2 The Difference Between background-attachment Values

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Learning the Difference Between background-attachment
 Values</title>
 <style>
 div {
 height: 300px;
 width: 60%;
 max-width: 500px;
 margin: 1rem auto;
 overflow-x: hidden;
 overflow-y: scroll;
 }
 .scroll, .fixed, .local {
 background-image: url('http://lorempixel.com/600/400/nature/');
 }
 .scroll {
 background-attachment: scroll;
 }
 .fixed {
 background-attachment: fixed;
 }
 .local {
 background-attachment: local;
 }
 .inner { width: 100%; height: 600px; overflow-y: hidden; }
 .addscrollbar { margin-bottom: 50rem; }
 </style>
 </head>

364 LESSON 13: Taking Control of Backgrounds and Borders

 <body>
 <div class="scroll">
 <div class="inner"><h1>scroll</h1></div>
 </div>
 <div class="fixed">
 <div class="inner"><h1>fixed</h1></div>
 </div>
 <div class="local">
 <div class="inner"><h1>local</h1></div>
 </div>
 <p class="addscrollbar"></p>
 </body>
</html>

Alternating Background Colors
When you build tables, especially large ones with a lot of data, coloring the background of the

rows can make them much easier to read. To do this, you don’t use a background-* CSS prop-

erty but rather the :nth-child() pseudo-class.

In the past, designers would sometimes create a class in their CSS with a background color and

then add that class to every other row in a table. But with the :nth-child() pseudo-class, you

can select one or more elements based on the order in which they appear in the source HTML.

This means that if the table has 10 body rows today and 13 tomorrow, you don’t have to go in

and edit the class on every row. The CSS will update automatically.

The :nth-child() selector takes an attribute in the parentheses. This attribute can be one of

the following:

 N A single integer—Selects just that one element, such as the fourth row in a table, like so:

tr:nth-child(4)

 N even—Selects only the even-numbered elements

 N odd—Selects only the odd-numbered elements

 N A formula—Selects the elements that match the formula an+b, where a is an integer, n is

the literal letter n, + is an operator that may be either + or -, and b is another integer

To create zebra-stripe tables, you can just use the even or odd keywords, like so:

tbody tr:nth-child(odd) { background-color: #dfdfdf; }

This tells the browser to examine every row inside the <tbody> element and add a gray

 background to the first row, third row, fifth row, and so on.

Using Gradients as Backgrounds 365

The real power in using the :nth-child selector is with the formula. It allows you to make

 complicated selections, such as these:

 N Every other element, starting with the fifth one—:nth-child(2n+5)

 N Every sixth element, starting with the second one—:nth-child(6n+2)

You can also use other pseudo-class selectors to select specific elements in your DOM tree,

 including the following:

 N :nth-of-type()—Selects based on the element type, such as <p>, , <tr>, and so on.

 N :nth-last-child()—Selects just like :nth-child() but starting at the bottom of the

parent element and selecting up the DOM tree

 N :nth-last-of-type()—Selects based on type but works up from the bottom of the

DOM tree

For a useful tester you can use to try out different formulas to see how they work, visit

http://lea.verou.me/demos/nth.html.

Using Gradients as Backgrounds
Gradients have been popular on the web for as long as we’ve had images on web pages. Adding

them used to be very difficult. You had to be willing to use gigantic images with lots of colors and

very little compression. If you didn’t you’d end up with blocky color swaths with bands striping

down your page. Sites with smooth gradients were guaranteed to load more slowly. Most design-

ers just left them out completely. Now the combination of modern CSS and modern browsers

allows web designers to create beautiful gradients without any images at all.

CAUTION

This may seem counterintuitive, but when you add gradients to your backgrounds, you add them as
background images with the background-image or the background shorthand property. You can
use these properties as a fallback for older browsers that don’t support gradients. Simply define
both the background-image with the gradient and the background-color with a default color.
Browsers that support gradients then place the gradient above the background color, and older
browsers just display the color and ignore the gradient.

There are two types of gradients: linear and radial.

http://lea.verou.me/demos/nth.html

366 LESSON 13: Taking Control of Backgrounds and Borders

Creating Linear Gradients
Linear gradients are gradients that change color along a straight line. They can move horizontal-

ly from left to right, vertically from top to bottom, or across any diagonal angle you choose. The

default is vertical, or top to bottom. You set a linear gradient by using the linear-gradient()

expression, with a comma-separated list of colors inside the parentheses. For example, you can

create a gradient from pink (#ff00d5) to green (rgba(39, 164, 0, 0.5)) to blue like so:

background-image:
 linear-gradient(#ff00d5, rgba(39, 164, 0, 0.5), blue);

The colors can be any color values that are valid in CSS, including named colors, RGBa,

 hexadecimal, HSL (hue, saturation, and lightness), and so on. You need at least two colors

to create a gradient.

After you define your colors, you can indicate where you want them to start. This is called a color
stop. If you don’t include any color stops, the gradient will be applied evenly across the space. Add

the color stops after each color value but before the comma separating the next color, like so:

background-image:
 linear-gradient(
 red,
 green 35%
);

You add the location of the color stop as a length notation after the color.

If you want to change the direction of the gradient, you add a parameter that is the word to and

the direction before the colors. The following are some examples:

 N to right—The gradient moves from left to right.

 N to left—The gradient moves from right to left.

 N to top—The gradient moves from bottom to top.

 N to top left—The gradient moves from the bottom-right corner diagonally up to the

top-left corner.

 N 45deg—The gradient moves along a 45° angle with 0deg being completely vertical and

90deg being horizontal and equivalent to to right.

Linear gradients can make very nice-looking backgrounds, and they don’t add a lot of download

time to a page.

Using Gradients as Backgrounds 367

Building Radial Gradients
Radial gradients are similar to linear gradients. They take two or more colors and fade from

one to the next. But whereas linear gradients fade down a line, radial gradients start at a single

point and emanate outward. A default radial gradient starts in exactly the center of the element

and moves outward to the edge. It is written just like a linear gradient but with the expression

 radial-gradient(). A basic radial gradient fading from light blue in the center (#9ad6e9)

to yellow is written thus:

background-image: radial-gradient(
 #9ad6e9,
 yellow
);

A gradient makes an ellipse by default unless you place it on a square element. Figure 13.3 shows

the same gradient on <div> elements of two different shapes. Listing 13.3 shows the HTML and

CSS for this figure.

FIGURE 13.3
A radial gradient on two different elements.

368 LESSON 13: Taking Control of Backgrounds and Borders

LISTING 13.3 A Radial Gradient on Two Different Elements

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Radial Gradient on Two Different Elements</title>
 <style>
 .container {
 width: 45rem;
 margin: 0 auto;
 }
 .grad { background-image: radial-gradient(
 orange,
 white);
 border: solid 1px black;
 margin: 1rem;
 float: left;
 }
 .one {
 width: 30rem;
 height: 30rem;
 }
 .two {
 width: 10rem;
 height: 30rem;
 }
 </style>
 </head>
 <body>
 <div class="container">
 <div class="grad one"></div>
 <div class="grad two"></div>
 </div>
 </body>
</html>

The gradient looks different on the square element because it has a circular shape, while the

element itself is square. You can force the gradient to be circular by adding the shape at the

beginning, like so:

background-image: radial-gradient(
 circle,
 #9ad6e9,
 yellow
);

Otherwise, the default value is ellipse.

Using Gradients as Backgrounds 369

You can also adjust the size of the ellipse by defining a size, using the following values:

 N closest-side—The gradient shape is sized to meet the side closest to the center.

 N closest-corner—The gradient shape is sized to meet the corner closest to the center.

 N farthest-side—The gradient shape is sized to meet the side of the element farthest from

the center.

 N farthest-corner—The gradient shape is sized to meet the corner of the element that is

farthest from the center.

One way to think of the keywords is to add them to this sentence: “I want my radial gradient to

start at the center point and fade to the ____, filling in the rest of the element accordingly.” Add

them to the first parameter, as in this example:

circle closest-side,

CAUTION

Early drafts of the CSS specification included two other keywords for defining radial gradients:
contain and cover. These were intended to act as synonyms for closest-side and
farthest-corner, respectively. They were subsequently removed from the specification, and
most modern browsers have removed support for them (if they ever did support them). Use the
closest-side and farthest-corner keywords instead.

If you want the placement of the center of your gradient to be more precise, you can use the at

keyword along with positioning keywords or values. These are the keywords you can use:

 N left

 N center

 N right

 N top

 N bottom

The following example shows how to use the at keyword and parameters:

circle at bottom right,

You can also use exact positions in lengths or percentages for the distance from the top and the

left side of the element. For example, Figure 13.4 displays two gradients placed next to one

another. One has an origin at the bottom left and the other at the bottom right. Listing 13.4

shows the CSS used to create this effect.

370 LESSON 13: Taking Control of Backgrounds and Borders

FIGURE 13.4
Radial gradients create an interesting effect.

LISTING 13.4 Two Radial Gradients Create an Interesting Effect

.one {
 background-image: radial-gradient(
 at bottom left,
 orange,
 white
);
}
.two {
 background-image: radial-gradient(
 at bottom right,
 orange,
 white
);
}

And just as with linear gradients, with radial gradients you can define color stops to identify

exactly where you want the colors to change. For example, this is a three-color circular gradient

centered in the lower-right portion of the element:

.gradient {
 background-image: radial-gradient(

Rounding the Corners of HTML Elements 371

 circle at 70% 64%,
 orange,
 #25b25d 18%,
 gray 77%
);
}

Rounding the Corners of HTML Elements
As you’ve learned in earlier lessons, HTML elements are all rectangular blocks, and this can make

web pages look very boxy and rigid. But with the border-radius properties, you can make

the corners as round or square as you like. Simply define the amount of curve you want for the

corners, like so:

border-radius: 1rem;

NOTE

An easy way to remember the style property border-radius is to imagine there is a circle in each
corner of your element. The radius of that circle determines the size of the curve.

As long as there is a color change of some sort, the rounded corner will be visible and will curve

all four corners of the element. Listing 13.5 shows three <div> elements with rounded corners

that are identical except that the first one has a background color, the second has a border, and

the third has a background image. Figure 13.5 shows how this would look.

LISTING 13.5 Three <div> Elements with Rounded Corners

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Three DIVs with Rounded Corners</title>
 <style>
 div {
 border-radius: 1rem;
 width: 10rem;
 height: 15rem;
 float: left;
 margin: 1rem;
 box-sizing: border-box;
 }
 .one { background-color: aqua; }
 .two { border: solid 0.25rem aqua; }

372 LESSON 13: Taking Control of Backgrounds and Borders

 .three { background: url(images/mckinley.jpg)
 center top / cover no-repeat; }
 </style>
 </head>
 <body>
 <div class="one"></div>
 <div class="two"></div>
 <div class="three"></div>
 </body>
</html>

FIGURE 13.5
Three <div> elements with rounded corners.

With the border-radius property you can set all four corners at once, or you can set them to

different values. This property can take between one and four values.

You can use one value to set all four corners the same. If you use two values, you set first the top-

left and bottom-right corners to the first value and then set the top-right and bottom-left corners

to the second value. If you use three values, you set the top-right and bottom-left corners to the

second value, with the first value setting the top-left corner and the third value setting the

bottom-right corner. You can use four values to set all four corners, in this order: top-left corner,

top-right corner, bottom-right corner, and bottom-left corner. Consider these examples:

 N border-radius: 1rem;—All four corners are 1rem radius.

 N border-radius: 1rem 0.5rem;—The top-left and bottom-right corners are 1rem. The

top-right and bottom-left corners are 0.5rem.

Using Images as Borders 373

 N border-radius: 1rem 0.5rem 0.25rem;—The top-left corner is 1rem. The top-right

and bottom-left corners are 0.5rem. The bottom-right corner is 0.25rem.

 N border-radius: 1rem 0.75rem 0.5rem 0.25rem;—The top-left corner is 1rem. The

top-right corner is 0.75rem. The bottom-right corner is 0.5rem, and the bottom-left corner

is 0.25rem.

One fun thing you can do is turn any element into a circle or an ellipse with the

border- radius: 50%; style property. If the element has equal height and width, it will

display as a circle. If the height and width are different, it will display as an ellipse.

Using Images as Borders
Borders can be more than just plain colors. You can do a lot with borders by curving the edges,

as you learned in the last section, and also by changing their width and style, as you learned in

Lesson 10. However, you can’t create every effect you might want with borders.

One thing that many designers look for is a way to frame images with another image. Rather

than make a solid-color border surrounding an element, you might want a frame like one you

would see around a painting. To do this, you need a picture of the frame.

Defining the Border Image: border-image-source
CSS allows you to define any picture as a border by using the border-image property. This is

a shorthand property that defines several other properties. One such property is the URL of the

image that will become the border, which is defined as border-image-source. The default

value for border-image-source is none, but if you specify an image URL, then that image will

be used as the border for the element, like so:

.myBorder {
 border-image-source: url(border.png);
}

Clipping the Border Image: border-image-slice
The border-image property also defines the border-image-slice property. In order to

 create decent borders, you need to tell the browser where each portion of the border will be by

slicing the border into nine sections. These sections are illustrated in Figure 13.6.

374 LESSON 13: Taking Control of Backgrounds and Borders

Right: 1144

Top: 543

Left: 627

Bottom: 802

FIGURE 13.6
Slicing an image to use as a border.

The border-image-slice property takes up to four positive values, either numbers or percent-

ages, and an optional fill keyword. The numbers, which are unitless, measure the coordinates

of the slices by pixels on raster images like JPEG or PNG and by coordinates on SVG images. If

you use percentages, this is relative to the size of the image itself. The four values measure inward

from the top, right, bottom, and left edges of the image:

border-image-slice: top right bottom left;

This divides the image into nine regions: four corners, four edges, and the center. In most cases,

the center is discarded, and only the corners and edges are used for the border.

NOTE

The border-image-slice property can have slices that are 0 pixels away from the side. This
allows you to create image borders that are applied only to a couple sides of an element rather than
all four. For example, if you want to add a border that looks like a ruler, you might place that on only
the top or right side of the element. When you slice the border image, the left and bottom sides are
zero, and they are not applied to the border.

Using Images as Borders 375

As mentioned previously, the border-image-slice property can also take the keyword

fill. This tells the browser to keep the middle part of the image and display that section as a

 background image on the element. You can therefore add a background image with a fancy bor-

der to your element and have that border be repeated no matter the size of the element. To use

the fill keyword, add it after the offsets, like this:

border-image-slice: 10 5 8 7 fill;

Figure 13.7 shows how a simple image can be sliced and used to fill an element or just create the

border. For this image, we used a picture from Pixabay of a series of flowers and sliced it so that

only the outer rows and columns are part of the border.

FIGURE 13.7
Using a sliced image for a border and a filled border.

Defining the Border Image Width
One property that is confusing to people when they first start using border images is border-
image-width. This is different from the slice offsets because it defines the width of the border

image regardless of the offset. The initial value is 1, so if you need the border to be blank on one

or more sides, you should specify border-image-width for those sides as 0. Otherwise, if there

is a border or border-width set on the element, that border will display.

376 LESSON 13: Taking Control of Backgrounds and Borders

This property uses the top, right, bottom, left order for the values. You can use percentages

relative to the size of the border image area or unitless non-negative numbers that are multiplied

by border-width.

Extending the Border Image Beyond the Border Edges
If you want your border image to extend past the border box area, you can use the border-
image-outset property. Border images do not affect the width of the border, and wider bor-

ders are inset, covering the padding and even the content area of the element. When you add an

 outset, this tells the browser to display the border image outset over the element margin.

Making the Border Fit
One thing you’ll notice when you start using border images is that they don’t fit around every ele-

ment. Browsers automatically repeat the image as they would with tiled background images to

make the border images fit in the space available. There are four ways a browser can do this with

the border-image-repeat property:

 N stretch—The border image is simply stretched to fit the space. If the space is too wide,

that slice will be increased, and if it’s too narrow, the slice will be compressed. This is the

default value.

 N repeat—This keyword tiles the image to fill the area. If necessary, the tiles will be cut to fit

the space.

 N round—This keyword tiles the image to fill the area, but the image is resized and scaled to

fit so that tiles are not divided or cut.

 N space—This keyword tiles the image to fill the area, but if whole tiles cannot be used, space

is inserted around the tiles to create an even fit. This keyword may not be supported by

Chrome, Android, or Opera browsers. However, when we tested it in Chrome, it appeared

to work.

Figure 13.8 shows the border-image-repeat property on four elements. For this figure, we

cropped the flower border image so that it was only nine flowers (a 3 × 3 grid) and resized it to be

100 × 100 pixels. If you use a border image that is larger than the elements you’re bordering, you

can get unexpected results, especially with the round and space keywords. The former can end

up looking identical to stretch, while the latter is simply blank because there isn’t enough space

in the slice to include the whole thing.

Using Images as Borders 377

FIGURE 13.8
Different repeating styles on border images.

CAUTION

Most novice web designers think that the border-image and related properties should allow you
to create a repeating border around the element without slicing the image at all. But that is not how
these properties work. In order to create a repeating image, you need to create a 9 × 9 grid of the
image (you can leave out the central image) and then slice the image with the border-image-
slice property. Figure 13.9 shows a 9 × 9 grid of flowers that we used to create a repeating flower
border in Figure 13.7.

FIGURE 13.9
A 9 × 9 grid of flowers can be used to create a repeating flower border.

378 LESSON 13: Taking Control of Backgrounds and Borders

Understanding CSS Outlines
An outline is a line around visible objects on the web page that is designed to make the object

stand out. According to the W3C, outlines are different from borders in three ways:

 N Outlines do not take up space.

 N Outlines may be non-rectangular.

 N Browsers and other user agents often render outlines on elements when they are in the

:focus state.

Because outlines don’t take up space, they can cover content, are usually drawn outside the

element’s border, and don’t add to the dimensions of the element. They are not part of the

box model.

Because outlines may be non-rectangular, they may display differently in different browsers. This

is especially true when the outline is applied to an inline element such as . Some browsers

follow the actual contours of the letters with the outline, while others treat the inline element as

a rectangular box. Both display methods are valid, but you should be aware of these differences

when using CSS outline properties.

Another thing that some browsers do is display the outline of links and other elements when they

have been focused on but haven’t been clicked. This allows users to see what link may be about to

be clicked; this is especially important for accessibility.

CAUTION

You should never use outline: none; or outline: 0; on links or buttons or other elements
that receive keyboard focus. Such an outline tells keyboard users which link currently has focus, and
without it, they can’t navigate your site. If you must remove the outline, then be sure to redefine any
:focus states with some other way to recognize the state change, such as a color change, font
change, or other indicator.

There are five outline properties: outline-style, outline-color, outline-width,

outline-offset, and outline. They work in the same way as the border properties, with

outline being a shorthand property where you can define outline-style, outline-color,

and outline-width all at once, like so:

outline: 8px ridge yellow;

The outline-offset property defines the amount of space between the outline and the edge

or border. The default value is 0, and it can take any length value, including negative numbers if

you want the outline to be shown above the content or border. Here is an example:

outline-offset: .4rem;

379Workshop

Summary
In this lesson you learned several advanced techniques for background images and borders. First,

you learned how to adjust the four borders on any element and set them all individually to create

an element with several different borders. You also learned how to layer multiple backgrounds

on one element to create interesting effects. This lesson covered how to position background ele-

ments with the background-clip property, how to change the size of the background with

background-size, and how to use the background-position and background-
attachment properties. You also learned about how to use some other lesser-known CSS

properties to create a zebra-striped table. In the section on gradients, you learned about both

linear and radial gradients. This lesson also covered how to round the corners of elements with

the border-radius property and how to use images as borders with the border-image

properties. Finally, you learned about the CSS outline properties and how they differ from

border properties.

Q&A
 Q. What is the best way to create a responsive background image for a web page?

 A. Responsive web pages need to have background images that are large enough to cover big
monitors but small enough to download quickly on mobile devices. You have several options
for creating a decent background image, including using a small PNG as a repeating back-
ground or seamless tile, using flat color or gradients, or using an SVG file that can scale
appropriately. You will learn more about responsive web design in Part IV, “Responsive
Web Design.”

 Q. Are there rules for when you should use an tag versus using a background image?

 A. The tag is a part of the HTML and as such is part of the content of the page. It
can be printed and animated, but it is considered page content that should be rendered in
some fashion even if the user agent is not a visual device such as a screen reader.

 Background images are part of the background. They generally are not considered content
and will be ignored by visual user agents. They are typically used as decoration or enhance-
ment of existing content. Sprites are usually created using background images.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered.

380 LESSON 13: Taking Control of Backgrounds and Borders

Quiz
 1. What types of HTML elements (such as block or inline) can have background images?

 2. What is the keyword for creating a border that makes the element appear pressed into
the page?

 3. What are two ways you can give an element a red, dotted, 2px border on the top side
and a blue, double 10px border on the right and left sides, leaving the bottom side with
no border?

 4. How do you separate multiple background images in the background property when
 layering them on one element?

 5. Where does the background display when background-clip is set to content-box?

 6. What does the selector li:nth-child(even) select?

 7. What corners are rounded with the CSS style border-radius: 10px 5px 15px;?

 8. What CSS property defines the URL used as a border image?

 9. What does the fill keyword do in the border-image-slice property?

 10. What are the three ways CSS outlines are different from borders?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. Backgrounds can be applied to any HTML element.

 2. The border-style keyword groove makes the element appear pressed into the page.

 3. You can define all four borders separately, like so:

border-top: 2px dotted red;
border-right: 10px double blue;
border-bottom: none;
border-left: 10px double blue;

 Or you can define all four borders the same and then change just the two different ones,
like so.:

border: 10px double blue;
border-top: 2px dotted red;
border-bottom: none;

http://www.informit.com/register

Exercises 381

 4. You use commas to separate the layered background images.

 5. The background will display behind the content only. The padding and border will have no
background.

 6. It selects every even-numbered element in the DOM.

 7. The top-left corner is 10px, the top-right and bottom-left corners are 5px, and the bottom
right is 15px.

 8. The border-image-source property defines the image source for any border image.

 9. It tells the browser to keep the middle part of the image as a background image on the
 element.

 10. They don’t take up space, they may be non-rectangular, and browsers often render them
when the element is in a :focus state.

Exercises
 N Use what you’ve learned in this lesson to add a linear gradient to the background of your

web page or an element on the page. Remember that gradients work best on elements
that have defined dimensions, so be sure to set them in your CSS.

 N Once you have a gradient on an element, layer an image above it in the background. This
is one of the most common ways to use layered backgrounds. Rather than set multiple
images, you set the top layer as an image and the bottom layer as a gradient.

This page intentionally left blank

LESSON 14
Using CSS Transformations

and Transitions

What You’ll Learn in This Lesson:

 N How to transform elements by rotating, scaling, moving, and tilting

 N How to work with transformations in three dimensions

 N How to apply multiple transformations to one element

 N How to do simple animations with the transition property

In this lesson you will start learning how to make your elements literally move on the screen.

You will start by learning about two-dimensional transformations: making elements larger and

 smaller, moving them, rotating them, and even changing the tilt. The transform properties will

help you make your elements look more interesting. You will also learn how to transform elements

on a three-dimensional plane.

Where this lesson really gets interesting is when you start to animate those elements with the

transition properties. You will learn how to make the browser convert your choppy instant

changes when you mouse over an element into smooth transitions that slowly change from the

starting point to the end point. This lesson requires a lot of hands-on work to really understand

the material, so open your editor and get ready to try out the animations yourself.

Understanding CSS 2D Transformations
CSS lets you transform an element in several ways. The following are some of the most commonly

used transformation functions:

 N rotate—Spins the element on the x,y plane

 N scale—Shrinks or enlarges the element

 N translate—Places the element in a new position on the screen

 N skew—Distorts the element along the horizontal axis or along the vertical axis

You accomplish all these transformations by using the transform property and its 11

 transformation functions: rotate, scale, scalex, scaley, skew, skewx, skewy, translate,

translatex, translatey, and matrix.

384 LESSON 14: Using CSS Transformations and Transitions

Rotating Elements with translate: rotate();
To rotate an element, you set the rotate() value to a degree from 0deg to 360deg (or −360deg

to 0deg). The element will then rotate that many degrees clockwise for positive numbers or

 counterclockwise for negative numbers.

To try it out, place two <div> elements on a page:

<div class="one"></div>
<div class="two"></div>

Style both elements so that they are visible on the screen:

div {
 width: 20rem;
 height: 30rem;
 border: solid 1px black;
 background: linear-gradient(#f5ea70 0%, #ffffff 100%);
 margin: 1rem;
 float: left;
}

Finally, add a rotation of 10 degrees to the second one with the class two:

.two {
 transform: rotate(10deg);
}

Figure 14.1 shows how this looks in Firefox. The only thing that is different about the second

<div> element is the transformation, and yet it displays very differently on screen.

FIGURE 14.1
A simple rotation on a <div> element.

Understanding CSS 2D Transformations 385

Making Elements Larger and Smaller with
transform: scale();
You can transform an element by making it larger or smaller with the scale() value. The

number inside scale() is the scaling factor—a number that is multiplied by the element’s cur-

rent size. For example, 1 is the same as no scaling, 0.5 is half the current size, and 3 is three

times as large.

The standard use is to apply one value to both the horizontal and vertical dimensions. But you

can also use scalex() to resize only the horizontal dimension or scaley() to resize only the

vertical direction. You can also set both values on the scale() function by separating them with

a comma, like so:

transform: scale(horizontal,vertical);

CAUTION

When you transform an element, the browser won’t change or move the surrounding elements.
A transformed element can overlap and even hide other elements on the page.

Changing the size of an element may seem pointless, but it is a good way to give elements more

or less emphasis in certain situations. For example, if you want customers to click on a button, you

might make that button slightly larger when they hover over it. Listing 14.1 shows how you might

achieve that.

LISTING 14.1 Enlarging a Button When in Hover State

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Make the Button Bigger</title>
 <style>
 button {
 font-size: 1.5rem;
 border-radius: 10px;
 border: solid 1px #940c94;
 background: linear-gradient(#cb2ff6 0%, #ffffff 100%);
 padding: 0.25rem;
 margin: 1rem;
 }
 button:hover {
 transform: scale(1.2);
 }

386 LESSON 14: Using CSS Transformations and Transitions

 </style>
 </head>
 <body>
 <button>Click Me</button>
 </body>
</html>

When you hover over the button, it gets a little bit bigger, grabbing attention and encouraging

customers to click.

NOTE

Remember that when you transform an element, it affects everything in that element. So if you dou-
ble the size of a 200 × 200 box with 15px padding with transform: scale(2);, it will display
as 400 × 400 with 30px padding. The transformation applies to other styles on the element, such
as font size, margins, borders, and outlines.

One thing that many designers don’t realize about the transform: scale(); property is

that negative values cause an element to scale in a mirror image way. Remember that 1 as the

scale() value tells the browser to keep the image the same size. So if you want your text to

 display as mirror writing, you just tell the browser to scale the horizontal to −1, like so:

p { transform: scalex(−1); }

You can also turn it all upside down with scaley(), like so:

p { transform: scaley(−1); }

This does not hide the text from search engine robots or impact the content in any other way.

It just makes the text display backward, which could be fun in some situations.

Moving Elements with transform: translate();
The translate() function of the transform property moves an element from its default

 position on the page to the defined amount horizontally or vertically. It takes two values

 separated by a comma, like so:

transform: translate(horizontal,vertical);

You can move an element on just the horizontal plane with translatex() and just on the

 vertical plane with translatey(). Thus, you can move an element 50 pixels to the right and

20 pixels down from where it normally would display on the page like so:

transform: translate(50px,20px);

Understanding CSS 2D Transformations 387

You can define an explicit value to move the element with pixels, rems, or other units. But you can

also define the amount to move as a percentage of the element’s width (translatex()) and

height (translatey()). This comes in handy if you want to center an element both vertically

and horizontally.

Start with a simple element that you want centered:

<div class="center"><h1>Center Me</h1></div>

Give it some styles:

div {
 width: 15rem;
 border: solid 1px black;
 padding: 0.25rem 1.2rem;
 background: linear-gradient(#f5ea70 0%, #ffffff 100%);
 text-align: center;
}

Using absolute positioning, you can position the element to be halfway down the container and

halfway across:

.center {
 position: absolute;
 top: 50%;
 left: 50%;
}

This places the element with the top-left corner in the center. If you want it truly centered, add

a transformation to move it right 50% and up 50%:

transform: translate(−50%, −50%);

The element now displays in the center both vertically and horizontally.

CAUTION

While using translate() to center elements vertically does work, it fails in a couple situations.
First, it uses absolute positioning, which can affect the entire layout of a complex page. Second,
if the content is too long to fit in the existing viewport, the content is clipped and unreadable.
Figure 14.2 demonstrates how this might look.

388 LESSON 14: Using CSS Transformations and Transitions

FIGURE 14.2
The vertically centered element is taller than the viewport, so the top is clipped and not visible.

Another way you might use translate() in your web pages is on buttons. It is common for

 buttons on computer operating systems to move a little down and to the left when they are

clicked. This is meant to simulate a physical button being pressed. You can accomplish this effect

by adding the translate() function when a button is active, like so:

button:active {
 transform: translate(2px,1px);
}

The translate() function comes into its own when you start animating your pages with CSS

transitions, which are covered later in this lesson. Otherwise, it makes more sense to position

 elements with the position property, covered in Lesson 10, “Understanding the CSS Box Model

and Positioning.”

Slanting Elements with transform: skew();
You can use transform: skew(); on an element to slant it on the horizontal and vertical axes.

Much as with other transform functions, you can affect just the horizontal axis with skewx()

Understanding CSS 2D Transformations 389

and just the vertical with skewy(). If you give skew() one value, it defines the slant on the hori-

zontal (skewx()) axis; otherwise, you include the horizontal and vertical values separated by a

comma, like so:

transform: skew(horizontal,vertical);

You define the amount of skew as the number of degrees (between 0 and 360) the element should

slant on that axis.

NOTE

You can define the skew and rotation of an element with radians (rad) as well as degrees. Most
designers don’t use radians as they are more familiar with degree notation. You can also use
 negative degrees to rotate or tilt the element counterclockwise. So, for example, the value 315deg
is the same as −45deg.

Keep in mind that when you transform an element, you are not just changing the container,

you’re also transforming the contained elements. To understand this, create a <div> with some

contents:

<div class="one">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
 occaecat cupidatat non proident, sunt in culpa qui officia
 deserunt mollit anim id est laborum.</p>
</div>

Create a second <div> that has a different class on it but has the same contents:

<div class="two">

Give both <div> elements a background color, such as a gradient, and a narrow width so they

don’t take up as much space on the screen. You will want to have them stack one above the other.

Here is an example:

div {
 width: 50%;
 background: linear-gradient(#4138f5 0%, #59c4e4 100%);
 padding: 1rem;
 color: white;
 margin: 0 auto;
}

390 LESSON 14: Using CSS Transformations and Transitions

Then transform one of the <div> elements to have a slight tilt of around 15 degrees:

.two {
 transform: skew(15deg);
}

In Figure 14.3, you can see that the second <div> and all its contents are tilted. The text is a little

harder to read, and the linear gradient moves down the element on an angle as well.

FIGURE 14.3
The transform: skew(); property tilts the contents as well as the container element it’s applied to.

Notice that the element automatically tilts along exactly the center line, horizontal or vertical.

You can adjust where the tilt is applied by using the transform-origin property. The default is

transform-origin: 50% 50%;, but you can set it to any horizontal (the first value) and verti-

cal (the second value) values you want, including keywords like top, bottom, left, and right.

Figure 14.4 uses transform: skew(); and background gradients to create a shape that looks

like a paper folded in three places.

FIGURE 14.4
Having fun with transform: skew() and background gradients.

Understanding CSS 2D Transformations 391

The HTML for Figure 14.4 is four <div> elements, and the CSS in Listing 14.2 changes the

 transform origin for the two inner elements and adds skew to tilt them on the screen.

LISTING 14.2 CSS for Creating a Folded Paper Effect

div {
 width: 50%;
 height: 3rem;
 background: linear-gradient(#4138f5 0%, #59c4e4 100%);
 padding: 1rem;
 color: white;
 margin: 0 auto;
 text-align: center;
}
.two {
 background: linear-gradient(#59c4e4 0%, #4138f5 100%);
 transform-origin: top right;
 transform: skew(15deg);
}
.three {
 transform-origin: bottom right;
 transform: skew(345deg);
}
.four {
 background: linear-gradient(#59c4e4 0%, #4138f5 100%);
}

Using Multiple Transformations
All the previous examples use just one transformation at a time, but you can use as many as you

need, separating each pair of methods with a space. For example, to scale an image and tilt it,

you could write CSS like so:

img {
 transform: scale(1.2) skew(5deg);
}

Or to apply rotation, scaling, translation, and skew to your image, you could write CSS like so:

img {
 transform: rotate(30deg) scale(1.2) translate(15px,0) skew(5deg);
}

The thing to remember is that the order in which you place the functions in your CSS is the order

in which they are applied. Changing the order could change how an element looks on the page.

392 LESSON 14: Using CSS Transformations and Transitions

This mostly applies to translate() but could affect other functions, depending on what you do.

Test your designs a lot.

NOTE

There is one other transformation method you can use: transform: matrix();. This
method gives you almost pixel-perfect control over exactly how your elements are transformed.
Understanding it requires a lot of math, but tools—such as CSS Transform Generator
(http://angrytools.com/css-generator/transform/)—are available to build matrices for you.

Transforming Elements in Three Dimensions
All the properties discussed to this point in the lesson apply to elements in two-dimensional space.

But the CSS transform function can also affect elements in three dimensions. There are

3D versions of most of the transform functions, including the following:

 N rotatex(), rotatey(), and rotate3d(x, y, z, angle)—Allows you to define

a point in 3D space around which to rotate the element.

 N scale3d(x, y, z) and scalez()—Resizes the element in three dimensions.

 N translate3d(x, y, z) and translatez()—Moves the element in three dimensions.

The trick to transforming an element in three dimensions is to define the perspective from

which the third dimension is viewed. The best way to do this is to set the perspective property

on the parent element. The value of this property determines the intensity of the effect; for

example, further away makes the effect less intense than up close. You can use any length value

as the perspective, like so:

perspective: 40cm;

Another thing to keep in mind is that without perspective, elements that have been transformed

on the three-dimensional plane will look no different from elements skewed or otherwise trans-

formed in two dimensions. In order for your 3D transformations to be apparent, you need to have

some frame of reference. Figure 14.5 demonstrates this with a blank container element around

each inner element that has been rotated in 3D.

http://angrytools.com/css-generator/transform/

Working with CSS Transitions 393

FIGURE 14.5
The outlined squares contain the rotated inner elements.

Working with CSS Transitions
Once you know how to transform elements, you can create simple animations by using the

transition properties. These properties allow the browser to control an animation, while

taking direction from the CSS. The transition property is a shorthand property for several

other properties:

 N transition-property—Indicates which CSS properties should transition.

 N transition-duration—Defines the amount of time the transition will take.

394 LESSON 14: Using CSS Transformations and Transitions

 N transition-timing-function—Specifies the function used to determine how interme-

diate values in the animation are computed.

 N transition-delay—Defines when the transition will start.

The shorthand notation for the transition property is written like so:

transition: property duration timing-function delay;

The best way to understand transitions is to create some. Still screenshots would only suggest how

these animations would look, so be sure to follow along so you can see the effects in a browser.

First, create a <div> element on your page and give it some styles so that it’s visible:

div {
 width: 10rem;
 height: 10rem;
 background: linear-gradient(#6058ef 0%, #ffffff 100%);
 border: solid 5px #0096ff;
}

Then create a new version of the element that appears when the mouse hovers over it:

div:hover {
 width: 20rem;
}

If you view this in a browser now and hover over the <div> element, the <div> element will

change instantly from 10rem tall to 20rem. But you can slow this down and animate the change

by using a transition property (applied to the parent element rather than to the :hover

state):

transition: width 2s linear;

Now when you mouse over the box, it slowly gets larger over a two-second period. When you

move your mouse off the box, it transitions back at the same speed. You can add multiple proper-

ties to transition, with a comma separating each pair. Add the style to the :hover state and then

add a second transition, like so:

transition: width 2s linear, height 2s ease;

Transitions get interesting when you use them with transformations. To see this, change the hover

state on the <div> to transform the element to be larger and rotated:

div:hover {
 transform: translate(10rem,11rem) scale(2) rotate(45deg);
}

Working with CSS Transitions 395

These styles move the element 10rem left and 11rem down, make it twice as large, and rotate it

45 degrees. If you don’t include a transition, the effect can be jarring at best, and at worst it will

not even work. It won’t work when the user positions the mouse on the initial location so that it’s

not hovering over the element in the final location, such as the upper-left corner. When you add a

transition, as shown here, the change is less abrupt and lets the user follow along with the mouse

when it stops:

transition: transform 3s ease-in-out;

Listing 14.3 shows the full HTML and CSS for this rotating cube.

LISTING 14.3 A Rotating Cube

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Rotating Cube</title>
 <style>
 div {
 width: 10rem;
 height: 10rem;
 background: linear-gradient(#6058ef 0%, #ffffff 100%);
 border: solid 5px #0096ff;
 transition: transform 3s ease-in-out;
 }
 div:hover {
 transform: translate(10rem,11rem) scale(2) rotate(45deg);
 }
 </style>
 </head>
 <body>
 <div></div>
 </body>
</html>

You can choose nearly any CSS property you want to transition using the transition-
property property. You can also use the keyword all to tell the browser to apply the transition

to every property that changes. There are a couple general rules for what you can and cannot

transition:

 N You should transition between absolute values. This means you can, for example, transition

from a height of 10% to a height of 30%, but you can’t transition from 10rem to auto.

396 LESSON 14: Using CSS Transformations and Transitions

NOTE

The CSS3 specification says that you cannot transition using percentage lengths. But most browsers
support that anyway. The specification also says you cannot transition to or from auto, but WebKit
browsers (Safari and Chrome) support this as well, though sometimes with strange effects. As
usual, always test your designs thoroughly.

 N Adding transitions on pseudo-elements (::before and ::after) doesn’t always work,

but in the CSS3 specification, if an element has the quality animatable, then transitions

should work on it, too.

 N Most browsers don’t support transitioning background gradients.

For a list of properties that can be transitioned, see http://oli.jp/2010/css-animatable-properties/.

And for a really interesting example of all the ways you can change a very simple element, visit

the Animatable site (http://leaverou.github.io/animatable/).

Changing the Timing of a Transition
Once you’ve set a property to transition, you need to affect the time it takes to transition, how it’s

going to transition, and when it’s going to start. For these effects, you need the transition-
duration, transition-timing-function, and transition-delay properties. The

transition- duration and transition-delay properties should be fairly obvious: You

set the amount of time—in minutes, seconds, milliseconds, and so on—for the transition to take

(transition- duration) and for the time until the animation starts (transition-delay).

The transition-timing-function property is a bit more difficult to understand. This

 property takes a function that tells the browser how to perform the animation as it transitions the

element. It takes the following values:

 N ease—Causes the animation to start slowly, speed up quickly, and then slow down again at

the end. This is the default.

 N ease-in—Causes the animation to start slowly and then get up to speed.

 N ease-out—Causes the animation to start at speed and then slow down at the end.

 N ease-in-out—Causes the animation to start slowly, speed up, and then slow down at the

end. It’s different from ease in that it doesn’t get up to full speed as quickly.

 N linear—Causes the animation to move at a steady speed the entire time.

You can also define your own custom timing function with the cubic-bezier() function.

A tool you can use to help build timing functions is the CSS Easing Animation Tool

(https://matthewlein.com/tools/ceaser).

http://oli.jp/2010/css-animatable-properties/
http://leaverou.github.io/animatable/
https://matthewlein.com/tools/ceaser

Using JavaScript to Trigger Transitions 397

NOTE:

The best way to understand the timing functions is to try them out. Try changing the ease-in-out
value in Listing 14.3 to something else, such as linear, and see how the animation changes.

Using JavaScript to Trigger Transitions
Transitions make it easy to add animation to your web pages, but there are some situations where

you might want an animation, but there isn’t an appropriate CSS selector. For example, CSS has a

:hover class but doesn’t have a :click pseudo-class, so if you want to trigger a transition when

someone clicks on an element, you need to do it with JavaScript.

One way to do this is to define classes that you can assign when an element is clicked. You would

have a class for the element itself and a class for when it’s clicked, like so:

div {
 width: 10rem;
 height: 10rem;
 background: #ff0000;
 transition: transform 3s linear;
}
div.clicked {
 transform: rotate(230deg);
}

Then, using jQuery, which you’ll learn more about in Lesson 26, “Using Third-Party JavaScript

Libraries and Frameworks,” you add and remove the clicked class, like so:

$(function() {
 $("div").click(function(){
 $(this).toggleClass('clicked');
 });
});

You can also do this without a library by using plain JavaScript. Listing 14.4 shows a fully

 functional version of the script and CSS for this example. (You will learn more about this in

Lesson 20, “Getting Started with JavaScript Programming.”)

LISTING 14.4 Spinning a Box When You Click It

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Spin Box on Click</title>
 <style>

398 LESSON 14: Using CSS Transformations and Transitions

 div {
 width: 10rem;
 height: 10rem;
 background: #ff0000;
 transition: transform 3s linear;
 }
 div.clicked {
 transform: rotate(230deg);
 }
 </style>
 <script src="https://ajax.googleapis.com/ajax/
libs/jquery/3.3.1/jquery.min.js"></script>
 </head>
 <body>
 <div></div>
 <script>
 $(function() {
 $("div").click(function(){
 $(this).toggleClass('clicked');
 });
 });
 </script>
 </body>
</html>

Summary
This lesson taught you how to add basic animation to web pages by transforming elements and

then having the browser transition those transformations slowly and smoothly. In the first sec-

tion you learned how to use the transform property. You learned how to rotate an element

around an axis with rotate(). Then you learned how to make an element larger or smaller

with the scale() function. With the translate() function, you learned that you could move

elements from where they would normally be placed. And the skew() function showed you

how to tilt elements on the horizontal and vertical axes. But there are also three-dimensional

transformations. And in this lesson, you learned how to use the rotatex(), rotatey(), and

rotate3d(x, y, z, angle) functions to spin an element around a point in space. You

learned that the scale3d(x, y, z) and scalez() functions resize the element in the three

dimensions, and translate3d(x, y, z) and translatez()move an element in three

dimensions. You can’t work in 3D without perspective, so this lesson covered the perspective()

property as well.

This lesson really got interesting when you learned how to animate transformations with the

transition properties. You learned how to define the properties to transition, how to define

the time a transition takes, and how to set a delay for a transition so that it does not start

399Workshop

immediately. You also learned about the different timing functions you can use to affect how a

transition looks on the screen. This lesson also covered, very briefly, how to kick off a transition

with JavaScript; you will learn a lot more about this in future lessons.

Q&A
 Q. If I want to transform just a section of a paragraph, such as a code block, is this possible

with the transform property?

 A. The transform properties apply only to block-level elements and a few table elements. If
you need to transform an inline element such as a <code> block, you should first add the
display: block; or display: inline-block; style to it so that the browser knows
that it needs to treat this like a block-level element. Then you can transform it.

 Q. If I want to have different transition values for multiple properties, how do I do that?

 A. You can separate multiple transitions with commas, like so: transition: transform
3s linear, background 1s ease;

 This transitions the transform property over three seconds in a linear fashion, while
transitioning the background property over one second with the ease function.

Workshop
The workshop contains quiz questions and exercises to help you solidify your understanding of the

material covered.

Quiz
 1. How can you spin an element so that it displays upside down?

 2. What would transform: scale(3); do to an element?

 3. How is using translate() different from using CSS positioning?

 4. What are two ways to slant an element 5 degrees?

 5. What is a style rule you could use to make a paragraph with the class special so that it
is transformed half as big as normal and slanted 45 degrees counterclockwise?

 6. Which value would make a 3D transformation more intense: perspective: 1m;
or perspective: 1in;?

 7. How do you move an element 15 pixels on the z-axis?

 8. How do you define what feature will change in a transition?

 9. What is the correct order for properties in the shorthand transition property?

 10. Which timing function makes a transition evenly across the entire time period?

400 LESSON 14: Using CSS Transformations and Transitions

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. You can use the transform: rotate(180deg); property to turn an element upside down.

 2. It would enlarge the element three times the original size while leaving it overlapping the
surrounding content.

 3. It moves the element from its default position but leaves all the surrounding elements in place.

 4. You can use transform: slant(5deg); or transform: slantx(5deg);.

 5. Use this style rule:

p.special {
 transform: scale(0.5) skew(−45deg);
}

 or use this:

p.special {
 transform: scale(0.5) skew(320deg);
}

 6. The closer value looks more intense, so perspective: 1in;, at 1 inch away rather than
1 meter, would appear more intense.

 7. Use transform: translatez(15px); with perspective: 50px;. The value of the
perspective doesn’t matter as much as the fact that it’s set.

 8. Use transition-property to define the CSS properties to transition.

 9. They should be written in this order: transition-property, transition-duration,
transition-timing-function, and transition-delay.

 10. The linear timing function animates the transition evenly across the time period.

Exercises
 N Create a simple photo gallery where the images are thrown down on the page hap-

hazardly. Use the CSS transform property to change how the images display on the
screen. The HTML should be a list of images. The design should be created with CSS.

 N In Lesson 11, “Using CSS to Do More with Lists, Text, and Navigation,” you created a
menu where the background and text colors changed when the mouse rolled over them.
Go back to that menu and add a transition to the changes.

http://www.informit.com/register

LESSON 15
Animating with CSS and

the Canvas

What You’ll Learn in This Lesson:

 N How to generate a CSS animation

 N How CSS animations are different from transitions and how they are similar

 N Creating keyframes to hold and control animations

 N Using the HTML5 <canvas> element for self-contained animations

In Lesson 14, “Using CSS Transformations and Transitions,” you learned how to animate

triggered actions on a website. While this is fun and can add some value to web pages, it is not

the same as frame-based animation. As you’ll learn in this lesson, transitions are just the start of

CSS animation.

This lesson takes you beyond the two-frame state of transitions (the beginning frame and the end

frame) and teaches you how to add keyframes to the animations. This allows you to add as many

state changes as you need and animate between them to create a full animated sequence. You’ll

learn what keyframes are and how to use them, as well as how to control other aspects of your

animations, including the iterations, the direction, and the timing.

This lesson also covers an HTML element, <canvas>, that is often used to create standalone

animations with Scalable Vector Graphics (SVG) elements and other elements. You will learn

how to draw shapes and text on the canvas as well as add images. You will also be introduced to

 animating canvas elements.

Understanding CSS Animation
CSS animations let you animate the transformations and transitions you learned in Lesson 14

but in a standalone fashion. You don’t need to have some trigger event in your document that

starts the animation. CSS animation consists of two things: the styles that are animated and the

keyframes that indicate the beginning and end states for each animation style. There are eight

animation properties:

402 LESSON 15: Animating with CSS and the Canvas

 N animation-delay—Specifies the delay between when the element is loaded and when the

animation starts.

 N animation-direction—Determines whether the animation should alternate direction on

each sequence or start at the beginning.

 N animation-duration—Sets the length of time to complete one cycle of the animation.

 N animation-iteration-count—Configures the number of times the animation should

repeat. The keyword infinite says the animation should repeat forever.

 N animation-name—Defines the name of the @keyframes rule to use in the animation.

 N animation-play-state—Allows the animation to be paused and resumed.

 N animation-timing-function—Defines the acceleration curves for the animation to

transition through the keyframes.

 N animation-fill-mode—Defines the values applied to the animation before and after

it executes.

You can combine all these properties in the shorthand animation property. The order does not

matter.

But in order to use these properties, you need to set up a @keyframes rule in your CSS, as you’ll

learn in the next section.

Defining Keyframes
With a keyframe, you define the state changes for an animation. You define a keyframe in a

@keyframes rule in the CSS, like so:

@keyframes myAnimation {
 from {
 transform: scale(0.5);
 background: red;
 }
 to {
 transform: scale(1);
 background: blue;
 }
}

This example defines an animation called myAnimation. It will start at half the size of the

default element and have a red background color. It will transition to the end state of full size

with a blue background color. This animation performs the same changes as a transition rule,

but it applies to the element automatically. You don’t need to trigger the animation. Listing 15.1

shows how you might apply this animation.

Understanding CSS Animation 403

LISTING 15.1 A Simple Animation

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Simple Animation</title>
 <style>
 div {
 width: 10rem;
 height: 10rem;
 margin: 3rem auto;
 animation: myAnimation 5s infinite;
 }

 @keyframes myAnimation {
 from {
 transform: scale(0.5);
 background: red;
 }
 to {
 transform: scale(1);
 background: blue;
 }
 }
 </style>
 </head>
 <body>
 <div></div>
 </body>
</html>

The animation in Listing 15.1 uses the keywords from and to to define the start and end points

of the animation. You can do similar things with transitions. Where animation keyframes really

become useful is when you set the frames with percentages, like so:

@keyframes {
 0% {
 }
 50% {
 }
 100% {
 }
}

404 LESSON 15: Animating with CSS and the Canvas

If the starting and/or ending states of the animation are the same as the element’s default, you

can leave off the 0% and 100% styles, like so:

@keyframes {
 50% {
 }
}

Listing 15.2 shows how you might animate a headline so that it flies in from the top. If you

 examine the @keyframes rule, you see that the only animation translates the headline off

the screen 100 pixels at the beginning (0%). The browser then animates the element to its final

 position automatically.

LISTING 15.2 Animating a Headline

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Animating a Headline</title>
 <style>
 body {
 background: #efefef;
 }
 h1 {
 font-family: geneva, arial, helvetica, sans-serif;
 font-size: 2rem;
 text-align: center;
 padding: 2rem 0;
 color: red;
 animation: myAnimation 2s;
 }
 @keyframes myAnimation {
 0% {
 transform: translateY(−100px);
 }
 }
 </style>
 </head>
 <body>
 <h1>My Headline</h1>
 </body>
</html>

Understanding CSS Animation 405

Adjusting Animations
Once you have an animation set up, you can use the CSS animation properties to get more

control over how it looks. In the previous examples, you saw how to set the animation duration

(animation: myAnimation 2s;) and how to make the animation loop forever (animation:
myAnimation 5s infinite;). The animation properties should be fairly familiar to you if

you’ve gone through Lesson 14.

Timing Your Animations
The first property to look at is the animation-timing-function property. Just like the equiva-

lent transition-timing-function property, this property tells the browser how to accelerate

and decelerate the animation along a curve. It takes the same possible values: ease, linear,

ease-in, ease-out, ease-in-out, and cubic-bezier(P1x,P1y,P2x,P2y). The

cubic-bezier() function takes four values that map to the four points that are part of

a Bézier curve: P0, P1, P2, and P3 (see Figure 15.1). P0 is always 0,0, and P3 is always 1,1.

The other two values define the curve radius points for the beginning and end of the curve.

P3P2
1

P0 P1
Time

1

C
h
a
n
g
e
 i
n

P

ro
p
e
rt

y

FIGURE 15.1
The points on a Bézier curve.

Each of the standard timing functions has an equivalent cubic-bezier() function:

 N linear is the same as cubic-bezier(0,0,1,1)

 N ease is the same as cubic-bezier(0.25,0.1,0.25,1)

406 LESSON 15: Animating with CSS and the Canvas

 N ease-in is the same as cubic-bezier(0.42,0,1,1)

 N ease-out is the same as cubic-bezier(0,0,.58,1)

 N ease-in-out is the same as cubic-bezier(0.42,0,0.58,1)

But what makes this function so useful is that you can use it to create your own curves. One

popular effect is to make an element bounce at the end. To create this effect, first place

a <div> on a web page and style it to look like a ball:

.ball {
 position: relative;
 left: 75%;
 background-color: #ffb33a;
 width: 20rem;
 height: 20rem;
 border-radius: 10rem;
}

Build a @keyframes rule to move the ball across the screen horizontally:

@keyframes bounce {
 0% {
 left: 0%;
 }
 100% {
 left: 75%;
 }
}

Add the bounce animation to the ball:

animation: bounce 3s infinite;

The animation now uses the default timing function, ease. To make it bounce, you need to use

something more like ease-out. You can see what ease-out looks like by adding the timing

function to the CSS for the ball:

animation-timing-function: ease-out;

But this still doesn’t look like a bouncing ball. To create a bounce at the end, you need to use a

cubic-bezier() function. The first point (P1) can be the same as the origin, or 0,0, but the

second point (P2) needs to be higher than the destination point. In this case, let’s use the value

0.5, 1.5:

animation-timing-function: cubic-bezier(0, 0, 0.5, 1.5);

Understanding CSS Animation 407

Listing 15.3 provides the full HTML and CSS for this example. If you try it out in your browser,

you’ll see a big orange ball start on the left side of the screen and move to the right, before sliding

into place on the right side.

LISTING 15.3 Bouncy Ball

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Bouncy Ball</title>
 <style>
 .ball {
 position: relative;
 left: 75%;
 background-color: #ffb33a;
 width: 20rem;
 height: 20rem;
 border-radius: 10rem;
 animation: bounce 3s;
 animation-timing-function: cubic-bezier(0, 0, 0.5, 1.5);
 }
 @keyframes bounce {
 0% {
 left: 0%;
 }
 100% {
 left: 75%;
 }
 }
 </style>
 </head>
 <body>
 <div class="ball"></div>
 </body>
</html>

NOTE

While it’s possible to build your own Bézier curves by simply putting in numbers, there is a website
that can help you build them more effectively: http://cubic-bezier.com. With this site, you can import
curves you’re trying out and compare them to standard curves. This site makes creating custom
timing functions for both animations and transitions much easier.

http://cubic-bezier.com

408 LESSON 15: Animating with CSS and the Canvas

You may be wondering why the ball is positioned at 75% left rather than 100% left. When you

position the element 100% left, it is placed mostly offscreen. If you want it to be placed up against

the left border, without going over, you need to use the CSS calc() function. This does a calcula-

tion to create the result you want. In this case, you can make the ball end up 100% left but minus

its own width (20rem), so that it’s fully onscreen, like so:

left: calc(100% − 20rem);

One other way you can affect the timing of your animations is with the animation-delay

 property. This acts exactly like the transition-delay property mentioned in Lesson 14. You

set a time interval for the browser to wait before starting the animation. This can be any interval,

from milliseconds (ms), to seconds (s), fractions of a second, and so on.

When you set a delay on your animations, you may notice that the animated elements do not

behave as you expected them to. This is because animations do not affect the element before the

first keyframe is played or after the last one is played. You can change this behavior with the

animation-fill-mode property, which can take the following values:

 N none—The animation does not affect the styles of the element either before or after running.

 N forwards—The animated element keeps the styles set by the last keyframe.

 N backwards—The element gets the styles set by the first keyframe, including during the

animation-delay.

 N both—Both the forwards and backwards values are applied.

Making an Animation Repeat
The bouncing ball animation is interesting, but if you miss it, you’ll never see it because it

 happens only once. By changing animation-iteration-count, you can change how many

times the animation repeats. Put in a number to have it repeat a specific number of times or the

 keyword infinite to have it repeat indefinitely, like so:

animation-iteration-count: infinite;

When you add this line to the bouncing ball animation, there is a jarring point where the

 animation bounces back to the beginning abruptly. To fix this, you can adjust the animation-
direction property to alternate. This tells the browser to change the direction and run it

forward and then backward and then forward on any animation that has an iteration count

of 2 or more.

The animation-direction property can take four possible values:

 N normal—Plays the animation from start to finish. This is the default.

 N reverse—Plays the animation backward, from finish to start.

Understanding CSS Animation 409

 N alternate—Plays the animation first from start to finish and then in reverse and so on

until the iteration count is reached.

 N alternate-reverse—Plays the animation first from finish to start and then in reverse and

so on until the iteration count is reached.

To fix the bouncing ball, add alternation, like so:

animation-direction: alternate;

The full bouncing ball animation is shown in Listing 15.4. To make the bounce more interesting,

we added a bounce to the timing function at the start of the animation.

LISTING 15.4 Improved Bouncy Ball

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Bouncy Ball</title>
 <style>
 .ball {
 position: relative;
 left: calc(100% − 20rem);
 background-color: #ffb33a;
 width: 20rem;
 height: 20rem;
 border-radius: 10rem;
 animation: bounce 3s;
 animation-timing-function: cubic-bezier(0.5,−0.5, 0.5,1.5);
 animation-iteration-count: infinite;
 animation-direction: alternate;
 }
 @keyframes bounce {
 0% {
 left: 0%;
 }
 100% {
 left: calc(100% − 20rem);
 }
 }
 </style>
 </head>
 <body>
 <div class="ball"></div>
 </body>
</html>

410 LESSON 15: Animating with CSS and the Canvas

CAUTION

As with anything that moves on your web pages, use care with your animations and transitions. Lots
of motion, especially repetitive motion, can be annoying and distracting. In most situations, subtle
changes are better than larger ones.

Naming and Pausing Your Animations
One thing that many designers forget is that you can pause animations with CSS by using the

animation-play-state property. This takes the values paused and running. When an

 animation is paused, it is not animating, and when it is running, well, it’s running. One way to

let a user stop an animation is by adding it to a pseudo-class such as :hover, like so:

.ball:hover {
 animation-play-state: paused;
}

Finally, the last animation property is the animation-name property, which defines the

@keyframe rule to use for the animation. This name is a custom identifier for each animation.

You can also use the keyword none to turn off the animation.

Using the CSS Canvas
The HTML <canvas> element creates a rectangular region on a web page where you can draw

anything you’d like by using JavaScript. You can use it to add images, create slide shows, build

games, and display animations.

How to Use the Canvas
When you add the <canvas> element to a document, it creates a blank canvas in the browser.

Because the canvas has no width, height, or content, the <canvas> element doesn’t display

 anything on the screen. Most of the time, you will also want to specify a width and height and

give your canvas an ID, so you can reference it in your scripts, as in this example:

<canvas id="myCanvas" width="350" height="450"></canvas>

Of course, if this is all you write, there will simply be a blank 350 × 450-pixel space in your HTML.

You can add a border around all canvases in the CSS so you can see them on the page:

canvas { border: solid thin black; }

NOTE

While most modern browsers support the <canvas> element, you can include fallback content
inside this element that displays if the canvas content cannot display. It acts just like fallback con-
tent in other HTML5 elements, such as the <video> and <audio> elements.

Using the CSS Canvas 411

A canvas gives you a place to draw, add pictures, and bring pictures to life with animation. To

draw on the canvas, you need to add some JavaScript. Add a <script> element to the bottom of

your HTML document, just above the closing </body>tag. Inside it, you can define both the

canvas and the drawing context, like so:

<script>
 var canvas = document.getElementById('myCanvas');
 var context = canvas.getContext('2d');
</script>

CAUTION

In order to draw on a <canvas> element, you must pass the string 2d to the getContext()
method. Otherwise, your <canvas> element will not display anything. If you draw on a <canvas>
element and it’s blank, ensure that you’ve set the context first.

Drawing Shapes on the Canvas
It’s easy to draw shapes on a canvas. You can draw rectangles, circles, polygons, and lines with

just a few lines of JavaScript.

Drawing a Rectangle or Square
To create a filled rectangle or square, you use the function fillRect(), like so:

context.fillRect(30, 30, 150, 150);

The first two values indicate where the rectangle should start drawing. They are the x and y coor-

dinates from the upper-left corner of the canvas. Then you set the width and the height with the

last two values. The line above should create a 150 × 150 square at 30 over and 30 down from the

upper-left corner of the canvas. The square is black by default, but you can change that by adding

a line above the fillRect() line that sets the color of the fill, like so:

context.fillStyle = "rgb(13, 118, 208)";

If you’d rather just draw the outline of a square, you use the function strokeRect(), like so:

context.strokeRect(35, 35, 150, 150);

You can use the strokeStyle() method to define the color of the stroke, like so:

context.strokeStyle = 'blue';

Drawing a Circle
Drawing circles involves using the arc() method. To understand how to draw a circle, imagine

that you are physically drawing it with a protractor. You set the point of your protractor in the

412 LESSON 15: Animating with CSS and the Canvas

center of the circle, bend the angle so that the pen is at the radius, start drawing at a point, and

lift the pen at a second point. You can draw a circle either clockwise or counterclockwise.

You can use the <canvas> element to draw a circle in the same way: Set the x and y coordinates

for the center of the circle, the radius, the starting point on the circle (in radians), the ending

point on the circle (in radians), and finally the direction of drawing—either clockwise (true) or

counterclockwise (false). The syntax for this method is as follows:

arc(x, y, radius, startAngle, endAngle, clockwise);

NOTE

Arcs in the <canvas> element are measured in radians, not degrees. But because most of us find
it easier to think in degrees (12 noon = 0°, 3 o’clock = 90°, and so on), it helps to have a conver-
sion tool. In JavaScript, you can convert degrees to radians with the following expression:

var radians = (Math.PI/180)*degrees;

The easiest way to draw a circle is to first set the start and end points as variables, like so:

var startPoint = (Math.PI/180)*0;
var endPoint = (Math.PI/180)*360;

A circle is drawn as a path, so you set your starting point with the beginPath() method and

then define the path as a circle with the arc() method:

context.beginPath();
context.arc(200,200,100,startPoint,endPoint,true);

But you still don’t have anything visible on the page while the path is on the canvas until you fill

or stroke it with either the fill() method or the stroke() method:

context.fill();

The fill keeps the same style unless you add a new fillStyle property above the fill() line.

If you are stroking the circle, then you need to adjust strokeStyle instead. Listing 15.5 adds a

stroked circle to the canvas, and Figure 15.2 shows how it would look.

LISTING 15.5 A Canvas with Squares and a Circle

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Canvas with Shapes</title>
 <style>
 canvas { border: solid thin black; }
 </style>

Using the CSS Canvas 413

 </head>
 <body>
 <canvas id="myCanvas" width="350" height="450"></canvas>
 <script>
 var canvas = document.getElementById('myCanvas');
 var context = canvas.getContext('2d');
 context.fillStyle = "rgb(13, 118, 208)";
 context.fillRect(30, 30, 150, 150);
 context.strokeStyle = 'blue';
 context.strokeRect(35, 35, 150, 150);

 var startPoint = (Math.PI/180)*0;
 var endPoint = (Math.PI/180)*360;
 context.beginPath();
 context.arc(200,200,100,startPoint,endPoint,true);
 context.fillStyle = "rgba(155, 0, 0, 0.5)";
 context.fill();
 context.strokeStyle = "rgb(255, 0, 0)";
 context.stroke();
 </script>
 </body>
</html>

FIGURE 15.2
A canvas with squares and a circle.

414 LESSON 15: Animating with CSS and the Canvas

Drawing Lines and Polygons
Like circles, lines and polygons are drawn using paths. You can use five methods to draw and

use paths:

 N beginPath()—This method creates a path on a canvas.

 N closePath()—This method draws a straight line from the current point to the start. It

doesn’t do anything when a path is already closed or on a path with only one point.

 N stroke()—This draws an outline of a path.

 N fill()—This fills in the shape of a path.

 N moveTo()—This draws nothing but moves the drawing position to a new location on the

canvas.

CAUTION

The first thing you should always do when drawing a path is specify the starting position of the path
with the moveTo() command. The <canvas> element will treat your first construction that way,
regardless of what the method actually is, and this will prevent you from getting surprising results.

To draw a line on a canvas, start a path with the beginPath() method and move your pointer

to the starting point with moveTo(), like so:

context.beginPath();
context.moveTo(0,0);

The lineTo() method takes the x and y coordinates for the next point on the line:

context.lineTo(60,60);

But just as with circles, if you don’t stroke or fill the path, nothing will display. The default width

of the line is 1 pixel, but you can change that with the lineWidth property. Then you stroke the

line, like so:

context.lineWidth = 15;
context.stroke();

NOTE

If you don’t close the path and choose to fill the shape, the shape will close automatically, with a
straight line from the last point on the path to the first point. You do not need to close the path with
the closePath() method.

Using the CSS Canvas 415

To draw a triangle, you do the same thing as with a line—first begin a new path and move to the

starting point:

context.beginPath();
context.moveTo(20,30);

Then draw a line to the first point on the triangle:

context.lineTo(350,100);

And a second line to the second point on the triangle:

context.lineTo(250,400);

If you are not going to stroke the triangle, you don’t need to draw the path back to the origin

because the fill() method will fill along a straight line to the origin:

context.fill();

You can create a polygon that is as ornate as you like just by defining the points on the path.

Listing 15.6 adds a line and a triangle to the canvas, as shown in Figure 15.3.

LISTING 15.6 Adding More Shapes to the Canvas

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Canvas with Multiple Shapes</title>
 <style>
 canvas { border: solid thin black; }
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="350" height="450"></canvas>
 <script>
 var canvas = document.getElementById('myCanvas');
 var context = canvas.getContext('2d');
 context.fillStyle = "rgb(13, 118, 208)";
 context.fillRect(30, 30, 150, 150);
 context.strokeStyle = 'blue';
 context.strokeRect(35, 35, 150, 150);

 var startPoint = (Math.PI/180)*0;
 var endPoint = (Math.PI/180)*360;
 context.beginPath();
 context.arc(200,200,100,startPoint,endPoint,true);

416 LESSON 15: Animating with CSS and the Canvas

 context.fillStyle = "rgba(155, 0, 0, 0.5)";
 context.fill();
 context.strokeStyle = "rgb(255, 0, 0)";
 context.stroke();

 context.beginPath();
 context.moveTo(0,0);
 context.lineTo(60,60);
 context.strokeStyle = "black";
 context.lineWidth = 15;
 context.stroke();

 context.beginPath();
 context.moveTo(20,30);
 context.lineTo(350,100);
 context.lineTo(250,400);
 context.fillStyle = "rgba(0, 0, 155, 0.5)";
 context.fill();
 </script>
 </body>
</html>

FIGURE 15.3
Adding a triangle to the canvas.

Using the CSS Canvas 417

Adding Images to the Canvas
In order to display an image inside a <canvas> element, you need to reference an image object

as a source file and then draw the image onto the canvas with the drawImage() method.

You have two choices for the first part: You can access an existing image on the page (in an

 element), or you can create a new image with JavaScript. To create an image with

JavaScript, first you add a new image to the DOM and populate it with the source file, like so:

var img = new Image();
img.src = "images/mckinley.jpg";

Once the image has loaded, run a function that draws it on the canvas at the x and y coordinates

noted in the drawImage() method, like so:

img.onload = function() {
 context.drawImage(img, 10,10);
}

Listing 15.7 creates a canvas with a photo of a dog named McKinley. But as you see in Figure 15.4,

all that is showing is the upper-left corner of the image—no dog to be seen.

LISTING 15.7 Adding an Image to the Canvas

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>McKinley on Canvas</title>
 <style>
 #myCanvas {
 width: 800px;
 height: 600px;
 margin: 0 auto;
 display: block;
 }
 </style>
 <body>
 <canvas width="800" height="600" id="myCanvas"></canvas>
 <script>
 var canvas = document.getElementById('myCanvas');
 var context = canvas.getContext('2d');
 var img = new Image();
 img.src = "images/mckinley.jpg";
 img.onload = function() {
 context.drawImage(img, 10,10);
 }
 </script>
 </body>
</html>

418 LESSON 15: Animating with CSS and the Canvas

FIGURE 15.4
Adding an image to a canvas.

You can change the size of the image that is drawn or crop it to fit a certain section by using the

drawImage() method. To change the size, you include four parameters:

context.drawImage(x, y, width, height);

The x and y coordinates specify where you want the image to be placed on the canvas. The width

and height parameters are the new width and height for the image. You can scale the image up

or down, but making an image larger often causes a lot of artifacts and makes the image look bad.

You can crop an image by including a clip path on the drawImage() method:

context.drawImage(clipx, clipy, clipwidth, clipheight, gox, goy, gowidth,
goheight);

The parameters in this syntax cover the coordinates to start the crop plus the width and height

followed by the placement of the clip on the canvas with the width and height coordinates.

Listing 15.8 shows how to add the image twice—first the full 780 × 680 image and then a cropped

shot of McKinley’s head in the lower left. Figure 15.5 shows what this looks like.

LISTING 15.8 Drawing, Scaling, and Cropping an Image on a Canvas

<!doctype html>
<html lang="en">
 <head>

Using the CSS Canvas 419

 <meta charset="utf-8">
 <title>McKinley on Canvas</title>
 <style>
 #myCanvas {
 width: 800px;
 height: 600px;
 margin: 0 auto;
 display: block;
 }
 </style>
 <body>
 <canvas width="800" height="600" id="myCanvas"></canvas>
 <script>
 var canvas = document.getElementById('myCanvas');
 var context = canvas.getContext('2d');
 var img = new Image();
 img.src = "images/mckinley2.jpg";
 img.onload = function() {
 context.drawImage(img, 10,10, 780, 680);
 context.drawImage(img, 842,344,532,594, 0,300,200,200);
 }
 </script>
 </body>
</html>

FIGURE 15.5
By scaling and cropping the image, you can now see McKinley, the subject.

420 LESSON 15: Animating with CSS and the Canvas

Animating the Canvas
After you add things to the canvas, you can move them around. In fact, you already have enough

knowledge to create a simple sprite animation. A sprite animation takes a graphic with several

images composited together and displays a cropped section of the graphic. You animate it by

changing which cropped area is displayed. This type of sprite animation has a big advantage:

When the full image is loaded, all the animation parts are loaded.

First, you need to create a sprite image. For example, you can create a second version of the dog’s

photo with his mouth open and then create a composite image with his mouth open and closed,

as in Figure 15.6.

FIGURE 15.6
A sprite file of the dog McKinley.

In this example, both images in the sprite are the same size—1262 × 1209. Creating sprites that

are equal in size makes the sprite animation much easier to program.

Because this is going to be a <canvas> animation, add the <canvas> element and create the

script with the canvas defined, like so:

<canvas id="myCanvas" width="1262" height="1209"></canvas>
<script>
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext('2d');
</script>

As before, add the image with JavaScript:

var mckinleyImage = new Image();
mckinleyImage.src = "images/mckinley-talking-sprite.jpg";

Using the CSS Canvas 421

The width and height of the single image is 1262 × 1209, so set those values in JavaScript as

variables:

var width = 1262;
var height = 1209;

Now you need to start thinking about the animation. Sprite animation is similar to framed ani-

mation: At a specific interval, the screen switches from one frame (sprite) to the next. So you

need to set variables for the number of frames and what frame number you’re currently on.

Remember that JavaScript counts from zero, so for this animation, there are two sprite images,

and the frames variable should be 1. To start with McKinley’s mouth open, the currentFrame

should be 0:

var frames = 1;
var currentFrame = 0;

Then you build the image in the <canvas> element. You do this the same way as before, with the

drawImage() method. But this time you need to put it inside a function so we can do the anima-

tion, as shown here:

var draw = function() {
 context.drawImage(
 mckinleyImage,
 width * currentFrame,
 0,
 width,height,
 0,0,
 width,height
);
};

To add the animation, you need to increment currentFrame. But if it’s reached the total frames

count, then it should reset to 0. Place the following in the draw function below where you drew

the image:

if (currentFrame == frames) {
 currentFrame = 0;
} else {
 currentFrame++;
}

Then you can call the draw function with setInterval() to animate the picture:

setInterval(draw, 200);

422 LESSON 15: Animating with CSS and the Canvas

One last thing you may need is a line to clear the canvas between frames. The <canvas> element

has the method clearRect, which clears a rectangular portion of the canvas to make it ready

for new drawings. By calling this method and setting it at the position 0,0, with the full canvas

width and height, you clear the entire space:

context.clearRect(0, 0, width, height);

It is best to make this the first line of the draw function.

The full code for this animation is in Listing 15.9, and you can see it in action at

https://htmljenn.com/mckinley-talking.html.

LISTING 15.9 The Animated Dog

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>McKinley Has a Lot to Say</title>
 <style>
 canvas {
 transform: scale(0.5) translateY(−600px);
 }
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="1262" height="1209"></canvas>
 <script>
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext('2d');
 var mckinleyImage = new Image();
 mckinleyImage.src = "images/mckinley-talking-sprite.jpg";

 var width = 1262;
 var height = 1209;

 var frames = 1;
 var currentFrame = 0;

 var draw = function() {
 context.clearRect(0, 0, width, height);
 context.drawImage(
 mckinleyImage,
 width * currentFrame,
 0,

https://htmljenn.com/mckinley-talking.html

Choosing Between CSS Animation and Canvas Animation 423

 width,height,
 0,0,
 width,height
);

 if (currentFrame == frames) {
 currentFrame = 0;
 } else {
 currentFrame++;
 }
 };

 setInterval(draw, 200);
 </script>
 </body>
</html>

Choosing Between CSS Animation
and Canvas Animation
At this point in the lesson, you may be wondering why anyone would want to use CSS animation

or HTML <canvas> animation. They both have strengths and weaknesses, and if you’re more

familiar with CSS or with JavaScript, you might feel that one is superior to the other. But if you’re

new to both, they can be equally intimidating. So how do you decide which is better?

There is a widespread belief that CSS animations are faster than JavaScript animations on

the canvas. This is because when you use transforms in a 3D context (such as transform:
translate3d();), the browser uses the GPU and so renders it more quickly. There are 3D

methods in JavaScript as well, but most designers forget to use them.

There are some things you can do with JavaScript that you simply cannot do with CSS. For

example, you can’t seek to a specific spot in a CSS animation, nor can you smoothly reverse

midstream. You can’t alter the speed or time scale of an animation without creating an entirely

new animation.

One aspect of CSS animation that is annoying to most animators is that the keyframes are

defined in percentages. But most animators think in terms of time rather than percentages. For

example, you might think “The headline needs to fade in for 3 seconds and then bounce once

before coming to rest at full opacity 1 second later.” How do you define that in percentages? And

what if, after you’ve fiddled with the percentages for a while, the client responds, “It looks great,

but the fade needs to be 5 seconds.”

424 LESSON 15: Animating with CSS and the Canvas

One thing we miss in CSS animations is the ability to add multiple control points to the

cubic-bezier() value. You can do this with JavaScript. You can also add physics-based

motion with JavaScript.

We are not saying that you should never use CSS animations. CSS animations are great for basic

transitions and rollovers and for adding fun features and games to your sites. You can build very

complex games with CSS animations. Plus, if you need to keep all your presentation layer details in

the CSS, then CSS animation is what you have to use.

JavaScript animation is harder to learn: It is possible to do a lot more with JavaScript, and the

JavaScript you learned in this lesson barely scratches the surface of what you can do.

Summary
This lesson covered how to do animations in two ways: with CSS and with JavaScript on the

HTML <canvas>. You learned how to create keyframe animation with CSS by defining the

@keyframes rule and applying it to an element with the animation property. You then

learned more about timing, looping, and pausing animations.

This lesson also covered the HTML <canvas> element, including how to use it to draw shapes

like circles, rectangles, and polygons. You also learned how to add images to the canvas and then

animate the images with simple sprite animation. Finally, you learned some of the reasons you

might choose CSS animation or JavaScript animation.

Q&A
 Q. When should I use CSS animations versus CSS transitions?

 A. Bear in mind that a CSS transition is an animation, but it’s just very limited in scope. If you
need an animation that has more than a start state and end state, you should use CSS
animations. Also, if you need more granular control over the animation keyframes, then CSS
animation is the right tool.

 Q. What about SVG animation?

 A. Using Scalable Vector Graphics (SVG) animation to create the motion is another way to cre-
ate animations for your websites. There are many programs you can use to build SVG graph-
ics and animate them. One popular tool to do this is Inkscape (https://inkscape.org/en/).

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

https://inkscape.org/en/

Workshop 425

Quiz
 1. What are two ways to create a @keyframes rule with a starting state and an ending state?

 2. What keyframes are required to create an animation that will change to a new state at 50%
and then back to the original state at the end?

 3. What property defines how long an animation should play in one iteration?

 4. How many points of a Bézier curve are defined in the cubic-bezier() value?

 5. What is the keyword for the timing function value cubic-bezier(0,0,1,1)?

 6. How many times will the animation animation: threeTimes 5s 4; play?

 7. What function can calculate exact values from percentages in CSS properties?

 8. What arguments does the arc() method take?

 9. What method will place an image on the canvas?

 10. If the first image on a sprite is 100 × 100, how big can the other images in the sprite be?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. You can use either this:

@keyframes myAnimation {
from { ... }
to { ... }
}

or this:

@keyframes myAnimation {
0% { ... }
100% { ... }
}

 2. Only the following is required:

@keyframes {
 50% { }
}

http://www.informit.com/register

426 LESSON 15: Animating with CSS and the Canvas

 3. The animation-duration property defines how long an animation should play in one
iteration.

 4. The cubic-bezier() value defines the x and y coordinates of two points on a curve.

 5. This is a linear timing function value.

 6. The animation will play four times and then stop.

 7. The calc() function calculates exact values in CSS.

 8. The arc() method draws a circle with the x and y coordinates of the center, as well as the
starting and ending angles (in radians), and finally the direction to draw the path.

 9. The drawImage() method draws images that are in the DOM onto the canvas.

 10. All the images in a sprite file should be the same size, so they should all be 100 × 100.

Exercises
 N Add a CSS animation to one of the elements on your web page. Use at least two

 keyframes and try animating using several different styles.

 N Put a canvas on your web page with a large image on it. But instead of clipping the
image or resizing it to fit, cycle through it with an animation to change what part of the
image is displayed every few seconds.

LESSON 16
Understanding the Importance

of Responsive Web Design

What You’ll Learn in This Lesson:

 N What is responsive web design (RWD)

 N Why we need RWD

 N What is progressive enhancement

 N How to write HTML that’s RWD ready

Until this point in these lessons, you have learned very specific techniques for building web pages.

In fact, you could stop right now and have enough knowledge to build and maintain basic web-

sites. But to build truly superior sites, you need to know more theory about web design and how to

build sites that provide value to customers.

Responsive design involves looking at how customers interact with websites and attempting to

create a site that works best for all customers, as they arrive on the site. In this lesson you will learn

what responsive web design is and why it’s important. You’ll learn about the theory of progressive

enhancement and how the HTML you write affects whether your pages can be made responsive.

But most importantly, you will start down the path of a responsible web designer who creates

pages that work well and look great no matter what type of device they are viewed on.

What Is Responsive Web Design?
Responsive web design (RWD) is an approach to web design that considers the customer’s device

and adapts the design for optimal viewing. RWD helps web designers and site owners by creat-

ing an “edit once, display anywhere” website. The web designer builds one page that can then be

viewed on a wide-screen desktop or a small-screen cell phone without a change to another site

or another page opening. The content on the page moves around in the design to suit the device

being used to view the page.

A website that uses responsive design changes the layout of the website depending upon what

device is used to view it. But unlike older solutions, RWD does not use scripts or programming

to achieve these changes. Instead, RWD uses CSS media queries, which you will learn about in

428 LESSON 16: Understanding the Importance of Responsive Web Design

Lesson 18, “Using Media Queries and Breakpoints,” to define fluid grids, variable font sizes, and

flexible images. The media queries define what styles will apply to the design, based on the device

that being used to view it.

A Short History of RWD
The first web pages were little more than text documents shared between monochrome comput-

ers. How the pages looked was secondary to the information they provided. But as color monitors

grew less expensive and images were added to HTML, the way the pages looked started to gain

importance.

NOTE

You may not realize that computer screens used to be just two colors. But they were not black text
on a white background. Often, they were a neon green (for the text) on black.

CSS did not show up until 1996, and it wasn’t until 1999 that there was widespread support for it

among the browsers. CSS2 didn’t gain wide support until the mid-2000s, and it wasn’t until CSS3

gained wide support in 2012 that responsive design was really possible.

CSS3 added the media query feature. This allowed web designers to create separate CSS docu-

ments for devices with different media features. The most commonly used feature is the browser

width. For example, a small smartphone might have a width of 640px, while a widescreen moni-

tor might have a width of more than 4000px. With media queries you can detect the width and

build designs to suit the various sizes—without changing the HTML or doing any scripting.

In the mid- to late 2000s, if you visited a website on a mobile device, you were often forced to a

“mobile friendly” version of the site. These usually had completely different URLs as well as lay-

outs and even content, and web designers had to build two or more versions of the site. Website

owners didn’t want to have to maintain two separate sites, so often the mobile site would be left

with minimal content, while the primary site business was conducted on the desktop version of

the site.

This brought about the theory of “graceful degradation.” The idea was that designers could build

websites with the coolest new features, but the sites could still operate in a limited capacity, with-

out those features. An alternate theory was the concept of “progressive enhancement.” The idea

here was that a designer would start with the minimum a site needed to be successful and ensure

that all devices could view that. Then, once a site worked, the designer would add new and excit-

ing features for the more modern browsers. This finally led to the design theory most people work

from today: Mobile First. Mobile First involves designing a site for mobile devices first and then

enhancing it for larger screens and computers. You’ll learn more about Mobile First in Lesson 17,

“Designing for Mobile Devices.”

What Is Responsive Web Design? 429

Why Do We Need Responsive Web Design?
Responsive web design is a combination of many design techniques, including the following:

 N CSS—especially media queries

 N Clean, valid HTML code

 N Progressive enhancement

 N Feature, device, and browser detection using scripts

 N Server-side components to produce faster sites

The number of different types of browsers and devices that web designs need to support is con-

stantly growing, and more and more people are using their mobile devices to access the web.

Every day new devices come on the market that have limited features. But when a customer

browses the web on her refrigerator, she wants to be able to do the same things she can do on her

phone or on her laptop. Or if another customer asks Alexa to read the latest article on your site to

him, you want your site to be able to handle that.

Responsive web design attempts to respond to the device viewing the page and provide the best expe-

rience for that device as possible. As you can see in Figure 16.1, a web page might look very different

when displayed on a mobile phone than on a desktop computer, but the content remains the same.

FIGURE 16.1
Desktop and mobile phone versions of the same web page. (Figure to be continued on next page)

430 LESSON 16: Understanding the Importance of Responsive Web Design

FIGURE 16.1 (continued)

The preceding lessons in this series have taught you how to write clean, valid HTML code and CSS,

and you’ll learn about media queries in Lesson 18. Progressive enhancement is covered later in this

lesson, and you’ll learn about scripts and server components to improve your sites in later lessons.

Why Is RWD Important for Mobile Design?
Responsive design is important to mobile customers because it allows them to see the same web-

site as nonmobile customers. Before RWD, web designers would often create entire separate sites

for mobile customers, and such a site was invariably a subset of the full site.

What Is Progressive Enhancement? 431

RWD allows designers to create sites that work in different devices without having to repost the

content multiple times. Worldwide, mobile devices are more popular than computers for viewing

the web. And depending upon the market, mobile has overtaken computers in the United States

and Europe as well.

RWD lets a designer build a website that doesn’t care what device the customer is using. Rather

than having to build a site for mobile, a site for desktop, and a site for smart appliances, a

designer creates just one site that is flexible enough to support all those devices and more.

In addition, RWD is more future-proof than standard web design. RWD doesn’t look at the device

but rather looks at the features. For instance, an RWD site that checks for Retina display doesn’t

care if the device is an Apple iPhone 4S or a Samsung Galaxy S9. It just notices that the screen can

handle high-resolution Retina images and displays them.

In 2015, Google and other search engines announced that they were going to start penalizing

sites that didn’t optimize for mobile customers. One of the best ways to do that is with responsive

web design.

What Is Progressive Enhancement?
Progressive enhancement is the process of creating a strong foundation on a website and then

adding enhancements to that foundation as browsers and devices can handle them.

Progressive enhancement came as a reaction to graceful degradation. Graceful degradation was a

carry-over from software engineering, where the norm was to test for faults and create a system as

fault tolerant as possible. In the web design world, graceful degradation turned into an excuse for

web designers to create the most amazing website they could on their browser of choice and then

pass on whatever scraps they could scrape together to the browsers that weren’t as powerful.

The problem was that this whole idea went against the goals of the web as an accessible medium

where everyone had access to information, no matter what their situation. As Sir Tim Berners-

Lee said in the July 1996 Technology Review: “Anyone who slaps a ‘this page is best viewed with

Browser X’ label on a Web page appears to be yearning for the bad old days, before the Web,

when you had very little chance of reading a document written on another computer, another

word processor, or another network.” If you use graceful degradation, that is what you are saying

to your customers, even if you don’t slap a label on your pages.

But when you switch to a progressive enhancement mindset, you switch your focus away from

what browsers and devices your customers use. Instead, you focus on content. When you’re

concerned with building a site with progressive enhancement, your first concern is with the

content—what the content is, how it will be manipulated on the site, and where the site will get it.

Progressive enhancement lets you create websites that are inclusive and accessible, which is the

ultimate goal of the World Wide Web.

432 LESSON 16: Understanding the Importance of Responsive Web Design

How to Use Progressive Enhancement on a Website
You can add progressive enhancement to a web page fairly quickly. But to do it well across a

whole site, you need to think strategically.

Separating Content from Presentation and Functionality
The first thing you should think about when adding progressive enhancement to your site is the

content. A website has three layers:

 N The content stored in the HTML

 N The presentation defined by CSS

 N The behavior written in scripts like JavaScript

While it is possible to add CSS and scripts inline in your HTML, the best sites separate them into

three different files and maintain strict distinctions between them.

Editing the Content Layer
You should start with the content and the HTML that marks it up. Your HTML should be valid,

well formed, and semantic.

Valid HTML means using the most current version of HTML and writing it without deprecated or

obsolete elements. The most current version of HTML right now is HTML5.

Well-formed HTML is HTML that is written correctly. Your HTML should have closing tags where

required as well as quoted attributes and good nesting. When your HTML isn’t written correctly,

it can confuse some browsers, and confused browsers don’t display web pages correctly. HTML5

doesn’t require that all attribute values be quoted, and it allows you to leave off closing tags on

elements such as <p> and , but using the quotes and closing tags when you can will keep

your HTML cleaner.

Finally, semantic HTML provides information about the content based on the tags that are used.

For example, if the content includes a date or time, you can use the <time> element to indicate

to the browser that it is a time. The advantage of using semantic HTML is that your content can

be used more widely when it’s marked up. When you use the <time> element, the user agent can

then offer to add the event to a calendar because it knows that it’s a date or time. There are many

semantic tags.

When you’re building HTML for your RWD sites, you should always strive to keep it as clean and

clear as possible. The technical term for this is well formed. Well-formed HTML has the following

characteristics:

What Is Progressive Enhancement? 433

 N There is a document type declaration at the top of the document.

 N Tags should nest correctly, inside to outside, like so:

<i>text</i>

 N Attributes with spaces in their values should be quoted using single or double quotation

marks.

 N Comments are not allowed inside tags.

 N Special characters used in HTML should be escaped, such as an ampersand (&), a

less-than sign (<), and a greater than sign (>).

Well formed for XHTML standards involves additional rules, such as always closing every tag and

using a closing slash in a singleton tag, including an XML declaration, and quoting every attri-

bute. But if you are using HTML5, the rules are not as strict.

Semantic elements are elements that describe what the content contained is. They provide more

information to the browser without requiring any extra attributes.

There are a number of HTML elements that are semantic and have been in use for years. The

following are several of the semantic elements that are regularly used on web pages:

 N <abbr>—Defines abbreviations and acronyms

 N <blockquote>—Defines a block quotation

 N <cite>—Defines citations, such as for quotations

 N <code>—Defines a code reference

 N <q>—Defines a short inline quotation

There are many more semantic elements in HTML. You can search for semantic HTML tags in

your favorite search engine to learn about them all.

The other part of clean code is using only the elements and attributes you need—and nothing

more. Try to consider what your site needs and limit your HTML to only those elements.

Once the content layer is valid, well formed, and semantic, your web pages will work well even in

user agents that don’t support CSS or JavaScript, such as screen readers and basic cell phones.

Adjusting How the Content Looks with CSS
Once you have all your content displayed in valid, well-formed, and semantic HTML, you can

work with the CSS to adjust how the page looks. As with the content, you want your CSS to be as

valid and up to date as it can be to ensure the widest support.

434 LESSON 16: Understanding the Importance of Responsive Web Design

CSS, because of the way it’s written, provides a lot of opportunity for progressive enhancement.

Some things you should be aware of include the following:

 N The cascade—Remember that CSS stands for Cascading Style Sheets, and the cascade says

that CSS should be evaluated in order, with the last feature taking precedence. There’s more

to the cascade than that, but when it comes to progressive enhancement, you should use

the cascade by putting the most cutting-edge features last, with fallback options above them

in the style sheet.

 N Browser prefixes—Not all user agents support all the new features of CSS right away, but

most provide browser prefixes to give support in the interim. By placing browser-prefixed

versions of your style properties first in a style rule, you ensure that the final, official version

is supported when possible.

 N User agents ignoring what they don’t recognize—This means that if a browser sees a

property that is new to it, it will ignore it and not change the style at all.

Place your CSS in an external style sheet and make changes there to change your entire site

at once.

Adding Interactivity with JavaScript
Interactivity is often the most fun part of a website to work on because it’s what makes the

site into an application or an entire experience. By adding in the scripts last, you know that

your site already works, whether you have the scripts or not. And the best way to add JavaScript

is unobtrusively.

There are four rules of unobtrusive JavaScript:

 N The script should be usable without the customer noticing it is there.

 N The script should not generate an error message, even when it fails. It should just disappear

and not get in the way of the content.

 N The script should never block access to the core content of the page.

 N The script should be maintained in a separate document outside the HTML and CSS.

Unobtrusive JavaScript allows you to add interactivity to your web pages without changing the

HTML or CSS. And this means you know the pages already work and look good before you add

the interactive elements. Unobtrusive JavaScript is covered in more detail in Lesson 25, “JavaScript

Best Practices.”

Writing HTML for Responsive Web Design 435

What Are the Benefits of Progressive Enhancement?
The most obvious beneficiaries of progressive enhancement are people who use outdated brows-

ers. In the past, when designers used primarily graceful degradation, outdated browsers would

often be given the priority “keep it from crashing,” and if that meant removing a majority of the

content from those browsers, then that’s what happened.

But there are other benefits to using progressive enhancement, such as the following:

 N Basic cell phones can display content in HTML without issue. Because the focus of progres-

sive enhancement is on content, a progressively enhanced website will display content no

matter what is viewing it.

 N The same is true for screen readers. These devices handle well-structured HTML and so are

more likely to read these pages without a problem.

 N Pages built with progressive enhancement are easier to maintain than their counterparts

because the content, design, and functionality are kept separate.

 N Finally, a site built with progressive enhancement is going to get more viewers than one that

isn’t because the site is not exclusionary in its design.

A progressively enhanced website might not even need any changes to the CSS to be responsive.

Depending on how you write the CSS, it can be mobile friendly and not require any extra styling.

Writing HTML for Responsive Web Design
Responsive design doesn’t add any new HTML tags or attributes, which makes it easy to learn. You

simply write your HTML so that it is well formed, valid, and semantic, as previously mentioned.

You should start with HTML5, the most recent version of HTML, which provides the most assis-

tance to web designers who want to use progressive enhancement and RWD. While you can build

RWD sites using other versions of HTML, it’s best to stay as up to date as possible. This book uses

HTML5 code samples.

Using Tags Every Page Should Contain
There are several HTML tags that every web page should contain:

 N <!doctype>

 N <html>

 N <head>

436 LESSON 16: Understanding the Importance of Responsive Web Design

 N <meta charset>

 N <title>

 N <body>

These tags may not be required for valid HTML, but they provide information about the page

to the browser to make them easier to use. These tags are covered in more detail in Lesson 2,

“Structuring an HTML Document.”

If your web page contains these elements, it contains the minimum HTML required to start build-

ing a responsive page. Listing 16.1 provides a standard template you can use for starting any

web page. Note that the tags listed above have both starting and ending tags, as well as some

attributes.

LISTING 16.1 A Basic HTML Template

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title> </title>
 </head>
 <body>
 </body>
</html>

All these elements are covered in Lesson 2.

Writing Tags for Web Content
While the tags in the preceding section are all you need to create a website, the site would be very

plain and hard to read. While there are dozens of HTML tags you can use, there are only a few

you need to know about to start creating a decent web page:

 N Headline elements, including <h1>, <h2>, and <h3>

 N Content elements, such as <p> and

 N Links with <a>

 N Semantic elements such as and

 N General container elements such as <div> and

 N Multimedia elements such as , <audio>, and <video>

Writing HTML for Responsive Web Design 437

You should also include HTML5 sectioning elements to define the sections of the page. There are

many such elements, but these are the most commonly used sectioning elements:

 N <article>

 N <aside>

 N <section>

 N <nav>

 N <header>

 N <footer>

These elements define areas of the content that are commonly found on web pages. A web page

typically has a main article that defines the page (<article>); there is usually sidebar informa-

tion for either the article, the page, or the entire site (<aside>); navigation is critical (<nav>);

and many web pages are divided into separate sections with different semantic meanings that

don’t fall into the above categories (<section>).

The <header> and <footer> tags are not technically sectioning elements, but they are used in

a similar fashion. You can add a header or footer to any of the sectioning elements listed above,

you can add them to the entire page, or you can add them to both.

Understanding Basic Attributes
Nearly every tag in HTML has attributes. These are keywords that are defined within a tag itself

and give the browser more information about that tag. You have already used attributes with the

 tag and the tag. Two other attributes you should be familiar with

are id and class. These attributes, which can be added to any HTML tag in your document,

provide additional information about that element.

The id attribute is used to give an element a name. The id must be unique to the page it is on.

But you can give every single tag on your page a unique id. This attribute is used to identify the

element. You can then link to that element by using the pound sign (#) in your URL followed by

the id value. For example, if you have the element <article id="main">, you add a link to

that element by writing link to main.

You can also use the id attribute as a hook for styles and scripts such as with the method

getElementById(). Because it must be unique on the page, you know when you attach a style

to that id, you will affect only one element. This attribute also makes a style rule that uses it

more specific, which means it’s more likely to be applied.

438 LESSON 16: Understanding the Importance of Responsive Web Design

Like the id attribute, the class attribute is used to apply styles and scripts to an element. But

it does not have to be unique on a page. This means you can apply a class to multiple elements

on a page, and any style rules that are written for that class will be applied to all the elements.

For instance, say you want some of your <h1> headlines to be red, but others should remain the

default color. You could give the red headlines a special class that you would style as red in your

CSS: <h1 class="highlight">.

CAUTION

In the class example, we suggested that you might want to make some of your headlines the color
red. But in the code, we gave it the class name "highlight". It can be tempting to give your ele-
ments classes and IDs that describe exactly what they do, such as <h1 class="red">. But doing
so can cause problems in the future. What if two years from now, you decide that all the highlighted
headlines need to be colored blue rather than red? The fastest thing to do is simply change the
class rule in the CSS so that the font color is blue. But anyone editing the site will look at that rule
and think there is an error. The class name is "red" but it changes the color to blue? By giving
your elements more generic class and id names, you avoid this problem and keep your code more
future-proof.

One of the nicest things about using classes is that you aren’t limited to just one. You can include

multiple class names on any element to add styles to the element or hook up with your scripts. To

add a second class to an element, simply separate the classes with a space, like so:

<h1 class="highlight fancy">

Validating HTML, CSS, and JavaScript
As you’re working through building a site with progressive enhancement and getting ready for

responsive web design, you should validate first the HTML and then the CSS and finally the

JavaScript.

Validating your HTML is easy and takes only a moment. Simply go to https://validator.w3.org and

fill in the URL of the page to be validated. If the page isn’t live yet, you can validate it by upload-

ing a file or pasting the HTML in as direct input. If you’ve been careful, you should see a green

line that reads “This document was successfully checked as HTML5!”

Validate CSS the same way, with the Jigsaw validator (https://jigsaw.w3.org/css-validator/). One

thing you can check is the vendor extensions, as shown in Figure 16.2. The vendor extensions can

give you clues about browser extensions and help you make sure they are correct, along with the

standard CSS properties.

https://validator.w3.org
https://jigsaw.w3.org/css-validator/

439Summary

FIGURE 16.2
Validate CSS with the Jigsaw validator.

Validating JavaScript is a little more difficult. There are many online validators you can use. You

can also use the web developer tools in modern browsers to make sure your JavaScript works

 correctly.

Summary
In this lesson you learned a lot more theory of web design than actual coding, but you got a

good basis for creating professional web pages that work well on most devices. You learned what

responsive web design (RWD) is and the history of web design that brought it about. This lesson

explained some of the reasons RWD is important to design, including better content delivery and

support for mobile devices.

440 LESSON 16: Understanding the Importance of Responsive Web Design

This lesson taught you how to design pages using progressive enhancement. Progressive enhance-

ment involves determining the most important content on page and ensuring that it is viewable

by the largest number of devices. You learned to first focus on valid, well-formed, and semantic

HTML. Then you saw how to add styles to make it look good. Finally, you learned to add scripts

that add behaviors to the page. But the goal is to keep the core content viewable by all users.

This lesson revisited the keys to writing good HTML to prepare for RWD. You learned about the

tags and attributes to include as well as how to validate all the code.

This lesson only scratches the surface of what RWD is and why you should use it. If you want

a more complete course on RWD, check out Jennifer’s book Sams Teach Yourself Responsive Web
Design in 24 Hours. There is also a video course based on the book—“Learning Responsive Web

Design LiveLessons.” You can find out more about these resources at www.html5in24hours.com.

Q&A
 Q. I prefer to write XHTML rather than HTML. Can I write responsive pages with XHTML?

 A. As long as your XHTML is valid, well formed, and semantic, you can make it responsive.

 Q. Isn’t RWD just media queries?

 A. Most people think of RWD as media queries that affect the layout of a website depending
on the width of the device viewing it. But there are other ways to make a site responsive. In
Lesson 17 you’ll learn some responsive techniques that don’t require media queries. And
many of the first responsive sites used flexible layouts based on percentages and the
max-width CSS property that you learned about in Lesson 12, “Creating Layouts Using
Modern CSS Techniques.”

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. True or False: Responsive web design is just a form of progressive enhancement.

 2. Is the following HTML well formed?

My dog is big

 3. Is it better to use a <p> or a <div> tag when marking up a paragraph?

http://www.html5in24hours.com

Workshop 441

 4. Is the <header> element semantic?

 5. How many versions of a website should you build to create a mobile version and a
 computer version using modern responsive web design?

 6. List four semantic HTML elements that are not also sectioning elements.

 7. What language modifies the presentation layer?

 8. Where should you store styles and scripts on web pages?

 9. What six tags should every web page contain?

 10. What web languages should you validate?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. False. Progressive enhancement is often used in responsive design, but websites that use

it do not have to be responsive—and vice versa.

 2. No, this is not well formed because the and tags do not nest correctly.
This is a common error that designers make when they want to close the outermost tag
first. Here’s how you can correct the HTML:

My dog is big

 3. When you’re marking up a paragraph, you should use the <p> tag because it defines
 paragraphs semantically.

 4. The <header> element is semantic because it describes the content as being the header
section of a web page, section, or element.

 5. The best websites use just one version of the site for both mobile and desktop computers
but make them responsive.

 6. There are lots of semantic elements; some commonly used ones include <abbr>,
<blockquote>, <cite>, <code>, <q>, and <time>.

 7. CSS modifies the presentation layer.

http://www.informit.com/register

442 LESSON 16: Understanding the Importance of Responsive Web Design

 8. Styles and scripts should be stored in external files and linked to in the HTML.

 9. Every web page should contain <body>, <!doctype>, <head>, <html>, <meta charset>,
and <title>.

 10. You should validate your HTML, CSS, and JavaScript as well as any other languages you use
on your site.

Exercises
 N Think about what aspects of your website are not responsive and decide what elements

you would change to make it responsive. Consider things like the layout, the font
choices, and even colors and backgrounds.

 N Go through the HTML for the site you are evaluating. Convert it as much as possible
to semantic HTML5. Remove unnecessary tags and then validate it with an HTML5
validator. If the validator finds errors, fix them until the page is valid.

LESSON 17
Designing for Mobile Devices

What You’ll Learn in This Lesson:

 N How mobile design differs from standard web design

 N What the Mobile First design philosophy is

 N How Mobile First is important to RWD

 N How to build responsive tables and images for mobile devices

 N How to use CSS columns to create responsive designs without media queries

According to Statcounter, worldwide mobile usage surpassed desktop usage around October

2016. While desktop computer use still surpasses mobile use in North America, almost 40% of the

market share is mobile. And when you include tablets with mobile, that number jumps to closer

to 50%. This means that if you’re ignoring or downplaying mobile, you’re alienating nearly half

of a North American audience and a majority of the global audience. Not designing websites for

mobile devices is a bad strategy.

In this lesson you will learn all about mobile web design—why to do it, how to do it, and some

specific techniques for doing it. Mobile web design isn’t the same as responsive web design, but it’s

an important consideration when you’re trying to build a responsive website.

Designing for Mobile Devices
Designing a site for mobile devices is more than just testing on your phone after you’ve launched

the site. The best mobile designs treat mobile devices as if they are just as important as, if not

more important than, desktop computers. This is a difficult leap for many web designers to make.

After all, they are most likely building their pages on a computer rather than a tablet or phone,

and most courses on web design (including, to some extent, this one) focus on computers as the

primary design platform.

444 LESSON 17: Designing for Mobile Devices

Understanding Why Mobile Design Is Important
The main reason mobile design is important is because more and more people are using mobile

devices to access the web. People access their phones all the time, for everything. If your web page

doesn’t look good or, even worse, doesn’t work on a smartphone, then you can be sure you will

lose customers. There is no reason for a customer to stick around trying to fight through a site that

is not mobile friendly when there are hundreds of competitors out there.

Another important factor is search engines. If your site receives a significant amount of traffic

from search engines, then you should be aware of mobile design. Google started using “mobile-

friendliness” as a criterion for ranking in its index in 2015, and other search engine providers

followed suit. This means that sites that don’t make any effort at optimizing for mobile devices

will be penalized in the results.

Luckily, you don’t have to guess to find out if Google thinks your web page is mobile friendly.

There is a tool at https://search.google.com/test/mobile-friendly that can tell you. Figure 17.1

shows the results for a page that is mobile friendly.

FIGURE 17.1
The HTMLJenn site is mobile friendly, according to Google.

https://search.google.com/test/mobile-friendly

Designing for Mobile Devices 445

Designing Effective Mobile Interfaces
If you tested your site and it came up as not mobile friendly, you’re probably wondering what to

do about it. There are a few specific things that Google looks for when assessing a site for mobile

friendliness:

 N Using Flash

 N Configuring the viewport

 N Fixed-width designs

 N Image and other box sizes

 N Font sizes

 N Tappable elements

You should also consider several other things about mobile devices when building a mobile-

friendly site:

 N Simplifying the layout and the navigation

 N Keeping the download times short

 N Testing on real devices

Flash Is Not Mobile Friendly
Flash and mobile devices don’t mix. If your site uses Flash in any way, you have instantly lost all

mobile devices, including tablets. In fact, if your customers use Mac computers, they will have to

download and install a Flash player to be able to use Flash. While this isn’t a total barrier—some

customers will do that—the fact is that most will choose the easier path of finding another site

that doesn’t use Flash.

Instead of using Flash, consider using animation, as discussed in Lesson 15, “Animating with CSS

and the Canvas.” Dynamic web technologies in HTML5 and CSS3 as well as unobtrusive JavaScript

can give you similar experiences to Flash without the drawbacks.

How to Configure the Viewport
The viewport is the window in which web pages are viewed. On mobile devices the viewport is

typically the full screen, while on computers it’s the browser window, not including the chrome—

scrollbars, menus, and edges. Some devices have a pixel density of one size and an actual size that

differs. For example, the iPhone X ships with screen dimensions 1125 × 2436, but the device width is

375 × 812. If you don’t set the viewport, your CSS will read the screen as having a width of 1125px,

446 LESSON 17: Designing for Mobile Devices

which is as large as the size of a small laptop. If you use media queries based on the width of the

screen, your large-screen designs will display instead of your easier-to-read mobile screens. You’ll

learn more about how to do this in Lesson 18, “Using Media Queries and Breakpoints,” but for now

just remember that a design intended for a browser window that is around 10 inches wide is not

going to be particularly usable on a device that is only around 3 inches wide.

NOTE

This discrepancy in width versus device width is because the device manufacturers make devices
with higher and higher pixel densities. In the past, devices had 72 dots per inch. Then the Retina
display arrived, placing 2 dots for every 1 dot in a standard display. Newer devices came out with
3 dots per 1 and so on. The number of actual pixels on the screen remained the same, but the
amount of data that could be transmitted to those pixels increased.

The fix for this is to set your viewport. And this is easy with the <meta viewport> tag, as

shown here:

<meta name="viewport" content="width=device-width, initial-scale=1">

Place this tag in the <head> of your documents.

The width=device-width rule tells the browser that the page should display using the actual

device width as the width rather than using the rendered width. The best value is device-
width because that sets the width to whatever the current user’s device is.

The initial-scale=1 rule tells the browser that there should be a 1:1 relationship between the

device-independent pixels and the CSS pixels. This also allows the page to take advantage of the

full landscape width when the device is rotated that way.

Other viewport rules you can assign include minimum-scale, maximum-scale, and user-
scalable. You can use these settings to change how much or how little the user can zoom the

page, and you can also disable zooming completely.

CAUTION

Using scaling rules other than initial-scale is not a good idea because it can interfere with
accessibility. You can disable zooming on your web pages by setting minimum-scale and maxi-
mum-scale to be the same as initial-scale, or you can set user-scalable=no. But if you
disable scaling/zooming, you will make your pages very difficult to use for many people.

Avoiding Using Fixed-Width Designs
It is very tempting to use fixed-width designs, as you can set all the elements so they display where

and how you want, and you can be sure they will display that way in all browsers. This reflects

Designing for Mobile Devices 447

back to print design, where it was possible to control most variables, so your design looked virtu-

ally identical in all situations. But that is not possible on web pages. If you want to use fixed-width

designs, you should make sure you have at least two different designs—one for small devices

and one for larger ones—and the more designs you have, the more responsive your site will be.

Similarly, while it is possible to set the viewport to a specific width by using the <meta viewport>

tag, you should not do it. Some designers set the width of the viewport to a specific number of pix-

els to try to force devices to display the page correctly. But if you do that, Google and other search

engines will define your page as not being mobile friendly. Instead, you should set the viewport

as mentioned in the previous section and use responsive design techniques to let the page display

effectively at different sizes.

Making Sure Your Elements Fit in the Design
One problem that you might see on web pages when they are viewed on mobile is that the images

are too big. If an image is set with a specific width and height and those values are not adjusted

for mobile devices, then the image might not fit in the window. For example, as mentioned previ-

ously, the iPhone X has a CSS width of 375 pixels. This means that, assuming that you’ve set the

viewport correctly, an image that is 400 × 400 is too large for the window and will force horizontal

scrolling to see the right side 25 pixels. This can happen with any block-level element that has

absolute values for the dimensions.

To fix this, you should use relative widths and position values, such as percentages or rems. You

should also make sure that your images scale with the device so they don’t end up running off

the edge.

Keeping Font Sizes Legible
One feature of most smartphones is the ability to pinch to zoom. This might be done, for example,

to make the text or other elements larger and more legible. The user’s ability to pinch to zoom

does not give a web designer license to write pages with tiny font sizes that are illegible for most

people.

Instead, you should focus on making your pages legible with responsive design. There are several

things to consider in making your text legible:

 N Start with a base font size of 16px or larger.

 N Define the sizes of various elements relative to the base font size.

 N Adjust the line height to keep the text vertically legible.

 N Adjust the line length to stay between 8 and 10 words per line.

 N Do not use more than three or four font families and font sizes.

448 LESSON 17: Designing for Mobile Devices

The base font size is the size that the page defaults to if no other rule is defined. Define this with

either the * selector to select all elements or the body tag selector to select just the body tag, or

define it as both, like so:

*, body {
 font-size: 16px;
}

Once you have the base font size, you can adjust the internal elements to be larger or smaller with

percentage font sizes or rems or ems, like so:

h1 {
 font-size: 250%;
}
h2 {
 font-size: 2rem;
}
h3 {
 font-size: 1.8rem;
}
p {
 font-size: 1.2rem;
}

CAUTION

Don’t be afraid of using larger font sizes for body text. While most web designers have younger,
stronger eyes, there are a lot of older people with weaker eyes reading the pages. So, while you
might think that 16px is huge, and you might be tempted to decrease the body text size, remember
that depending on your site topic, the majority of your users might think that font size is hard to
read. Sticking with 16px as the base font size or making the base size larger is a good idea.

The line height or leading is something that many beginning web designers forget about. But if

you don’t adjust it, your text can appear too far away from headlines or too close together to be

readily legible. Leading is defined with the line-height property. It takes a number that is a

multiple of the font size. You can also use lengths, but that is often too rigid for good design. The

typical line-height is 1.2, but you can change it for different elements, like so:

h1, h2, h3 {
 line-height: 0.8;
}
p {
 line-height: 1.1;
}

Designing for Mobile Devices 449

There is no explicit font property to control the line length. Instead, you should adjust the width of

the containers to keep the line length legible with the width property. As mentioned previously,

an ideal line length is between 8 and 10 words or around 70 to 80 characters. When the

line length gets longer than that, you should add a breakpoint or change the column width.

The last aspect of font legibility is the number of font changes you have on the page. Multiple font

sizes and typefaces make the page more difficult to read. Plus, using multiple web fonts increases

the download time. A good rule of thumb is to limit your pages to no more than five different font

sizes and typefaces.

Making Links Tappable
Most mobile devices use touch screens, which means that the links need to be tappable. If your

links are too small or too close together, they will not be easily tapped. The minimum size that

can be tapped easily is around 48px × 48px. So, the first thing you should do is ensure that all

links and buttons are at least 48px high and 48px wide. Menu links, such as those in navigation

bars, should be tappable across the entire block, not just the text. The best way to create such

links is to adjust the display property for navigation links, like so.

nav a {
 display: block;
}

Simplifying Layouts and Navigation Without Sacrificing Content
Designing layouts for mobile devices can be challenging because most web designers use desktop

and laptop computers to build their pages. It’s easy to add new features and interesting design

elements when you have a lot of real estate to work with.

To simplify the layouts, start with the number of columns. The ideal number of columns on most

smartphones is one. A single column can be difficult to read on larger screens, but the point of

responsive web designs is to first design for the mobile version of the site, such as by making the

mobile version of the site one column and then adding columns as the screens get larger.

Similarly, the mobile version of a site should include navigation to the same parts of the site as

the desktop version, but it should be simplified. Sub-menus are often difficult to use on mobile

devices, so avoiding more than one level of sub-menus is a good idea. Place the navigation as

links on the pages themselves or add a second navigation menu below the main content.

Download Speed Is Critical
Mobile web pages should be small. While high-speed Internet is common to homes, mobile devices

are often on cellular networks and have data plans with bandwidth limits. And while many of your

customers may not have limits, cellular networks—even the fast ones—are slow.

450 LESSON 17: Designing for Mobile Devices

Images are the largest bandwidth hogs on most web pages. When writing for mobile, make sure

that your images are as small as possible. Consider these best practices:

 N Always use JPEG or PNG formats for photographs.

 N Use GIF or PNG formats for flat-color clip art and illustrations.

 N Crop images to keep the dimensions as small as possible.

 N With PNG and GIF images, use a limited palette of colors—as few as possible.

 N Use the “save for Web” option in image editing programs.

Testing Mobile Web Pages
Testing mobile designs can be challenging because of the many different mobile phones and tab-

lets. When testing, start first with your desktop browser. Modern browsers often have a responsive

design mode. Figure 17.2 shows a website in Firefox with Responsive Design Mode turned on.

FIGURE 17.2
Viewing the website Kyrnin.com in responsive design mode in Firefox.

http://Kyrnin.com

Understanding Mobile First Design 451

This is a great first step for testing your designs. But for final testing, you should test your mobile

designs on mobile devices. You can start by testing on your own devices. It is unlikely that you

own dozens of different mobile devices, and you’ll want to test on as many devices as possible.

There are three ways to test on multiple mobile devices: buy or rent a device, borrow a device, or

use a mobile emulator.

You should consider testing on several types of devices, including the following:

 N Small flip phones

 N iOS phones

 N Android phones

 N Windows phones

 N Smaller tablets on both iOS and Android

Renting a mobile device may be difficult to do, but there are several emulators you can use. The

easiest way to emulate your site is the one mentioned previously—using Responsive Design Mode

in modern web browsers. But there are several other emulators for specific devices and operating

systems:

 N Android Studio—https://developer.android.com/studio/index.html

 N Apple Xcode Simulator—https://developer.apple.com/download/

 N BlackBerry 10 Device Simulator—https://developer.blackberry.com/devzone/develop/

simulator/sim_index.html

 N Opera—https://www.opera.com/

 N Windows Mobile Emulators—www.microsoft.com/en-us/download/details.aspx?id=9263

There are also online emulators you can use to test live pages, some of which are free and some of

which are paid:

 N Cowemo Mobile Phone Emulator—www.mobilephoneemulator.com

 N Sigos App Experience—https://appexperience.sigos.com

Understanding Mobile First Design
Traditionally, a web designer first built a website for desktop users and then modified that site for

mobile users. Mobile First design turns that formula on its head: It says to build a site for mobile

users first and then adjust it to work for desktop users.

https://developer.android.com/studio/index.html
https://developer.apple.com/download/
https://developer.blackberry.com/devzone/develop/simulator/sim_index.html
https://developer.blackberry.com/devzone/develop/simulator/sim_index.html
https://www.opera.com/
http://www.microsoft.com/en-us/download/details.aspx?id=9263
http://www.mobilephoneemulator.com
https://appexperience.sigos.com

452 LESSON 17: Designing for Mobile Devices

Designing for Mobile Devices Before Computers
One of the things many designers forget when building a website is that they are not the cus-

tomers. You are likely to build a site on a computer, but many of your customers (if not most)

will access your site on mobile devices. If you start your design by focusing on mobile, you are

immediately changing your focus to a much larger market—worldwide. The global penetration

of cell phones is between 89% and 97%. So, if you want your website to be accessible to people all

around the world, a Mobile First design strategy is really smart.

How to Use Mobile First
The first thing to do with Mobile First is to create the default design for all your pages for mobile

devices. Think about the smallest screen that might be used to view your pages. If you do nothing

else for mobile devices, this might just be enough. But there are two other things you can do as

well: Concentrate on your content and consider the technologies that mobile devices use.

Changing the Focus to Content
When you design first for mobile devices, you have to focus on the content first. You have to deter-

mine what content is the core content for the page because the screen size on a mobile device is

much smaller than most desktop computers. (Consider that some people even view web pages on

the tiny screens of smart watches.) If you don’t know what is the core content or functionality for

every page on your site, then your mobile customers won’t know either.

One thing you can do is highlight different content for different devices. For instance, a mobile

customer might be more interested in the hours and location of a restaurant, while a computer

user might want the menus first. It’s not that mobile customers don’t want the menus, but menus

might not be their first focus.

While it’s good to highlight different content for different users, you should provide a way for all

your users to get to all the content. If you reduce the main navigation or remove links or other

elements for mobile users, you need to decide where you’re going to put them so that those pages

can be found if they are needed.

Experimenting with New Technologies
A lot of new technologies have appeared on mobile devices first or are available only on mobile,

including the following:

 N Geolocation

 N Touch-screen interfaces

 N Web storage

 N Offline applications

 N Mobile web applications

Understanding Mobile First Design 453

While more of these technologies are appearing on desktop computers, there are still a lot more

uses on mobile devices. For example, geolocation isn’t terribly useful on a machine that never

leaves its current position.

Why Mobile First Works
Mobile First is primarily an implementation of progressive enhancement. You focus on getting the

required content and functionality to as many customers as possible and then enhance the site

for more diverse devices. There are a lot of different devices out there that can serve web pages,

including these:

 N Mobile devices (smartphones, basic cell phones, and tablets)

 N Smart watches

 N Smart speakers and other audio devices (like Amazon Echo, Google Home, and Sonos One)

 N Specialized devices (gaming consoles, e-book readers, televisions, refrigerators, and other

items in the Internet of Things)

 N Traditional computing devices (netbooks, laptops, and desktop computers)

NOTE

What Is “The Internet of Things”?
The Internet of Things (IoT) is where an object, an animal, or a person is given a unique identifier
and the capability to transmit data over a network without requiring a human to initiate anything. It
could be a heart monitor, or a farm animal with an embedded microchip, or even a refrigerator that
transmits information on its contents so you know when you’re almost out of milk.

The first “thing” in the IoT was a Coke machine at Carnegie Melon University in the 1980s. It was
connected to the Internet, and programmers could access its data to determine if there would be a
cold drink available—no more getting to the machine only to find that all the root beer is gone!

In addition to this list of common devices in use today, new ones will continue to be invented. By

having a Mobile First mindset and using progressive enhancement, you can ensure that any Web-

enabled device will have at least basic access to the content and functionality of your website—no
matter what that device is.

How Mobile First Fails
One of the biggest drawbacks to Mobile First is that it is hard to implement. You start out the

design process with a huge barrier—the size you can design for. If you’re designing for a smart-

watch, for example, you need to make sure your pages look okay on a screen no more than

320 pixels square. For older designers out there, this may feel like a huge step backward: We were

454 LESSON 17: Designing for Mobile Devices

designing for 640 × 480 screens in the 1990s, and watches are even smaller than that. Not only

are you limited in terms of screen size, you’re also limited by the number of design elements you

can use, as well as the layouts, the features, the image sizes, and so on.

Mobile First design can move designers into a scarcity mindset. Instead of imagining all the pos-

sible things a website can do, they focus on all the things that the mobile devices can’t do. It might

be that after you start designing for larger-screen devices you figure out something else you could

add to the site. But there’s nothing stopping you from adding it. Just because you think of a feature

for the mobile site while working on the larger site version doesn’t mean you can’t add it later.

The best solution is to work on your site architecture before you worry about the design—mobile

or otherwise. If you have a strong understanding of what pages your site needs, you can create

the navigation menus and define the content needed for each page or section. Once you know all

that, you’re ready to design.

What About Mobile Only Design or Building an App
Instead?
Another method of doing web design that is gaining popularity is mobile only design. Rather than

building a site that will work for both desktop and mobile customers, you focus only on mobile

and let the desktop customers fend for themselves.

The benefit of this method is that you have to do a bit less work to create a design that will work

effectively than you must do to create a multi-breakpoint responsive web design. You can also

customize the content to be 100% mobile friendly.

But most customers are not interested in running just one site optimized for mobile. Chances are

they will eventually visit the site from a wide-screen desktop monitor and then be very disappointed

by the minimalist style.

However, if 75% or more of your customers are using mobile devices to visit your site, then a

mobile-only design makes a lot of sense. In that scenario, it makes sense to worry about desktop

customers last or not at all. After all, most desktop browsers will handle any of the designs and

scripts that work on mobile browsers.

Some website owners have created mobile apps specifically for their mobile customers. An app

can hold onto mobile customers more effectively than a website might. Mobile apps are most

useful in certain situations, such as the following:

 N Mobile gaming

 N Personalized content

 N Complex reporting

Using Responsive Tables and Images 455

 N With mobile functionality, such as GPS

 N Offline access

All of these features can be built into a website, but using an application might make more sense.

Using Responsive Tables and Images
Two aspects of websites that can be difficult to make responsive are tables and images. Data

tables are often very big and can thus be very difficult to handle in a responsive design, especially

for small devices. Images can be frustrating because they can take up too much space on small

screens while being barely visible on larger screens. And they can cause pages to be really slow

and take a long time to download.

How to Make Tables Responsive
To make a table responsive, you need to do more than just resize the table. There are several

things you need to think about:

 N What data is essential to the table and must display on every device?

 N How do customers compare the data on the table?

 N What are the sizes at which the table no longer displays legibly on the screen?

Mobile First design dictates that you should include the same data in some fashion for even the

most limited devices, but you can hide the less crucial information until users need it. So, you

need to know what information is most important.

If customers need to compare different rows or columns to each other, such as in a list of features,

then your responsive design needs to reflect that. But if the data is in a table to make the infor-

mation easier to digest, such as a table listing books with their publishing information, then the

responsive design doesn’t have to make comparing easy.

Finally, you need to consider where the table breaks. You insert breakpoints at points where you

need to rethink how the table is displayed. You will learn more about breakpoints in Lesson 18.

Once you have considered these issues, you can make decisions about how you want to build your

data tables so that they are responsive. There are three ways web designers handle data tables

in RWD:

 N Resize the cells

 N Rearrange the table

 N Remove or hide content

456 LESSON 17: Designing for Mobile Devices

Resizing Cells in a Data Table
Resizing cells in a data table is the easiest way to handle tables because it’s the way that tables

rearrange themselves by default. Listing 17.1 shows the HTML for a simple table. This table has a

width of 100%, so it will automatically adjust to the width of the browser.

LISTING 17.1 Basic HTML Table

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Basic HTML Table</title>
 <meta name="viewport"
 content="width=device-width,initial-scale=1">
 </head>
 <body>
 <table width="100%" border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>URL</th>
 <th>RWD?</th>
 <th>Windows</th>
 <th>Macintosh</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Adobe Dreamweaver</td>
 <td>http://www.adobe.com/products/dreamweaver.html</td>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
 </tr>
 <tr>
 <td>Macaw</td>
 <td>http://macaw.co/</td>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
 </tr>
 <tr>
 <td>Coffee Cup Responsive Layout Maker Pro</td>
 <td>http://www.coffeecup.com/responsive-layout-maker-pro/</td>

Using Responsive Tables and Images 457

 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
 </tr>
 <tr>
 <td>Microsoft Notepad</td>
 <td>http://www.notepad.org/</td>
 <td>no</td>
 <td>yes</td>
 <td>no</td>
 </tr>
 <tr>
 <td>Tummult Hype</td>
 <td>http://tumult.com/hype/</td>
 <td>no</td>
 <td>no</td>
 <td>yes</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

The problem with this table is that when it gets down to really narrow widths, it becomes unreadable.

In browsers around 650px wide, the table grows too large for the screen and causes horizontal scroll-

ing. If you reduce the font size from the default 16px to 14px, horizontal scrolling doesn’t appear until

around 480px.

Rearranging Table Rows and Columns
Another solution to responsive tables is to rearrange how the data is displayed. To use this

solution, you need to understand how customers will use the data in the table.

Listing 17.1 shows a table in which information needs to be comparable. Listing 17.2 shows a

table where each row of data can stand alone.

LISTING 17.2 Contact Information Table

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Contact Information Table</title>

458 LESSON 17: Designing for Mobile Devices

 <meta name="viewport"
 content="width=device-width,initial-scale=1">
 </head>
 <body>
 <table width="100%" border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Home Page</th>
 <th>Email</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Jennifer Kyrnin</td>
 <td>Chief Dandylion Officer</td>
 <td>https://htmljenn.com/</td>
 <td>htmljenn@gmail.com</td>
 </tr>
 <tr>
 <td>McKinley</td>
 <td>Dandelion Observation Officer</td>
 <td>http://responsivewebdesignin24hours.com/mckinley</td>
 <td>mckinley@rwdin24hours.com</td>
 </tr>
 <tr>
 <td>Rambler</td>
 <td>Chief Taste Tester</td>
 <td>http://responsivewebdesignin24hours.com/rambler</td>
 <td>rambler@rwdin24hours.com</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

Because of the URLs, this table breaks the container at around 720px, and because it includes

contact information, we don’t want to mess with the font size, so we need to adjust how the table

displays.

One way to do that is to change the table from a horizontal list of items to a vertical list, with

each item displayed individually. Listing 17.3 shows the CSS to display the table, and Figure 17.3

shows what it looks like.

Using Responsive Tables and Images 459

LISTING 17.3 CSS to Rearrange a Table

table {
 border-collapse: collapse;
}
table { border: none; }
/* display the whole table as a block */
table, thead, tbody, th, td, tr {
 display: block;
}
/* Hide the headers */
thead tr {
 position: absolute;
 top: -9999px;
 left: -9999px;
}
tr { border: 1px solid #ccc; margin-bottom: 1em; }
tr:nth-of-type(odd) {
 background: #eee;
}
td {
 /* Behave like a "row" */
 border: none;
 border-bottom: 1px solid #eee;
 position: relative;
 padding-left: 20%;
}
td:before {
 /* Now like a table header */
 position: absolute;
 /* Top/left values mimic padding */
 top: 1px;
 left: 6px;
 width: 45%;
 padding-right: 10px;
 white-space: nowrap;
}
/* Label the data */
td:nth-of-type(1):before { content: "Name"; }
td:nth-of-type(2):before { content: "Title"; }
td:nth-of-type(3):before { content: "Home Page"; }
td:nth-of-type(4):before { content: "Email"; }

We found this technique on Chris Coyier’s CSS-Tricks site (https://css-tricks.com/responsive-data-

tables/). This technique involves turning the table elements (<table>, <tr>, <td>, and so on)

into block elements, hiding the <th> elements (but not removing them with display:none; so

that the table is still accessible), and adding a separate line header for each row in the table.

https://css-tricks.com/responsive-data-tables/
https://css-tricks.com/responsive-data-tables/

460 LESSON 17: Designing for Mobile Devices

FIGURE 17.3
Rearranging table cells with CSS.

But you’re not limited to rearranging the table: You can also change how the data is displayed,

such as by changing from a table to a graphic or a chart. As long as the data is available to your

mobile customers, displaying a graphical chart instead of a table can work. And you might find

that the chart is useful to larger-screen devices as well.

Hiding Table Content
Another option for displaying tables is to hide rows or columns. But to do this, you need to know

which items in the table are the most important. You can remove the less important data from the

HTML or you can use the display: none; CSS property to remove less important data with CSS.

The problem with hiding the data is that some customers will want to see that data, even if it’s

harder to read on their devices. Most tables break the design because the data is too wide for

the layout, and so the entire design must scroll horizontally. But while horizontal scrolling of the

entire page is bad, most smartphone users understand what is happening when they see a scroll-

bar below a table and can easily scroll from right to left inside that table.

The trick is to use a <div> tag around the table and put the scrollbars on it. First, surround the

entire table with a <div> tag, like so:

<div class="responsive">
 <table width="100%" border="1">
 ...
 </table>
</div>

Instead of styling the table, you add overflow values to the <div> itself, like so:

.responsive-table {
 width: 100%;
 margin-bottom: 15px;

Using Responsive Tables and Images 461

 overflow-y: hidden;
 overflow-x: scroll;
 -ms-overflow-style: -ms-autohiding-scrollbar;
 border: 1px solid #ddd;
 -webkit-overflow-scrolling: touch;
}

This causes the table to take up as much room as it needs in order to be legible, with any overflow

on the <div> hidden by the scrollbar. Customers can then scroll left or right to see the entire

table even on small-screen devices.

How to Make Images Responsive
Many web designers automatically include the width and height of images in the HTML, like so:

The tag has a src attribute that defines the location of the image, an alt attribute that

provides alternative text if the image can’t display for some reason, and width and height

attributes that define how much space the image should take up in the design.

But if you explicitly set the image height and width in either the HTML or the CSS, the images will

remain the same size even if the rest of the design is responsive. And in smaller windows, large

images don’t work well.

The main problem with many images is that they are too big for mobile screens. The images don’t

flex with the design. In fact, they are not responsive at all. There are three ways you can deal

with images in a responsive web design:

 N Use the images as you always would.

 N Set the image width to something flexible.

 N Change what images are displayed depending device properties.

The first solution has just one advantage: It’s easy. The other two solutions are much better

because they allow the images to be responsive.

Using Flexible-Width Images
Using flexible-width images is often the best solution for most websites because it’s almost as easy

as doing nothing and results in images that flex with the browser width. All you need to do is set

the width and max-width of your images to 100% and the height to auto, like so:

img { width: 100%; max-width: 100%; height: auto; }

462 LESSON 17: Designing for Mobile Devices

CAUTION

With most web page editors, when you add an image, the editor automatically includes the width
and height attributes on the tag. CSS will override these values, but if you don’t set
height for your images, you will end up with some really ugly images. Setting height to auto
tells the browser to use a height that has the same ratio as the original image.

To use Mobile First, set the img rule in your global style sheet before any media queries, so that

it applies to all devices. Then test your design in several browser widths and see what happens.

Chances are you’ll need to add some container width information so that the images don’t blow

out the entire browser window in some sizes.

Setting the width so that the images flex with their containers works well, but you will want to

upload images that are large so that they look good on large-screen monitors. But the larger you

make the images, the longer they will take to download.

Changing the Images Displayed with srcset and sizes
While most responsive solutions are done with CSS, you can create responsive image solutions

right in the HTML. The element has two attributes—srcset and sizes—that you can use

to define different images to display on different devices.

The srcset attribute is added to the element to define a list of images to use on devices

with different pixel densities. For example, as mentioned earlier in this lesson, Retina displays on

Apple devices have at least 2 pixels for every 1 pixel on a non-Retina display.

You can define different images to display at different pixel densities in a comma-separated

list, like so:

<img srcset="images/myImage.jpg 1x,
 images/myImage-2x.jpg 2x,
 images/myImage-3x.jpg 3x"
 src="images/myImage.jpg" alt="My Image">

In this example, 1x, 2x, and 3x define the densities at which the preceding image should display.

You can define any number of densities with the x descriptor, and you can also use the value hd

to select for high-density devices. The src attribute is used in older browsers that don’t support

the srcset attribute.

But you can also define images based on the device width by using the w descriptor. This describes

the width of the image being referenced. You define it in the same way as previously, like so:

<img srcset="images/myImage.jpg 100w,
 images/myImage-2x.jpg 200w,
 images/myImage-3x.jpg 400w"
 src="images/myImage.jpg" alt="My Image">

Using Responsive Tables and Images 463

Then if you want to change the space the image takes up, you can use the sizes attribute. If you

have just one size defined, such as sizes="50vw", then the image will take up that much space

in all devices—in this case 50% of the viewport window. sizes is especially useful when you add

media queries to it, like so:

sizes="(max-width: 40em) 100vw, 50vw"

Media queries are covered in more detail in Lesson 18, but for now, just think of them as a simple

if statement. In this case, the browser looks at the maximum width of the device, and if it is

40em or less ((max-width: 40em)), then the image size should be 100% of the viewport

window (100vw). Otherwise, it should be 50% of the viewport window (50vw).

Use the srcset attribute alone when you need multiple versions of the same image at different

resolutions, and in this case, use the x descriptor. Use srcset with sizes when you need mul-

tiple versions of the image at different sizes, and in this case, use the w descriptor.

Changing Images by Using the <picture> Element
What if you need to use different images on different devices but want to adjust those images

based on resolution as well? For this you need to use the <picture> and <source> elements.

These elements define images in a similar fashion to how you define video and audio with the

<video> and <audio> elements.

You can use the <picture> element to contain the different <source> elements. Each

<source> has a media query built into it in the media attribute that tells the browser when to

use those defined images. In addition, each <source> uses a srcset attribute (and sizes if

you want) to define the images for each resolution:

<picture>
 <source srcset="images/myImage.jpg 1x,
 images/myImage-2x.jpg 2x,
 images/myImage-3x.jpg hd"
 media="(max-width: 30rem)">
 <source srcset="images/myImage.jpg 1x,
 images/myImage-2x.jpg 2x,
 images/myImage-3x.jpg hd"
 media="(max-width: 50rem)">

</picture>

As before, the src attribute defines the fallback if the browser doesn’t support the <picture>

and <source> tags.

Deciding When to Use Different Images
It’s tempting to use different images all over the place, if only to prove that you can. But the best

sites adjust the images to suit the design, not the designer. By using pictures that have the same

464 LESSON 17: Designing for Mobile Devices

image but are different resolutions, you allow browsers to download the image version that is best

for a particular device. This means you can create an image that has a high resolution but small

physical size for high-density small screens. Then you can create the same image with a larger

physical size (and thus longer download time) for larger screens.

You should create an entirely new image when the size of the device screen makes an image dif-

ficult to understand. For example, you might have a photo of a giant vista with a person standing

off in the distance. On a large 4k screen, the entire vista would look stunning on the page. But

while an iPhone can display the image without a problem, the person standing in the distance

might be too small to easily see on the smaller screen. In this case, using HTML or CSS to display

a completely different image would make sense. You can zoom in on the subject of the photo to

make it more obvious what is important in that image or simply display a completely different

image that provides the same information.

Creating Responsive Layouts Without
Media Queries
Using media queries is the most common way to create different layouts on devices of different

sizes, but one technique that many people overlook is using CSS columns. In Lesson 6, “Working

with Fonts, Text Blocks, Lists, and Tables,” you learned about how to write CSS columns to create

layouts. What you may not have realized is that you can use CSS columns to create responsive

layouts.

You can create columns by declaring the column count or the column width. But if you declare

both, such as with the columns property, you create a column layout that will adjust depending

upon the width of the browser.

Listing 17.4 shows some HTML that uses columns.

LISTING 17.4 Responsive Columns Without Media Queries

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Responsive Column Layout without Media Queries</title>
 <meta name="viewport"
 content="width=device-width,initial-scale=1">
 <style>
 article {
 columns: 2 20rem;
 }
 </style>

Creating Responsive Layouts Without Media Queries 465

 </head>
 <body>
 <h1>A Responsive Column Layout without Media Queries</h1>
 <article>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing el</p>
 <p>... additional content here</p>
 </article>
 </body>
</html>

At full size, as shown in Figure 17.4, the page displays with two columns that fill the screen. But

if the browser is smaller than 20rems in width, the page displays as one column, as shown in

Figure 17.5.

FIGURE 17.4
A page displayed at full size with two columns.

466 LESSON 17: Designing for Mobile Devices

FIGURE 17.5
A page displayed in responsive design mode at 320px wide with one column.

Another responsive feature of this page is that it uses rems for the column width. The rem unit of

length depends upon the size of the font on the page. So, if the customer changes the font size in

the browser, the layout size will change as well.

It’s important to remember that responsive design is more than just media queries. By considering

mobile devices and taking the time to design for them, you make your pages responsive.

Alternatives for Mobile Design Besides RWD
RWD is not the only solution for mobile design. There are other things you can do to create

mobile websites—and there are good reasons to use them. The most common alternatives are

using adaptive design and dynamic serving and using completely separate sites for mobile. Some

designers also create an app to run on mobile devices as an alternative to the website.

Why RWD Might Not Be the Answer
Responsive web design can be difficult to do well. It’s easy to create a site that is huge and slow to

load. This is the opposite of what you want for a mobile site. In most cases, when you use RWD,

especially with media queries, the same content, CSS, and scripts are loaded on every device. And

this can slow pages excessively.

Alternatives for Mobile Design Besides RWD 467

Another aspect of RWD that is difficult to do well is content management. As mentioned previ-

ously, a mobile customer has different goals and desires when viewing a website from a desktop

customer. By creating a site that is one-size-fits-all, you make it very difficult for some customers to

do what they want to do.

Finally, while most people view web pages in modern, up-to-date browsers and devices, some peo-

ple don’t. And RWD primarily relies on technology that needs modern, up-to-date browsers and

devices. On older devices and browsers, a page might load more slowly or possibly not at all.

What Are Adaptive Design and Dynamic Serving?
With adaptive design, a designer creates multiple versions of a site to better accommodate the

devices viewing it. It can be argued that RWD is a form of adaptive web design because it changes

the site depending on the device viewing it. It gets interesting when you use the web server to

detect information about the device viewing the page and then deliver the different designs

appropriately.

With adaptive design, pages are designed for common screen widths, such as these:

 N 320px

 N 480px

 N 760px

 N 960px

 N 1200px

 N 1600px

As with responsive design, you should start with the smallest screen and move up. Use all the

same techniques you’ve learned to create good websites but adapt the design to best fit the

device size.

The second part of adaptive design is the delivery of the pages. This is why it’s also called dynamic
serving. With dynamic serving, the server responds with different HTML, CSS, and JavaScript on

the same URL, depending upon the device requesting the page.

Designers commonly make mistakes such as the following when setting up dynamic serving:

 N Blocked content—You should let all your content—including JavaScript, CSS, and images—

be seen by every device and especially by search engine robots. You should also never dis-

play a 404 page to only certain devices.

 N Unplayable content—Some types of media are not playable on various mobile devices, and

if you feature that content, you will frustrate many of your customers.

468 LESSON 17: Designing for Mobile Devices

 N Incorrect redirects—One way that dynamic serving is done is by redirecting customers to

specific URLs. But if a desktop customer is redirected to mobile, for example, that can be

very annoying.

 N Links to incorrect pages—If you have sent a customer to a mobile version of the site, the

links should not point to the desktop version.

Using a Separate URL or Domain
Many people consider using a separate domain such as m.yourdomain.com for mobile custom-

ers to be an old-fashioned way to handle mobile. But it does work. And some very popular sites

use mobile domains, including Facebook and Home Depot.

Creating a separate, parallel website for mobile may seem like a lot of work, but if you have a

database-driven site with hundreds, thousands, or millions of pages, it can be a lot easier to sim-

ply redirect all mobile customers to a different domain.

You should be aware that creating a separate site/domain for your mobile customers could result in

a penalty in search engine optimization. Most sites link to the desktop version of a site rather than

the mobile one, and when this happens, you lose out on the back links. You also have to create a

separate sitemap for the mobile site so that search engines find and index the pages correctly. You’ll

learn more about search engine optimization in Lesson 28, “Organizing and Managing a Website.”

Summary
In this lesson you learned a lot about mobile web design. You learned about how to design effec-

tive mobile pages and what design features you should avoid, such as slow-loading pages and

images and Flash.

This lesson also covered Mobile First design, where you start with the mobile version of a site

design and make sure you have everything there before moving on to larger and larger screens.

You learned that your focus should be on content rather than features. But you should stay aware

of the technologies that mobile devices use.

This lesson gave you some techniques for making images and tables responsive. You can use what

you learned in this lesson along with the media queries you’ll learn in Lesson 18 to create tables

and images that work well on both mobile and nonmobile screens.

Finally, you learned some techniques for how to build responsive pages without media queries as

well as some alternatives to responsive web design. The fact is that RWD is not the best option in

all situations, and you can use dynamic serving or a completely separate domain to ensure that

mobile users get the features and content they need and want.

Workshop 469

Q&A
 Q. How can I implement dynamic serving?

 A. The most common method is with server-side browser sniffing or device detection. Most
corporate websites that use dynamic serving use a service such as DeviceAtlas (https://
deviceatlas.com/) or WURFL (http://wurfl.sourceforge.net/). Some people recommend
using user-agent strings, but these are ridiculously inaccurate.

 Q. Is Mobile First automatically responsive?

 A. The short answer is no. Mobile First is a way of thinking of web design. A site can be
designed with Mobile First goals but may not be responsive. And a responsive site can be
designed without considering mobile customers first.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. What are three things that a mobile-friendly site should consider?

 2. What are three things you should always do when building a mobile-friendly site?

 3. What is Mobile First design?

 4. What should you focus on when designing for mobile devices first?

 5. What are some technologies that can primarily be found on mobile devices?

 6. What types of situations work well for mobile apps?

 7. Why do data tables fail on mobile devices?

 8. What are three ways you can adjust data tables to work on smaller screens?

 9. What does the srcset attribute do for images?

 10. What CSS property can make a layout change from three columns to one column,
depending on the device width?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

https://deviceatlas.com/
https://deviceatlas.com/
http://wurfl.sourceforge.net/
http://www.informit.com/register

470 LESSON 17: Designing for Mobile Devices

Answers
 1. There are many aspects to mobile-friendly design, but some specifics include not using

Flash, configuring the viewport, avoiding fixed-width designs, making elements fit in the
design, using legible font sizes, and making links and buttons tappable.

 2. You should always create a simple navigation and layout, make the page load as quickly as
possible, and test the design on real devices.

 3. Mobile First design is a philosophy in which you design for the smallest devices first and
make sure that they have everything they need to view and use the site. Then you create
the larger versions of the site.

 4. You should focus primarily on the content. Consider what content is required to view and
use the site and make sure that even the smallest devices can access it.

 5. There are lots of mobile-only technologies, including geolocation, touch-screen interfaces,
web storage, offline applications, and mobile web applications. Some of these can be used
on desktop computers as well.

 6. Mobile apps work best for mobile gaming, personalized content, complex reporting, func-
tionality that is only available on mobile devices (for example, GPS), and offline access.

 7. The most common reason data tables fail is that they are too wide for the screen. They
often contain more information than is readily consumable on a small device.

 8. You can change the size of the table cells or contents, rearrange the table, or remove or
hide content to make data tables more usable on small screens.

 9. The srcset attribute defines a list of images to display at different pixel densities.

 10. The CSS property columns lets you define both the maximum number of columns and the
minimum width for those columns. You can create a design that can change from three
 columns to one column with the style rule columns: 3 200px;.

Exercise
 N Consider the site you are building. Would it benefit from a separate mobile site? Why or

why not? What are some of the reasons you might not want to design it with RWD?

LESSON 18
Using Media Queries and

Breakpoints

What You’ll Learn in This Lesson:

 N How to write a CSS media query

 N How to use different media types

 N How to create media query expressions

 N Understanding logical keywords in your queries

 N What CSS breakpoints are

 N How to define breakpoints

 N How to find the best breakpoints for your website

For many people, the term responsive web design is synonymous with CSS media queries. And

while it’s possible to have a responsive site without using media queries, using them is the most

 common way of doing RWD. This lesson will take you through how to write a media query as well

as what the different types of queries, keywords, and expressions are.

Breakpoints are the points where media queries adjust the design. Even if you have only one break-

point, your web page will respond to the presence of that breakpoint and respond appropriately

to user agents that match. In this lesson you will learn what breakpoints are and how to use

them. Plus, you’ll learn what makes good breakpoints to support a wide variety of devices.

What Is a Media Query?
According to the W3C, a media query is a “logical expression that is either true or false. A media

query is true if the media type of the media query matches the media type of the device.…” What

this is saying is that a web designer can use a media query to define if/then statements based on

the characteristics of the device viewing the page.

CSS media types were introduced in the CSS specification in CSS2, and media queries were added

in CSS3. Media queries became a full-fledged recommendation in June 2012, but they have been

supported by browsers since before 2010. CSS media queries are a stable tool, and web designers

should feel confident that modern browsers and user agents support them.

472 LESSON 18: Using Media Queries and Breakpoints

When you are building a media query, you use the @media rule. You then define the media types

the rule applies to, as well as the features of that type that you want to focus on. You place these

rules right in your CSS style sheet, using the following syntax:

@media mediaType and (mediaFeature) { }

Using Media Types
There are 10 media types you can test for with CSS media queries:

 N all—All media

 N braille—Braille and tactile feedback devices

 N embossed—Paged braille printers

 N handheld—Small-screen low-bandwidth handheld devices

 N print—Paged media and documents in print preview mode

 N projection—Projected presentations

 N screen—Color computer screens

 N speech—Speech synthesizers

 N tty—Teletypes and media with a fixed-pitch character grid

 N tv—Television

CAUTION

The handheld media type was originally used to apply to cell phones and PDAs and other handheld
devices, but most cell phone manufacturers wrote their devices to report back a screen media type
because they didn’t want their customers to be penalized by web designers not wanting to give hand-
held customers the full experience. So you cannot rely on this media type to detect mobile devices.

The most common media type web designers use is screen because modern cell phones, tablets,

and all computer monitors use this designation.

You can use the print media type to create a style sheet for printing web pages. This common

way of using media types allows web designers to control how their web pages look when they are

printed out.

To create a print style sheet, open a new CSS document for your print styles. Best practices recom-

mend that you do things like remove advertising, change the color of links to the text color, add

underlines to links if they are removed, and remove the background colors so they don’t print.

What Is a Media Query? 473

You load a style sheet as you would a normal style sheet except that you add the media type to

your <link> element, like so:

<link href="print.css" rel="stylesheet" media="print">

You can test that the print styles are applied by opening the page in a browser and choosing Print

Preview.

You write a print style sheet exactly the way you write any other style sheet. However, because

it is a style sheet for print, you can use a few styles you otherwise might ignore, such as

page-break-before, page-break-after, and page-break-inside. Because web pages

don’t have page breaks, these styles aren’t used in screen style sheets.

You can set the media type in any style sheet link with the media attribute. But most designers

leave it off because the default is all.

Setting the media type in the <link> tag is not the best way to define styles for media types

because it forces the browser to request and load multiple style sheets. The same is true if you

use the @import rule. Table 18.1 shows how to use the three different methods to include media

 queries. The first method is in the HTML, and the other two are right in the CSS document.

TABLE 18.1 Three Ways to Add Media Queries

Method Description

<link media="type" href="url"
rel="stylesheet">

Use the media attribute on a link tag to define media
queries as the style sheet is loaded.

@import url("url") type; Include the media type in the @import command to
define media queries when a style sheet is imported.

@media type { … } Include media-specific styles directly in another style
sheet to limit the scope of the enclosed styles.

Best practices are to define styles for different media types all in the same style sheet document,

using the @media rule, like so.

 1. Open your style sheet file in a web page editor or text editor.

 2. Add the styles you want to apply to all media types at the top of your style sheet. You do not

need any media rules to define them.

 3. Add the media-specific rules with the @media rule. To include a print style sheet, write the

following:

@media print {
 // put print styles here, such as:
 a:link {

474 LESSON 18: Using Media Queries and Breakpoints

 color: black;
 text-decoration: underline;
 }
}

 4. Include as many different media types as you need. Just remember to include all their styles

in a separate curly braces block ({ }).

NOTE

Requesting multiple CSS documents with the <link> element or @import rule will slow down
your website. By keeping your media queries all in one CSS document, you reduce the number of
requests to the server, and this improves the speed at which your web pages load. For example,
if you have three 1KB CSS files you need to load, if you use @import or <link> tags to include
them all, the browser sends three separate requests for each file and has to wait for three
responses from the server. If each request and response takes half a second, you’ve added an
extra two seconds to the download time for all three files.

Here’s how it would look:

request file 1 (.5s)

response file 1 (.5s)

download file 1 (1KB)

request file 2 (.5s)

response file 2 (.5s)

download file 2 (1KB)

request file 3 (.5s)

response file 3 (.5s)

download file 3 (1KB)

This gives you a total of the time it takes to download 3KB plus 3 seconds of request and response
time. If you combine all three files into one 3KB file, you have the same download time (for 3KB) but
only one request and response (1s). Yes, 0.5s is an extremely slow request and response, but even
fast response times add up. If you have 10 CSS files, plus another 10 JavaScript files, plus other
server requests (images, media, and so on), your site will be slowed down considerably.

Using Media Features
CSS media queries get really interesting when it comes to media features. Rather than limit your

designs just to specific media types (screen versus print, for example), media features let you look

at the specific features of the media and style your pages accordingly.

There are 13 media features you can test for:

 N aspect-ratio—A ratio of the width of the device to the height

 N color—The number of bits per color component

What Is a Media Query? 475

 N color-index—The number of colors in the device’s color input title

 N device-aspect-ratio—The ratio of the device width to the device height

 N device-height—The height of the rendering surface

 N device-width—The width of the rendering surface

 N grid—Whether the device is a grid (such as tty devices or phones with only one font) or

bitmap

 N height—The height of the display area

 N monochrome—The number of bits per pixel in monochrome devices; if the device isn’t

monochrome, the value will be 0

 N orientation—Whether the device is in portrait or landscape mode

 N resolution—The pixel density of the device, in print, which would be the dots per inch

(dpi) of the printer

 N scan—The scanning process of TV output devices, such as progressive scanning

 N width—The width of the display area

CAUTION

The device-width and device-height features are confusing to most web designers at first,
as it doesn’t seem like there is any difference between them and the related width and height
features, especially on mobile devices. But there is a difference, and it’s important. The width is
the width of the browser window, while device-width is the width of the device itself. You can
see this most effectively on a computer. When you set a media query with max-device-width
and then resize the browser, the page will not change, no matter how much you resize. This is
because the device width is the computer monitor, and it doesn’t change.

This may not seem to matter on mobile devices, but on iOS devices, device-width is always the
width in portrait mode, even if the device is in landscape. On Android devices, however, device-
width (along with device-height and device-aspect-ratio) changes when the device
is rotated.

Nearly all the media features also have two prefixes you can use to evaluate: min- and

max-. These prefixes evaluate the feature based on whether it is a minimum amount (min-)

or a maximum amount (max-). For example, to set a style sheet to apply to all browsers with

at least a width of 320px, you would write the following:

@media (min-width: 320px) { ... }

And if you wanted to target devices with browsers no wider than 1024px, you would write this:

@media (max-width: 1024px) { ... }

476 LESSON 18: Using Media Queries and Breakpoints

As you can see, you add the media features to the @media rule with the word and and then

enclose your features in parentheses. If you want to get more specific, add more features. For

example, to target browsers between 640px and 980px wide, you can write the following:

@media (min-width: 640px) and (max-width: 980px) { ... }

Notice that none of the expressions just mentioned use a media type. That is because if the media

type is left off, it applies to all devices, regardless of type.

Using Media Query Expressions
In order to use media queries effectively, you need to know how to write expressions. In the pre-

vious section you learned three basic expressions to target browsers above a certain minimum

width, to target browsers below a maximum width, and to target browsers that fall between a

minimum width and a maximum width. But you can create much more complicated expressions.

Media query expressions use logical operators to define complex scenarios. These are the

operators you can use:

 N and—This combines features and types together. The query will match if all elements

are present. For example, the following would match a device in landscape mode with

a 768px browser window:

@media (min-width: 760px) and (orientation: landscape) { ... }

 N Comma-separated list—This is equivalent to the OR logical operator. In a comma-

separated list of features or types, if any of them are true, the query will match. For

example, this would match both a 480px browser in landscape mode and an 800px

browser in portrait mode:

@media (min-width: 760px), (orientation: landscape) { ... }

 N not—This negates the entire query. The query will match if the query would normally

return false. For example, the following would match a 480px browser that is in portrait

mode:

@media not (min-width: 760px) and (orientation: landscape) { ... }

NOTE

The not operator can be confusing to use, but one thing to remember is that it applies only to the
entire expression, not individual features. In other words, if you write @media not screen and
(max-width:400px), your query will match everything that is both not a screen-based device and
that has a width larger than 400px. It helps if you remember to evaluate the not last. So, you write
the expression the opposite of what you want and then apply the not operator to the front.

477How to Define Breakpoints in Your CSS

 N only—This prevents browsers that don’t support media queries from applying the styles.

For example, the following will block extremely old browsers from using the style sheet:

@media only screen { ... }

Media query expressions are the basis of responsive web design. With them you can define very

complex formulas for your style sheets and make sure that the designs look exactly the way

you want them to.

What Is a Breakpoint?
A CSS breakpoint is a device feature with a media query declaration assigned to it. They are most

commonly based on browser widths, so most designers think of breakpoints as places where the

width of the design changes to accommodate different devices.

Most responsive designs have at least one breakpoint that changes the look of the design.

NOTE

Most experts recommend at least two breakpoints so that your site has three versions: one for
small mobile devices, one for midsized tablets, and one for desktop computer screens. But for best
results, you should use the breakpoints that are right for your website.

Before you decide that you’re going to have 10 breakpoints or some other arbitrary number, you

need to remember that each additional breakpoint adds to the cost of building and maintaining

the website. For each breakpoint in your design, you add one more version of the page to style.

In other words, you have to style the page even if you have no breakpoints. When you add one

breakpoint, you then have a second version of the page to style, and so on.

How to Define Breakpoints in Your CSS
Defining breakpoints is done with CSS media queries. The most common type of breakpoint is

based on the width of the device. Listing 18.1 shows the CSS file for a Mobile First site with three

breakpoints: one for every browser (the smallest widths), one for widths between 480px and

1200px (larger smartphones and smaller tablets), and one for widths larger than 1200px.

LISTING 18.1 A Page with Two Breakpoints

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Page with Two Breakpoints</title>

478 LESSON 18: Using Media Queries and Breakpoints

 <style>
 body {
 color: blue;
 font-family: "Handwriting - Dakota", Papyrus;
 }
 @media all and (min-width:480px) and (max-width:1200px){
 body { color: red; }
 }
 @media screen and (min-width:1201px){
 body { color: green; }
 }
 </style>
 <meta name="viewport"
 content="width=device-width,initial-scale=1">
 </head>
 <body>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Etiam id purus nec eros semper luctus. Proin nisl lectus,
 ullamcorper ultrices leo in, tristique rutrum risus. Morbi
 congue diam tempor lorem semper, congue tempor turpis pretium.
 Nunc eget dui ut lorem auctor ornare. Vivamus lectus purus,
 vehicula eu velit eu, iaculis ultrices dui. Aliquam consectetur
 risus non ligula blandit, et gravida lectus bibendum. Etiam
 laoreet luctus nibh. Nulla sit amet lorem quis arcu accumsan
 mollis.</p>
 </body>
</html>

Listing 18.1 shows very simple styles that simply change the color of the text depending on the

size of the browser—blue for small screens, red for medium-sized screens, and green for large

screens. In Figure 18.1 the text is red, and in Figure 18.2 the text is blue.

FIGURE 18.1
A page viewed in Firefox at 1024 pixels wide.

How to Define Breakpoints in Your CSS 479

FIGURE 18.2
A page viewed in Firefox design mode on a 320px-wide device.

Defining the Styles That Remain the Same for
Every Device
When you’re writing a style sheet for a responsive website, the first styles you want to define are

the ones that are the same no matter what device views them. This is another way of using the

Mobile First philosophy. These styles include the following:

 N Reset styles

 N Colors

 N Font families

 N Background images

While it’s certainly possible that you could have designs that use different colors, font families,

resets, and background images, depending on the device, most websites like to keep a consistent

480 LESSON 18: Using Media Queries and Breakpoints

branding. And by keeping these things the same, you reassure your customers that they are on

the same page no matter what device they are using.

Listing 18.2 shows a basic style sheet with some initial styles.

LISTING 18.2 Initial Styles for a Web Page

@charset "UTF-8";
/* reset styles here */

/* standard colors */
body { background-color: #fff; color: #000; }
h1, h2 { color: #fbd91f; /* yellow */ }
h3, h4, h5 { color: #000; }

/* standard fonts */
h1, h2, h3 {
 font-family: Baskerville, "Times New Roman", serif;
}
h1 {
 text-shadow:2px 3px 3px #000000;
 margin-bottom: 0.5em;
}
h2 {
 text-shadow: 2px 2px 0 rgba(0,0,0,.5);
 margin-bottom: 0.5em;
}

/* background image on the header */
header {
 width: 100%;
 padding: 0.5em 0 3em 0.25em;
 background-image: url(images/dandy-header-bg.png);
 background-repeat: no-repeat;
 background-size: cover;
 background-position: 0% 100%;
}

While some of the styles set here may be changed for specific devices, this is a good baseline.

We set a base font family for our headlines. We gave the document black text and a white back-

ground. And we defined a background image for the header. As with any other design, there is

always more to do, but this is a start.

How to Define Breakpoints in Your CSS 481

Adding Specific Styles for Small Screens
Once you’ve got your basic styles for any machine in the style sheet, you need to add styles spe-

cific to the smallest screens. You should put them below your styles for all devices, but not inside a
media query. These smallest-screen styles will be overwritten on larger screens by the styles in the

media queries because of the CSS cascade.

You should add styles that make your pages as mobile friendly as possible, considering things like

the following:

 N The width of every content element should be 100% to fill the screen.

 N This means you’ll have one column of content.

 N Lists, especially lists of links, should have a lot of space between list items, to make them

easy to read and click.

Listing 18.3 shows some of the styles added at this stage, and Figure 18.3 shows how this might

look on a small-screen phone.

LISTING 18.3 CSS Added for Small Screens

/* ######## mobile specific styles ######## */
/* headlines */
h1 { font-size: 2em; }
h2 { font-size: 1.5em; }

/* navigation bar */
nav { width: 100%; background-color: #000; color: #fbd91f; }
nav ul { padding-top: 0.15em; padding-bottom: 0.15em; }
nav ul li { margin: 0 0 0.5em 0.2em; }

/* article */
article { width: 100%; padding: 0.25em; }
article img { width: 100%; height: auto; }

/* aside */
aside { width: 100%; }
aside img { width: 100%; height: auto; }

482 LESSON 18: Using Media Queries and Breakpoints

FIGURE 18.3
Viewing a page in Firefox Responsive Design Mode at 320 pixels wide.

Adding Media Queries for Larger Screens
The last thing to add to your style sheet are the media queries with the styles specific to the

breakpoints. The Dandylion page shown in Figure 18.3 has two breakpoints: one for medium-

sized devices between 481px and 1200px wide and one for large devices with a width bigger

than 1201px. Listing 18.4 shows the CSS.

LISTING 18.4 Media Queries in the CSS

/* ######## medium sized devices ######## */
@media (min-width: 481px) and (max-width: 1200px) {
}

/* ######## large sized devices ######## */
@media (min-width: 1201px) {
}

Optimal Breakpoints 483

CAUTION

Remember that these style sheets use the cascade to set initial styles and then overwrite them with
styles for other devices later in the document. If you aren’t using a WYSIWYG editor or previewing
your styles regularly, it can be easy to forget what already has a style. For example, you may set the
width of the article element to 100%, but in larger screens you wouldn’t want that as it would
make the text lines too long to read. But if you forget to preview the styles at many different browser
widths, you could be surprised at the result.

You need to remember the order of your CSS file. Because of the cascade, whatever styles come
last will take precedence over styles that came before. So if you style the article element to have
100% width in the first section and then change that to 80% or something else in the medium- or
large-sized device media queries, that is the style that will display.

Optimal Breakpoints
RWD beginners commonly wonder what are the best breakpoint numbers. It depends on your

customers and your design.

You can use the widths of popular devices to come up with a breakpoint plan that works for your

site, but a better solution is to choose breakpoints based on your design. View your site at different

widths to see where it breaks. You can use Responsive Design Mode to slowly resize the window

until the design breaks. A design is broken when the page is hard to read, content scrolls horizon-

tally, images or text overlaps, or things just look wrong.

Best Practices for Breakpoints
Some of the best practices for choosing the breakpoints include the following:

 N Choose breakpoints for the design, not the device—It’s tempting to choose breakpoints

for exactly the resolution of the devices you want to support (for example, a min-width of

720px to target iPhone 5S devices). But this is a mistake. It’s better to choose a width based

on where your design starts getting difficult to read or use.

 N Keep breakpoints 1px different—When you use more than one breakpoint, make sure that

the second one is exactly 1px wider or narrower than the first one. In other words, if your

smallest breakpoint is for browsers with a width of 480px or smaller, then the next break-

point should have a minimum width of 481px. If you use the same number for each, this

can cause browsers that match that width to use the wrong styles.

 N Consider device orientation, not just width—If you have the time and resources, you

should consider changing your design based on the orientation of the device and not just

the width.

 N Don’t forget Retina devices—Pages displayed on Retina displays and other high-pixel-

density devices can look bad if your images aren’t optimized for them.

484 LESSON 18: Using Media Queries and Breakpoints

Media Queries for Retina Devices
In Lesson 17, “Designing for Mobile Devices” you learned how to use the srcset and sizes

attributes to display different images for different pixel densities. There is also a media query

feature that you can use to define styles for high-pixel-density devices. This is the resolution

feature. You use it just as you do other features, adding the min- or max- prefixes in your media

query. The only browser exception is Safari, which still uses the -webkit-device-pixel-
ratio feature.

Retina displays have a 2x pixel ratio, so you can define styles for Retina devices with this media

query:

@media (-webkit-min-device-pixel-ratio: 2), /* Safari and iOS */
 (min-resolution: 192dpi) /* Others */ {
}

You can define higher-density minimum resolutions by changing the dpi you match.

Summary
This lesson introduced you to the meat of responsive web design—media queries with breakpoints.

With CSS media queries, you create style sheets that are written explicitly for the devices that you

want to define. You can create style sheets only for specific media types or take more granular

control with media features. You also learned how to create media query expressions.

You learned what a breakpoint is and how to choose good breakpoints for responsive design. You

learned the CSS to create media queries around those breakpoints. And you also learned how to

create media queries to detect Retina and other high-pixel-density devices.

Q&A
 Q. What’s the difference between CSS2 media queries and CSS3 media queries?

 A. CSS2 doesn’t have media queries, but you can define a style sheet for a specific media
type. It wasn’t until CSS3 that media queries were developed. Media queries let you define
test structures surrounding media types and features that allow only the user agents that
fit the query criteria to use the styles.

 Q. Why is it important to design for the smallest devices first?

 A. Most of the smallest devices are also the least feature rich. In order to build a site using
progressive enhancement, you should focus on the minimum you need for the site to work.
And that is what you should display to all customers—even those on small-screen devices,
as discussed in more detail in Lesson 17, “Designing for Mobile Devices.”

Workshop 485

 Q. Can I use other media features than just the width to set my breakpoints? Why does

everyone only seem to use device widths?

 A. The width is the easiest type of breakpoint to understand and test. When you use a mini-
mum or maximum width, you can use your web browser to test your designs by simply
 resizing the browser window. As long as you’re browsing on a fairly large screen, you can
test nearly any device width. It’s a lot harder to test orientation on a desktop computer
monitor. But you can use any media feature you need to create the breakpoints that are
best for your design.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. What is the official definition of media query?

 2. What is the syntax of a media query?

 3. What are five of the media types?

 4. What are five of the media features?

 5. What are two of the logical operators?

 6. How many breakpoints do you need to create a responsive design?

 7. What do best practices suggest as the minimum recommended number of breakpoints?

 8. What is the CSS for a breakpoint that catches devices 400px and smaller?

 9. What is the CSS for a breakpoint to catch all devices between 800 and 1600px wide?

 10. What is the media query to detect Retina devices?

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. According to the W3C, a media query is a “logical expression that is either true or false.

A media query is true if the media type of the media query matches the media type of the
device.”

http://www.informit.com/register

486 LESSON 18: Using Media Queries and Breakpoints

 2. The syntax of a media query looks like this:

@media mediaType and (mediaFeature)

 3. The 10 media types are all, braille, embossed, handheld, print, projection,
screen, speech, tty, and tv.

 4. The 13 media features are aspect-ratio, color, color-index, device-aspect-
ratio, device-height, device-width, grid, height, monochrome, orientation,

resolution, scan, and width.

 5. The four operators are and, comma-separated phrases, not, and only.

 6. A responsive design usually has at least one breakpoint, but it doesn’t have to have any.

 7. Best practices recommend that you have at least two breakpoints to catch small screens,
midsized screens, and large screens.

 8. This is the CSS for a breakpoint to catch all devices 400px and smaller:

@media screen and (max-width:400px) { }

 9. This is the CSS to catch all devices between 800 and 1600px wide:

@media screen and (min-width:800px) and (max-width:1600px) { }

 10. This is the media query to detect Retina devices:

@media (-webkit-min-device-pixel-ratio: 2),(min-resolution: 192dpi) { }

Exercises
 N Start practicing writing CSS media queries. Look at the site you’ve been evaluating

through the book and decide what types of media features you want to focus on for your
styles. For example, decide if you need designs for different widths, different orienta-
tions, or different aspect-ratios. Your analytics program can help with this by giving you
information about what your current customers are using.

 N Review the design of the site you’re currently working on in Responsive Design Mode.
Resize the window to see where the design breaks and decide what breakpoints you
want to use for your design. Then create a CSS style sheet with a media query structure
to support those breakpoints. Don’t forget to add to your style sheet CSS styles that
apply to all devices, regardless of device size.

LESSON 19
Understanding Dynamic Websites

and HTML5 Applications

What You’ll Learn in This Lesson:

 N How to conceptualize different types of dynamic content

 N How to include JavaScript in your HTML

 N How to display randomized text with JavaScript

 N How to change images by using JavaScript and user events

 N How to begin thinking ahead to putting all the pieces together to create HTML5 applications

The term dynamic refers to something active or something that motivates another person to

become active. A dynamic website is one that incorporates interactivity into its functionality and

design and that also motivates a user to take an action—read more, purchase a product, and

so on. In this lesson, you’ll learn about the types of interactivity that can make a site dynamic,

including information about both server-side and client-side scripting (as well as some practical

examples of the latter).

You’ve had a brief introduction to client-side scripting in Lesson 4, “Understanding JavaScript,”

and you used a little of it in Lesson 11, “Using CSS to Do More with Lists, Text, and Navigation,”

when you used event attributes and JavaScript to change the styles of particular elements—which

is referred to as manipulating the Document Object Model (DOM). You’ll do a bit more of that

type of manipulation in this lesson. Specifically, after learning about the different technologies,

you’ll use JavaScript to display a random quote upon page load, and you’ll swap images based

on user interaction. Finally, having learned at least the keywords and the basic concepts involved

in putting together the HTML, CSS, and JavaScript pieces, you’ll be introduced to the possibilities

that exist when you’re creating HTML5 applications.

Understanding the Different Types
of Scripting
In web development, two types of scripting exist: server side and client side. Both types of

 scripting—which is, in fact, a form of computer programming—are beyond the scope of these

 lessons. However, they are not too far beyond what these lessons cover. Two very useful and

488 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

popular books in the Sams Teach Yourself series are natural extensions to these lessons: Sams Teach
Yourself PHP, MySQL, and JavaScript All in One (for server-side scripting) and Sams Teach Yourself
JavaScript in 24 Hours (for client-side scripting).

Server-side scripting refers to scripts that run on the web server, which then sends results to your

web browser. If you have ever submitted a form at a website (which includes using a search

engine), you have experienced the results of a server-side script. Some popular (and relatively

easy-to-learn) server-side scripting languages include the following (to learn more, visit the

 websites listed):

 N Perl—www.perl.org

 N PHP (PHP: Hypertext Preprocessor)—www.php.net

 N Python—www.python.org

 N Ruby—www.ruby-lang.org

On the other hand, client-side scripting refers to scripts that run within your web browser; no

interaction with a web server is required for the scripts to run. By far the most popular client-side

scripting language is JavaScript. Recent research has shown that more than 98% of all web

 browsers have JavaScript enabled. And with the exception of Opera Mini, mobile operating

 systems support between 90% and 98% of all JavaScript features.

NOTE

Despite its name, JavaScript is not a derivation of or even a close relative of the object-oriented
 programming language called Java. Released by Sun Microsystems in 1995, Java is closely related
to the server-side scripting language JSP. JavaScript was created by Netscape Communications,
also in 1995, and given the name to indicate a similarity in appearance to Java but not a direct
 connection with it.

This lesson and of course the rest of these lessons assume the use of JavaScript for client-side

scripting; the coding examples in these lessons are all JavaScript. There are other scripting lan-

guages out there, but they are not used by most web developers.

Including JavaScript in HTML
JavaScript code can live in one of two places in your files:

 N In its own file with a .js extension

 N Directly in your HTML files

http://www.perl.org
http://www.php.net
http://www.python.org
http://www.ruby-lang.org

Including JavaScript in HTML 489

External files are often used for script libraries (code you can reuse throughout many pages),

whereas code that appears directly in the HTML files tends to achieve functionality specific to

those individual pages. Regardless of where your JavaScript lives, your browser learns of its

 existence through the use of the <script></script> tag pair.

When you store your JavaScript in external files, it is referenced in this manner:

<script src="/path/to/script.js"></script>

These <script></script> tags are typically placed between the <head></head> tags

because, strictly speaking, they are not content that belongs in the <body> of the page. Instead,

the <script> tag makes available a set of JavaScript functions or other information that the rest

of the page can then use. However, you can also just encapsulate your JavaScript functions or code

snippets with the <script> tag and place them anywhere in the page, as needed. Listing 19.1

shows an example of a JavaScript snippet placed in the <body> of an HTML document.

NOTE

It is best practice to place scripts at the bottom of your page, just before the close of the <body>
element. This ensures that your pages render without waiting to load the script. However, if you need
the script to write content to the page, you need to write that content to the DOM rather than as
plain HTML in the JavaScript, as otherwise it would just write that content at the end, which is likely
not your intention.

LISTING 19.1 Using JavaScript to Print Some Text

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>JavaScript Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>JavaScript Example</h1>
 <p>This text is HTML.</p>
 <script>
 <!-- Hide the script from old browsers
 document.write('<p>This text comes from JavaScript.</p>');
 // Stop hiding the script -->
 </script>
 <p>And this text is HTML again.</p>
 </body>
</html>

490 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

Between the <script></script> tags is a single JavaScript command that outputs the

 following HTML:

<p>This text comes from JavaScript.</p>

When the browser renders this HTML page, it sees the JavaScript between the <script>
</script> tags, stops for a millisecond to execute the command, and then returns to rendering

the output that now includes the HTML output from the JavaScript command. It then continues

to render the rest of the HTML in the document. Figure 19.1 shows that this page appears as any

other HTML page appears. It’s an HTML page, but only a small part of the HTML comes from

a JavaScript command.

FIGURE 19.1
The output of a JavaScript snippet looks like any other output.

NOTE

You might have noticed these two lines in Listing 19.1:

<!-- Hide the script from old browsers

// Stop hiding the script -->

This is an HTML comment. Anything between the <!-- start and --> end will be visible in the source
code but will not be rendered by the browser. In this case, JavaScript code is surrounded by HTML
comments, on the off chance that your visitor is running a very old web browser or has JavaScript
turned off. These days, nearly all browsers use or ignore JavaScript appropriately, but there’s no harm
in commenting it out for very old browsers or screen readers that do not handle JavaScript at all. You
will learn more about comments in Lesson 28, “Organizing and Managing a Website.”

Displaying Random Content 491

Displaying Random Content
You can use JavaScript to display something different each time a page loads. Maybe you have a

collection of text or images that you find interesting enough to include in your pages.

Lots of people are suckers for a good quote. You might find it fun to incorporate an ever-changing

quote into your web pages. To create a page with a quote that changes each time the page loads,

you must first gather all your quotes, along with their respective sources. You then place these

quotes into a JavaScript array, which is a special type of storage unit in programming languages

that is handy for holding lists of items.

After the quotes are loaded into an array, the JavaScript used to pluck out a quote at random is

fairly simple (and explained momentarily). You’ve already seen the snippet that will print the

 output to your HTML page.

Listing 19.2 contains the complete HTML and JavaScript code for a web page that displays

a random quote each time it loads.

LISTING 19.2 A Random-Quote Web Page

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Quotable Quotes</title>
 <script>
 <!-- Hide the script from old browsers
 function getQuote() {
 // Create the arrays
 quotes = new Array(4);
 sources = new Array(4);

 // Initialize the arrays with quotes
 quotes[0] = "When I was a boy of 14, my father was so " +
 "ignorant...but when I got to be 21, I was astonished " +
 "at how much he had learned in 7 years.";
 sources[0] = "Mark Twain";

 quotes[1] = "Everybody is ignorant. Only on different " +
 "subjects.";
 sources[1] = "Will Rogers";

 quotes[2] = "They say such nice things about people at " +
 "their funerals that it makes me sad that I'm going to " +
 "miss mine by just a few days.";
 sources[2] = "Garrison Keillor";

492 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

 quotes[3] = "What's another word for thesaurus?";
 sources[3] = "Steven Wright";

 // Get a random index into the arrays
 i = Math.floor(Math.random() * quotes.length);

 // Write out the quote as HTML
 document.write("<p style='background-color: #ffb6c1' >\"");
 document.write(quotes[i] + "\"");
 document.write("- " + sources[i] + "");
 document.write("</p>");
 }
 // Stop hiding the script -->
 </script>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Quotable Quotes</h1>
 <p>Following is a random quotable quote. To see a new quote
 just reload this page.</p>

 <script>
 <!-- Hide the script from old browsers
 getQuote();
 // Stop hiding the script -->
 </script>
 </body>
</html>

Although this code looks kind of long, a lot of it consists of just the four quotes available for

 display on the page.

The large number of lines between the first set of <script></script> tags is creating a func-

tion called getQuote(). After a function is defined, it can be called in other places in the same

page, as you see later in the code. Note that if the function existed in an external file, the function

could be called from all your pages.

If you look closely at the code, you will see some lines like this:

// Create the arrays

and this:

// Initialize the arrays with quotes

Displaying Random Content 493

These are code comments. A developer uses these types of comments to leave notes in the code

so that anyone reading it has an idea of what the code is doing in that particular place. After

the first comment about creating the arrays, you can see that two arrays are created—one called

quotes and one called sources, each containing four elements:

quotes = new Array(4);
sources = new Array(4);

After the second comment (about initializing the arrays with quotes), four items are added to the

arrays. Let’s look closely at one of them, the first quote by Mark Twain:

quotes[0] = "When I was a boy of 14, my father was so " +
"ignorant...but when I got to be 21, I was astonished at " +
"how much he had learned in 7 years.";
sources[0] = "Mark Twain";

You already know that the arrays are named quotes and sources. But the variables to which

values are assigned (in this instance) are called quotes[0] and sources[0]. Because quotes

and sources are arrays, each item in the array has its own position. When you’re using arrays, the

first item in the array is not in slot 1; it is in slot 0. In other words, you begin counting at 0 instead

of 1, which is typical in programming. (Just file this away as an interesting and useful note for

the future…or a good trivia answer.) Therefore, the text of the first quote (a value) is assigned to

quotes[0] (a variable). Similarly, the text of the first source is assigned to source[0].

Text strings are enclosed in quotation marks. However, in JavaScript, a line break indicates the

end of a command, so the following would cause problems in the code:

quotes[0] = "When I was a boy of 14, my father was so
ignorant...but when I got to be 21, I was astonished at
how much he had learned in 7 years.";

Therefore, you see that the string is built as a series of strings enclosed in quotation marks, with a

plus sign (+) connecting the strings. (This plus sign is called a concatenation operator.)

The next chunk of code definitely looks the most like programming. This line is generating a ran-

dom number and assigning that value to a variable called i:

i = Math.floor(Math.random() * quotes.length);

But you can’t just pick any random number; the purpose of the random number is to determine

which of the quotes and sources should be printed, and there are only four quotes. So, this line of

JavaScript does the following:

 N Uses Math.random() to get a random number between 0 and 1. For example, 0.5482749

might be a result of Math.random().

494 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

 N Multiplies the random number by the length of the quotes array, which is currently 4;

the length of the array is the number of elements in the array. If the random number is

0.5482749 (as shown previously), multiplying that by 4 results in 2.1930996.

 N Uses Math.floor() to round the result down to the nearest whole number. In other

words, 2.1930996 turns into 2.

 N Assigns the variable i a value of 2 (for example).

The rest of the function should look familiar, with a few exceptions. First, as you learned earlier

this lesson, document.write() is used to write HTML that the browser then renders. Next, the

strings are separated to clearly indicate when something needs to be handled differently, such as

escaping the quotation marks with a backslash when they should be printed literally (\) or when

the value of a variable is substituted. The actual quote and source that are printed are the ones

that match quotes[i] and sources[i], where i is the number determined by the mathemati-

cal functions noted previously.

But the act of simply writing the function doesn’t mean that any output will be created. Further

on in the HTML, you can see getQuote(); between two <script></script> tags; this is how

the function is called. Wherever that function call is made is where the output of the function will

be placed. In this example, the output displays below a paragraph that introduces the quotation.

This is not the best way to write JavaScript, as it is obtrusive and places behavior and interactiv-

ity within the HTML document itself. Later in this lesson, you will learn how to write unobtrusive

JavaScript and how to write this script unobtrusively.

Figure 19.2 shows the Quotable Quotes page as it appears when loaded in a web browser. When

the page reloads, there is a one in four chance that a different quote will display—it is random,

after all!

FIGURE 19.2
The Quotable Quotes page displays a random quote each time it is loaded.

Understanding the Document Object Model 495

Keep in mind that you can easily modify this page to include your own quotes or other text that

you want to display randomly. You can also increase the number of quotes available for display

by adding more entries in the quotes and sources arrays in the code. And, of course, you can

modify the HTML output and style it however you’d like.

If you use the Quotable Quotes page as a starting point, you can easily alter the script and create

your own interesting variation on the idea. And if you make mistakes along the way, so be it. The

trick to getting past mistakes in script code is to be patient and carefully analyze the code you’ve

entered. You can always remove code to simplify a script until you get it working and then add

new code one piece at a time to make sure each piece works.

Understanding the Document Object Model
As you’ve read, client-side interactivity using JavaScript typically takes the form of manipulating

the Document Object Model in some way. The DOM is the invisible structure of all documents; it

is not the HTML structure or the way in which you apply semantic formatting but a sort of overall

framework or container. If this description seems vague, that’s because it is; the DOM is not

a tangible object.

The overall container object is called the document. Any container that you create within the

document to which you’ve given an ID can be referenced by that ID. For example, if you have a

<div> with the ID wrapper, then in the DOM that element is referenced as follows:

document.wrapper

For example, you can change the visibility of a specific element by changing the style object

associated with it. Similarly, if you wanted to access the background-color style of the <div>

with an ID called wrapper (to then do something with it), it would be referred to as follows:

document.wrapper.style.background-color

To change the value of this style to something else, perhaps based on an interactive user event,

use the following to change the color to white:

document.wrapper.style.background-color="#ffffff"

The DOM is the framework to refer to elements and their associated objects. Obviously, this is a

brief overview of something quite complicated, but at least you can now begin to grasp what this

document-dot-something business is all about. To learn a lot more about the DOM, visit the World

Wide Web Consortium’s information about the DOM at www.w3.org/DOM/.

http://www.w3.org/DOM/

496 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

What Is Unobtrusive JavaScript?
Unobtrusive JavaScript is an approach to writing JavaScript scripts. You don’t need to use it to

 create interactive web pages, but best practices recommend that you at least consider it. There

are four general rules to unobtrusive JavaScript, developed by the Web Standards Project:

 N It should be usable—JavaScript should work without being noticed by the user. Customers

should be able to use it without thinking about it.

 N It should be easily degradable—When an unobtrusive script fails, it should not generate

an error message. Instead, it should present the features or silently disappear.

 N Make it accessible—The page should not rely on JavaScript for core functions.

 N Keep it separate from structure and style—JavaScript should be maintained as separate

files from the HTML and CSS.

Many of these rules are reminiscent of the Mobile First approach to web design. By using unobtru-

sive JavaScript, you will ensure that your pages work more effectively on mobile and nonmobile

devices.

Using the DOM to Make a Script Unobtrusive
The script in Listing 19.2 is written in the standard style of JavaScript. Several factors prevent

this script from being unobtrusive. The most prominent is that the script is not separate from the

HTML. The line that reads getQuote(); must be placed right within the HTML where the quote

will be displayed. This means the core functionality of the page—displaying a quotation—is stored

only in the JavaScript. If the script fails or if the browser can’t load the script, the quote won’t be

displayed. It also means that the JavaScript is not separated from the HTML.

To make the Quotable Quotes page unobtrusive, you need to make a few changes. The first

change is to add an HTML element in the document where the quote will be placed:

<blockquote id="quote">All cats are black after midnight.</blockquote>

It doesn’t have to be a <blockquote>, but as it is a quotation, this seems like the most appro-

priate HTML element. Notice that there is text inside the <blockquote> element: “All cats are

black after midnight.” This makes the script unobtrusive because if it can’t run for some reason,

the customer still gets a quotation.

Because the <blockquote> element has an ID (quote), it can be referenced in the JavaScript:

blockquote = document.getElementById("quote");

Understanding the Document Object Model 497

Then you simply update the contents of that tag with the JavaScript innerHTML property:

blockquote.innerHTML = quotes[i];

The last thing you need to do is either move the script to an external JavaScript file or place it as

the last HTML element on the page before the closing </body> tag. Doing so removes the script

from the HTML. Listing 19.3 shows how the entire page looks, including an additional paragraph

for the source of each quote that is to be displayed as well.

LISTING 19.3 The Quotable Quotes Page, Made Unobtrusive

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Quotable Quotes - Unobtrusively</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Quotable Quotes - Unobtrusively</h1>
 <p>Following is a random quotable quote. To see a new quote
 just reload this page.</p>
 <blockquote id="quote">All cats are black after
 midnight.</blockquote>
 <p id="source">Robert A. Heinlein</p>

 <script>
 <!-- Hide the script from old browsers
 function getQuote() {
 // Create the arrays
 quotes = new Array(4);
 sources = new Array(4);

 // get the elements to write to by their ID
 blockquote = document.getElementById("quote");
 source = document.getElementById("source");

 // Initialize the arrays with quotes
 quotes[0] = "When I was a boy of 14, my father was so " +
 "ignorant...but when I got to be 21, I was astonished " +
 "at how much he had learned in 7 years.";
 sources[0] = "Mark Twain";

 quotes[1] = "Everybody is ignorant. Only on different " +
 "subjects.";
 sources[1] = "Will Rogers";

498 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

 quotes[2] = "They say such nice things about people at " +
 "their funerals that it makes me sad that I'm going to " +
 "miss mine by just a few days.";
 sources[2] = "Garrison Keillor";

 quotes[3] = "What's another word for thesaurus?";
 sources[3] = "Steven Wright";

 // Get a random index into the arrays
 i = Math.floor(Math.random() * quotes.length);

 // Write the quote to the DOM
 blockquote.innerHTML = quotes[i];
 source.innerHTML = sources[i];
 }

 getQuote();
 // Stop hiding the script -->
 </script>
 </body>
</html>

The unobtrusive version of this script also removes the styles from the quotation, but you can add

them by using style sheets, just as you would for any other web page.

Changing Images Based on User Interaction
Lesson 4 introduced you to the concept of user interaction events, such as onclick. In that les-

son, you invoked changes in window display based on user interaction; in this section, you’ll see

an example of a visible type of interaction that is both practical and dynamic.

Figure 19.3 shows a page that contains one large image with some text next to it and three

small images farther down the page. If you look closely at the list of small images, you might

notice that the first small image is, in fact, a smaller version of the large image that is dis-

played. This is a common display for a type of small gallery, such as one that you might see in

an online catalog, in which an item has a description and a few alternate views of the product.

Although close-up images of the details of products are important to a potential buyer, using

several large images on a page becomes unwieldy from both display and bandwidth points of

view, so using this type of gallery view is a popular way to display alternative images. We don’t

personally have products to sell, but we do have pictures of big trees that we can use as an

example, as shown in Figure 19.3.

Changing Images Based on User Interaction 499

FIGURE 19.3
An informational page with a main image and alternative images ready to click and view.

The large image on the page is called using this tag:

<img
 id="large_photo"
 style="border: 1px solid black; margin-right: 13px;"
 src="mariposa_large_1.jpg"
 alt="large photo">

The style, src, and alt attributes should all make sense to you at this stage of the game. In

addition, as you can see, this image is given the ID large_photo. Therefore, this image exists

in the DOM as document.images['large_photo'] (an image is referred to by its ID). This is

important because a bit of JavaScript functionality enables you to dynamically change the value

of document.images['large_image'].src, which is the source (src) of the image.

The following code snippet creates the third small image in the group of three images shown at

the bottom of Figure 19.3. The onclick event indicates that when the user clicks on this small

image, the value of document.images['large_image'].src—the large image slot—is filled

with the path to a matching large image:

<a href="#"
 onclick="javascript:document.images['large_photo'].src =
 'mariposa_large_1.jpg'">

500 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

<img
 style="border: 1px solid black; margin-right: 3px;"
 src="mariposa_small_1.jpg"
 alt="photo #1">

Figure 19.4 shows the same page but not reloaded by the user. The slot for the large image is filled

by a different image when the user clicks on one of the other smaller images at the bottom of

the page.

FIGURE 19.4
The large image is replaced when the user clicks on a smaller one.

If you’ve been paying attention, you will realize that this script is not unobtrusive. In fact, the

easiest way to determine if a script is unobtrusive is to see if there is JavaScript inside any HTML

attributes. In this case, the onclick attribute is holding the JavaScript that makes the page work,

and this makes it obtrusive JavaScript.

To make this script unobtrusive, you need to move the JavaScript out of the links and into

a separate script file. There are many ways you could do this, but they are beyond the scope of

this lesson. One good place to learn more about unobtrusive JavaScript is in the book Sams Teach
Yourself JavaScript in 24 Hours.

Summary 501

Thinking Ahead to Developing HTML5
Applications
We’re not going to lie: There’s a pretty big difference between a basic website built with HTML,

CSS, and a little JavaScript and a comprehensive application that uses some of the advanced

features of HTML5 and the latest JavaScript frameworks. But it’s important to your understand-

ing of HTML, the language of the Web, to have some idea of just how far you can extend it—and

it’s pretty far, as it turns out. Beyond basic markup, HTML5 extends to include APIs (application

programming interfaces) for complex applications, beginning with the native integration of audio

and video elements, as you learned in previous lessons, and going all the way to built-in offline

storage mechanisms that allow full-blown applications to be accessed and run (and data stored

on the client side) even without a network connection.

Although HTML5 is incredibly rich, the creation of highly interactive HTML5 websites and appli-

cations—including mobile applications—doesn’t happen in isolation. Interactivity comes when

HTML5 is paired with a client-side language such as JavaScript, which then reaches back into

the server and talks to a server-side language (PHP, Ruby, Python, and so on) through a persis-

tent connection called a web socket. With this connection open and talking to some server-side

code that is (for example) talking to a database or performing some calculation, the browser can

relay a bundle of information that is additionally processed by JavaScript and finally rendered

in HTML5. Be it a video game, a word processing program, or an email or Twitter client, just to

name a few popular types of HTML5 applications, the combination of the advanced features of

HTML5 plus JavaScript—and, specifically, the feature-rich JavaScript libraries such as Angular

(https://angular.io), jQuery (http://jquery.com), and React (https://reactjs.org)—really makes the

opportunities limitless when it comes to application creation. We will go into more detail about

these libraries in Lesson 26, “Using Third-Party JavaScript Libraries and Frameworks.”

The depth of the technologies involved in HTML5 application creation is beyond the scope of

these lessons, but the foundation you should have in standards-compliant HTML5, CSS3, and

JavaScript will serve you well if you begin to think outside the box of a basic website. To learn

more about HTML5 application creation, take a look at my book Sams Teach Yourself HTML5 Mobile
Application Development in 24 Hours for an introduction to some of the core features. Throughout

these lessons, you get a solid foundation in the basics of HTML5. We are confident that, with

 additional instruction, you can take the next step and begin to learn and build basic interactions

in an HTML5 application.

Summary
In this lesson, you learned about the differences between server-side scripting and client-side

scripting, and you learned how to include JavaScript in your HTML files to add a little interactivity

to your websites. You also learned how to use the JavaScript document.write() method to

https://angular.io
http://jquery.com
https://reactjs.org

502 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

display random quotes upon page load. Finally, you learned a bit about the Document Object

Model and how to write unobtrusive scripts.

By applying the knowledge you’ve gained from the preceding lesson, you’ve learned how to use

client-side scripting to make images on a web page respond to mouse movements. Although they

are simple in their construction, these types of interactions are some of the basic JavaScript-based

interactions that form the foundation of web applications. Hopefully this will spur your desire to

learn more about server-side programming so that you can give your websites even more complex

interactive features, including taking a step into the world of creating HTML5 applications.

Q&A
 Q. If I want to use the random-quote script from this lesson, but I want to have a library of a lot

of quotes, do I have to put all the quotes in each page?

 A. Yes. Each item in the array must be there. This is where you can begin to see a bit of a
tipping point between something that can be client side and something that is better dealt
with on the server side. If you have a true library of random quotations and only one is
presented at any given time, it’s probably best to store those items in a database table and
use a little piece of server-side scripting to connect to that database, retrieve the text, and
print it on the page. Alternatively, you can always continue to carry all the quotes with you in
JavaScript, but you should at least put that JavaScript function into a different file that can
be maintained separately from the text. Just be aware that the more quotes you have in the
JavaScript, the longer your page will take to fully load.

 Q. I’ve seen some online catalogs that display a large image in what looks to be a layer on top

of the website content. I can see the regular website content underneath it, but the focus is

on the large image. How is that done?

 A. This sounds like an effect created by a JavaScript library called Lightbox. The Lightbox
library enables you to display an image or a gallery of images in a layer that is placed over
your site content. This is a very popular library for showing the details of large images or
just a set of images deemed important enough to showcase “above” the content. The
library is freely available from its creator, Lokesh Dhakar, at http://lokeshdhakar.com/
projects/lightbox/. To install and use it, follow the instructions included with the software;
you will be able to integrate it into your site using the knowledge you’ve gained in the
lessons so far.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

http://lokeshdhakar.com/projects/lightbox/
http://lokeshdhakar.com/projects/lightbox/

Workshop 503

Quiz
 1. You’ve made a button image and named it button.gif. You’ve also made a simple

GIF animation of the button so that it flashes green and white. You’ve named that GIF
flashing.gif. What HTML and JavaScript code can you use to make the button flash
whenever a user moves the mouse pointer over it and also link to a page named
gohere.html when a user clicks the button?

 a.

<a href="gohere.html"
onclick="javascript:document.images['flasher'].src='flashing.gif'"
onhover="javascript:document.images['flasher'].src='button.gif'">

 b.

<a href="gohere.html"
onmouse="javascript:document.images['flasher'].src='flashing.gif'"
onmouse="javascript:document.images['flasher'].src='button.gif'">

 c.

<a href="gohere.html"
onmouseover="javascript:document.images['flasher'].src='flashing.gif'"
onmouseout="javascript:document.images['flasher'].src='button.gif'">

 d.

<a href="gohere.html"
onover="javascript:document.images['flasher'].src='flashing.gif'"
onout="javascript:document.images['flasher'].src='button.gif'">

 2. How can you modify the code you wrote for Question 1 so that the button flashes when
a user moves the mouse over it and continues flashing even if the user then moves the
mouse away from it?

 a.

<a href="gohere.html"
onmouse="javascript:document.images['flasher'].src='flashing.gif'">

 b.

<a href="gohere.html"
onmouseover="javascript:document.images['flasher'].src='flashing.gif'">

http://gohere.html
http://"gohere.html"
http://"gohere.html"
http://"gohere.html"
http://"gohere.html"
http://"gohere.html"
http://"gohere.html"

504 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

 c.

<a href="gohere.html"
onmouseout="javascript:document.images['flasher'].src='button.gif'">

 d.

<a href="gohere.html"
onover="javascript:document.images['flasher'].src='flashing.gif'">

 3. Is the JavaScript in Questions 1 and 2 unobtrusive? Why or why not?

 a. Yes, it is unobtrusive because it works without any errors.

 b. Yes, it is unobtrusive because it uses valid HTML.

 c. No, it is not unobtrusive because it uses the onmouseover attribute to place the
JavaScript right in the HTML.

 d. No, it is not unobtrusive because it creates a flashing image.

 4. What are two examples of server-side scripting languages?

 a. JavaScript and Python

 b. Perl and ActiveX

 c. Perl and Ruby

 d. JavaScript and ActiveX

 5. How is JavaScript related to Java?

 a. JavaScript is a sub-set of Java.

 b. JavaScript uses Java methods.

 c. JavaScript is a scripting language for Java.

 d. JavaScript is not related to Java.

 6. Where can you store JavaScript?

 a. In the HTML

 b. In a separate file

 c. On a local hard drive

 d. Both A and B

http://"gohere.html"
http://"gohere.html"

Workshop 505

 7. If you use a <script> tag to store your JavaScript, where is it best to place it in order to
create unobtrusive JavaScript?

 a. Right after the <html> tag

 b. Right before the </head> tag

 c. Right after the </head> tag

 d. Right before the </body> tag

 8. What is the JavaScript to generate a random number?

 a. Math.random()

 b. Math.randomNum()

 c. MathRandom()

 d. Rand()

 9. What does the Math.floor() function do?

 a. Rounds the result down to the nearest whole number

 b. Rounds the result down to the smallest number possible

 c. Rounds the result up to the largest number possible

 d. Rounds the result up to the nearest whole number

 10. What does the plus sign mean in the following context?

document.write('This is a text string ' + 'that I have created.');

 a. The plus sign (+) adds two numbers together.

 b. The plus sign (+) adds the value of two strings together to generate a number.

 c. The plus sign (+) joins a string and a number.

 d. The plus sign (+) joins two strings together.

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

http://www.informit.com/register

506 LESSON 19: Understanding Dynamic Websites and HTML5 Applications

Answers
 1. c. Your code might look something like this:

<a href="gohere.html"
onmouseover="javascript:document.images['flasher'].src='flashing.gif'"
onmouseout="javascript:document.images['flasher'].src='button.gif'">

 2. b. Your code might look something like this:

<a href="gohere.html"
onmouseover="javascript:document.images['flasher'].src='flashing.gif'">

 3. c. No, it is not unobtrusive because it uses the onmouseover attribute to place the
JavaScript right in the HTML.

 4. c. Some server-side scripting languages include Python, Ruby, PHP, and Perl.

 5. d. JavaScript is not related to Java. It has a similar name, but that is the only relationship.

 6. d. JavaScript can be stored in a separate file with a .js extension or directly in the HTML
in the <script> tag.

 7. d. To create unobtrusive JavaScript, you should place all <script> tags as close to
the bottom of your document as possible. If you cannot place them directly before the
</body> tag, then placing them last in the <head></head> element is acceptable as well.

 8. a. Math.random() is the JavaScript function used to generate a random number.

 9. a. The Math.floor() function rounds the result down to the nearest whole number.

 10. d. The plus sign (+) joins two strings together.

Exercises
 N Do you have any pages that would look flashier or be easier to understand if the

navigation icons or other images changed when the mouse passed over them? If so, try
creating some highlighted versions of the images and try modifying your own page by
using the information presented in this lesson.

 N You can display random images—such as graphical banners or advertisements—in the
same way you learned to display random content using JavaScript earlier in this lesson.
Instead of printing text, just print the tag for the images you want to display.

http://"gohere.html"
http://"gohere.html"

LESSON 20
Getting Started with JavaScript

Programming

What You’ll Learn in This Lesson:

 N How and why to organize scripts using functions

 N What objects are and how JavaScript uses them

 N How JavaScript can respond to events

 N How and when to use conditional statements and loops

 N How browsers execute scripts in the proper order

 N Basic syntax rules for avoiding JavaScript errors

 N What JSON is and how it can be used

The preceding lesson reminded you of some of the basic uses of JavaScript and how to include

JavaScript in your HTML documents. In this lesson, you’ll learn a few more basic JavaScript con-

cepts and script components that you’ll use in just about every bit of JavaScript script you write. In

addition, you’ll learn about JSON (JavaScript Object Notation), which provides a simple structured

way to store information that can be used on the client side. Understanding these components

will prepare you for the remaining lessons, in which you’ll explore specific JavaScript functions

and features in greater depth.

Basic Concepts
There are a few basic concepts and terms you’ll run into throughout these lessons. In the follow-

ing sections, you’ll learn about the basic building blocks of JavaScript.

Statements
Statements are the basic units of a JavaScript program. A statement is a section of code that

 performs a single action. For example, the following four statements are from the date and time

example in Lesson 4, “Understanding JavaScript”:

now = new Date();
hours = now.getHours();

508 LESSON 20: Getting Started with JavaScript Programming

mins = now.getMinutes();
secs = now.getSeconds();

These statements create a new Date object and then assign the values for the current hour,

 minutes, and seconds into variables called hours, mins, and secs, respectively. You can then

use these variables in your JavaScript code.

Although a statement is typically a single line of JavaScript, it is not a rule that it has to be. It’s

possible (and fairly common) to break a statement across multiple lines or to include more than

one statement in a single line.

A semicolon marks the end of a statement, but you can also omit the semicolon if you start a new

line after the statement—if that is your coding style. For example, these are three valid JavaScript

statements:

hours = now.getHours()
mins = now.getMinutes()
secs = now.getSeconds()

CAUTION

While omitting the semicolon is valid, many JavaScript errors are caused by missing semicolons. It’s
best to get in the habit of always using semicolons at the end of statements to reduce errors.

However, if you combine statements into a single line, you must use semicolons to separate them.

For example, the following line is valid:

hours = now.getHours(); mins = now.getMinutes(); secs = now.getSeconds();

This line is invalid:

hours = now.getHours() mins = now.getMinutes() secs = now.getSeconds();

Combining Tasks with Functions
A function is a number of JavaScript statements that are treated as a single unit. A statement that

uses a function is referred to as a function call. For example, you might create a function called

alertMe, which produces an alert when called, like so:

function alertMe() {
 alert("I am alerting you!");
}

When this function is called, a JavaScript alert pops up, and the text “I am alerting you” is

 displayed in a box, as shown in Figure 20.1.

Basic Concepts 509

FIGURE 20.1
An alert box on a web page.

A function can take a parameter—an expression inside the parentheses—that tells the function

what to do. In addition, a function can return a value to a waiting variable. For example, the

 following function call prompts the user for a response and stores it in the text variable:

text = prompt("Enter some text.")

Creating your own functions is useful for two main reasons. First, you can separate logical

 portions of your script to make it easier to understand. Second, and more importantly, you can

use the function several times or with different data to avoid repeating script statements.

Variables
If you recall the basic introduction to JavaScript in Lesson 4, you’ll remember that a variable is a

container that can store a number, a string of text, or another value. For example, the following

statement creates a variable called fred and assigns it the value 27:

var fred = 27;

JavaScript variables can contain numbers, text strings, and other values. You’ll learn more about

variables in much greater detail in Lesson 22, “Using JavaScript Variables, Strings, and Arrays.”

510 LESSON 20: Getting Started with JavaScript Programming

Understanding Objects
JavaScript also supports objects. Like variables, objects can store data—but they can store two

or more pieces of data at once. As you’ll learn throughout the JavaScript-specific lessons in this

course, using built-in objects and their methods is fundamental to JavaScript; it’s one of the ways

the language works, by providing a predetermined set of actions you can perform. For example,

with the document.write functionality you saw in Lesson 19, “Understanding Dynamic

Websites and HTML5 Applications,” you can use the write method of the document object to

output text to the browser for eventual rendering.

The data stored in an object are called the properties of the object. For example, you could use

objects to store information about people in an address book. The properties of each person object

might include a name, an address, and a telephone number.

You should become intimately familiar with object-related syntax because you will see objects

quite a lot, even if you don’t build your own. You’ll definitely find yourself using built-in objects,

and objects will very likely form a large part of any JavaScript libraries you import for use.

JavaScript uses periods to separate object names and property names. For example, for a person

object called Bob, the properties might include Bob.address and Bob.phone.

Objects can also include methods. A method is a function that works with an object’s data. For

example, our person object for the address book might include a display() method to display

the person’s information. In JavaScript terminology, the statement Bob.display() would dis-

play Bob’s details.

Don’t worry if this sounds confusing. You’ll be exploring objects in much more detail later in these

lessons. For now, you just need to know the basics. JavaScript supports three kinds of objects:

 N Built-in objects—These objects are built in to the JavaScript language. You’ve already

encountered one of these, Date, in Lesson 4. Other built-in objects include Array and

String, which you’ll explore in Lesson 22; Math, which is also explained in Lesson 22;

Boolean; Number; and RegExp.

 N DOM (Document Object Model) objects—These objects represent various components of

the browser and the current HTML document. For example, the alert() function you used

earlier in this lesson is actually a method of the window object. You’ll explore these in more

detail in Lesson 21, “Working with the Document Object Model (DOM).”

 N Custom objects—These are objects you create yourself. For example, you could create a

person object, as mentioned earlier in this section.

Basic Concepts 511

Conditionals
Although you can use event handlers to notify your script (and potentially the user) when

 something happens, you might need to check certain conditions yourself as your script runs. For

example, you might want to validate on your own that a user entered a valid email address in

a web form.

JavaScript supports conditional statements, which enable you to answer questions. A typical

 conditional uses the if statement, as in this example:

if (count == 1) {
 alert("The countdown has reached 1.");
}

This compares the variable count with the constant 1 and displays an alert message to the user

if they are the same. It is quite likely you will use one or more conditional statements in most of

your scripts, and therefore an entire lesson is devoted to this concept: Lesson 23, “Controlling Flow

with Conditions and Loops.”

Loops
Another useful feature of JavaScript—and most other programming languages—is the capability

to create loops, or groups of statements that repeat a certain number of times. For example, these

statements display the same alert 10 times, greatly annoying the user:

for (i=1; i<=10; i++) {
 alert("Yes, it's yet another alert!");
}

The for statement is one of several statements JavaScript uses for loops. Computers are good at

performing repetitive tasks like looping. You will use loops in many of your scripts, in much more

useful ways than this example, as you’ll see in Lesson 23.

Event Handlers
As mentioned in Lesson 4, not all scripts are located within <script> tags. You can also use

scripts as event handlers. Although this might sound like a complex programming term, it actually

means exactly what it says: Event handlers are scripts that handle events. You learned a little

bit about events in Lesson 19 but not to the extent you’ll read about them in this lesson or in

Lesson 24, “Responding to Events and Using Windows.”

In real life, an event is something that happens to you. For example, the things you write on your

calendar are events, such as Dentist appointment or Fred’s birthday. You also encounter unscheduled

events in your life, such as a traffic ticket, an IRS audit, or an unexpected gift from relatives.

512 LESSON 20: Getting Started with JavaScript Programming

Whether events are scheduled or unscheduled, you probably have normal ways of handling them.

Your event handlers might include things such as When Fred’s birthday arrives, send him a present or

When relatives visit unexpectedly, turn out the lights and pretend nobody is home.

Event handlers in JavaScript are similar: They tell the browser what to do when a certain event

occurs. The events JavaScript deals with aren’t as exciting as the ones you deal with; they include

such events as When the mouse button is pressed and When this page is finished loading. Nevertheless,

they’re a very useful part of JavaScript.

Many JavaScript events (such as mouse clicks, which you’ve seen previously) are caused by the

user. Rather than doing things in a set order, your script can respond to the user’s actions. Other

events don’t involve the user directly; for example, an event can be triggered when an HTML

document finishes loading.

Each event handler is associated with a particular browser object, and you can specify the event

handler in the tag that defines the object. For example, images and text links have an event,

onmouseover, that happens when the mouse pointer moves over the object. Here is a typical

HTML image tag with an event handler:

You specify the event handler as an attribute within the HTML tag and include the JavaScript

statement to handle the event within the quotation marks. This is an ideal use for functions

because function names are short and to the point and can refer to a whole series of statements.

Using an event handler within HTML is fairly easy. Listing 20.1 shows an HTML document that

includes a simple event handler.

LISTING 20.1 An HTML Document with a Simple Event Handler

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Event Handler Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Event Handler Example</h1>
 <div>
 <a href="http://www.google.com/"
 onclick="alert('A-ha! An Event!');">Go to Google
 </div>
 </body>
</html>

Basic Concepts 513

The event handler is defined with the following onclick attribute within the <a> tag that

defines a link:

onclick="alert('Aha! An Event!');"

This event handler uses the DOM’s built-in alert method of the window object to display

a message when you click on the link; after you click OK to dismiss the alert, your browser

continues on to the URL. In more complex scripts, you usually define your own functions to act

as event handlers. Figure 20.2 shows an example of this in action.

FIGURE 20.2
The browser displays an alert when you click the link.

You’ll use other event handlers throughout these lessons, especially in Lesson 24.

NOTE

After you click the OK button to dismiss the alert, the browser follows the link defined in the <a>
tag. Your event handler could also stop the browser from following the link, as you will learn in
Lesson 24.

As mentioned in earlier lessons, using an attribute on the HTML tag is not unobtrusive. You’ll

learn how to make event handlers unobtrusively in later lessons.

Which Script Runs First?
You are not limited to a single script within a web document: One or more sets of <script>

tags, external JavaScript files, and any number of event handlers can be used within a single

 document. With all these scripts, you might wonder how the browser knows which to execute

first. Fortunately, this is done in a logical fashion:

514 LESSON 20: Getting Started with JavaScript Programming

 N Sets of <script> tags within the <head> element of an HTML document are handled first

(in the order in which they are written in the HTML), whether they include embedded code

or refer to a JavaScript file. Because scripts in the <head> element will not create output in

the web page, many designers use scripts placed here to define functions for use later.

 N Sets of <script> tags within the <body> section of the HTML document are executed after

those in the <head> section, while the web page loads and displays. If there are two or

more scripts, they are executed in the order in which they are written in the HTML.

 N Event handlers are executed when their events happen. For example, the onload event

handler is executed when the body of a web page loads. Because the <head> section is

loaded before any events, you can define functions there and use them in event handlers.

It’s important to know that every time the browser encounters a <script> tag, it stops concur-

rent downloading to download and parse just that script. All other HTML tags and elements are

threaded, which means browsers can download several at a time. This is why it’s important to

have as few <script> tags in your document as possible, and, whenever possible, to load them

last in the HTML. Taking these steps helps ensure that everything else on the page loads before

the scripts do and thus makes your pages faster.

JavaScript Syntax Rules
JavaScript is a simple language, but you do need to be careful to use its syntax—the rules that

define how you use the language—correctly. The rest of these lessons cover many aspects of

JavaScript syntax, and this lesson discusses a few basic rules that will help you throughout these

lessons as well as when you are working on your own.

Case Sensitivity
Almost everything in JavaScript is case sensitive, which means you cannot use lowercase and

 capital letters interchangeably. Here are a few general rules:

 N JavaScript keywords, such as for and if, are always lowercase.

 N Built-in objects, such as Math and Date, are capitalized.

 N DOM object names are usually lowercase, but their methods are often a combination of

uppercase and lowercase—sometimes called camel case. Usually uppercase letters are used

to start all words except for the first one, as in setAttribute and getElementById.

When in doubt, follow the exact case used in these lessons or another JavaScript reference. If you

use the wrong case, the browser will usually display an error message.

Using Comments 515

Variable, Object, and Function Names
When you define your own variables, objects, or functions, you can choose their names. Names

can include uppercase letters, lowercase letters, numbers, and the underscore (_) character.

Names must begin with a letter or an underscore.

You can choose whether to use uppercase or lowercase in your variable names, but remember that

JavaScript is case sensitive, so, for example, score, Score, and SCORE would be considered three

different variables. Be sure to use the same name each time you refer to a variable.

Reserved Words
One more rule applies to variable names: They must not be reserved words. These include the

words that make up the JavaScript language, such as if and for, DOM object names such as

window and document, and built-in object names such as Math and Date.

For a list of JavaScript reserved words, see https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Lexical_grammar#Keywords.

Spacing
JavaScript ignores blank space (which programmers call whitespace). You can include spaces and

tabs within a line, or blank lines, without causing an error. Blank space often makes a script more

readable, so do not hesitate to use it.

Using Comments
JavaScript comments enable you to include documentation within your script. Brief documentation

is useful if someone else needs to understand the script, or even if you try to understand it when

returning to your code after a long break. To include comments in a JavaScript program, begin a

line with two slashes, as in this example:

//this is a comment.

You can also begin a comment with two slashes in the middle of a line, which is useful for docu-

menting a script. In this case, everything on the line after the slashes is treated as a comment,

which the browser ignores. For example, the following line is a valid JavaScript statement followed

by a comment explaining what is going on in the code:

a = a + 1; // add 1 to the value of the variable a

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords

516 LESSON 20: Getting Started with JavaScript Programming

JavaScript also supports C-style comments (also used in PHP), which begin with /* and end

with */. These comments can extend across more than one line, as the following example

 demonstrates:

/* This script includes a variety
of features, including this comment. */

Because JavaScript statements within a comment are ignored, this type of comment is often used

for commenting out sections of code. If you have some lines of JavaScript that you want to tempo-

rarily take out of the script while you debug it, you can add /* at the beginning of the section

and */ at the end.

CAUTION

Because these comments are part of JavaScript syntax, they are valid only inside <script>
tags or within an external JavaScript file. If you try to use them in an HTML document outside the
<script> tags, the strings will be rendered by the browser.

Best Practices for JavaScript
Now that you’ve learned some of the very basic rules for writing valid JavaScript, it’s also a good

idea to follow a few best practices. The following practices are not required, but you’ll save yourself

and others headaches if you begin to integrate them into your development process:

 N Use comments liberally—Comments make your code easier for others to understand and

also easier for you to understand when you edit it later. They are also useful for marking the

major divisions of a script.

 N Use a semicolon at the end of each statement and use only one statement per line—

Although you learned in this lesson that you do not have to end each statement with a

semicolon (if you use a new line), using semicolons and only one statement per line will

make your scripts easier to read and also easier to debug.

 N Use external JavaScript files whenever possible—Separating JavaScript into external files

helps pages load more quickly and also encourages you to write modular scripts that can be

reused.

 N Avoid being browser specific—As you learn more about JavaScript, you’ll learn some fea-

tures that work in only one browser. Avoid such features unless absolutely necessary, and

always test your code in more than one browser to ensure that everything works.

 N Keep JavaScript optional—Don’t use JavaScript to perform an essential function on your

site (for example, for the primary navigation links). Whenever possible, users without

JavaScript should be able to use your site, although it might not be quite as attractive or

convenient without the JavaScript. This strategy is known as progressive enhancement.

Understanding JSON 517

There are many more best practices involving more advanced aspects of JavaScript. You’ll learn

about them not only as you progress through the lessons but also over time as you work with

JavaScript and as you collaborate with others on web development projects.

Understanding JSON
Although JSON, or JavaScript Object Notation, is not a part of the core JavaScript language,

using it is in fact a common way to structure and store information either used by or created by

JavaScript-based functionality on the client side. Now is a good time to familiarize yourself with

JSON (pronounced “Jason”) and some of its uses.

NOTE

JSON formalizes the idea of encoding data in JavaScript. See www.json.org for details and code
examples in many languages.

JSON-encoded data is expressed as a sequence of parameter and value pairs, with a colon

separating each parameter and its value. These "parameter":"value" pairs are separated by

commas:

"param1":"value1", "param2":"value2", "param3":"value3"

Finally, the whole sequence is enclosed in curly braces to form a JSON object. The following

 example creates a variable called yourJSONObject:

var yourJSONObject = {
 "param1":"value1",
 "param2":"value2",
 "param3":"value3"
};

JSON objects can have properties and methods accessed directly using the usual dot notation, as

shown here:

alert(yourJSONObject.param1); // alerts 'value1'

More generally, though, JSON has a general-purpose syntax for exchanging data in a string

 format. It is easy to convert a JSON object into a string through a process known as serialization;

serialized data is convenient for storage or transmission around networks.

One of the most common uses of JSON these days is as a data interchange format used by appli-

cation programming interfaces (APIs) and other data feeds that are consumed by a front-end

http://www.json.org

518 LESSON 20: Getting Started with JavaScript Programming

application that uses JavaScript to parse the data. This increased use of JSON in place of other

data formats such as XML has come about for several reasons:

 N JSON is easy to read—for both people and computers.

 N JSON is simple in concept. A JSON object is nothing more than a series of

"parameter":"value" pairs enclosed by curly braces.

 N JSON is largely self-documenting.

 N You can create and parse JSON quickly.

 N JSON is a subset of JavaScript, which means no special interpreters or other additional

 packages are necessary.

Summary
In this lesson, you learned about several components of JavaScript programming and syntax, such

as functions, objects, event handlers, conditions, and loops. You also learned how to use JavaScript

comments to make your script easier to read and looked at a simple example of an event handler.

Finally, you were introduced to JSON, a data interchange format that is commonly used by

JavaScript-based applications.

Q&A
 Q. I’ve heard the term object-oriented applied to languages such as C++ and Java. If JavaScript

supports objects, is it an object-oriented language?

 A. Yes, although it might not fit some people’s strict definition of object-oriented. JavaScript
objects do not support all the features that languages such as C++ and Java support,
although the latest versions of JavaScript have added more object-oriented features.

 Q. Having several scripts that execute at different times seems confusing. Why would I want to

use event handlers?

 A. Using event handlers is the ideal way (and, in JavaScript, the only way) to handle advanced
interactions within a web page, such as using buttons, check boxes, and text fields in ways
beyond simply completing a form and sending it to a recipient. Rather than write a script
that sits and waits for a button to be pushed, you can create an event handler and let the
browser do the waiting for you, while allowing the user to continue viewing elements and
text on the page.

Workshop 519

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of
the material covered. Try to answer all questions before looking at the “Answers” section that
follows.

Quiz
 1. A script that executes when the user clicks the mouse button is an example of what?

 a. An object

 b. An event handler

 c. An impossibility

 d. A method

 2. Which of the following can a JavaScript function do?

 a. Accept parameters

 b. Return a value

 c. Write data to disk

 d. Both A and B

 3. Which of the following is executed first by a browser?

 a. A script in the <head> section

 b. A script in the <body> section

 c. An event handler for a button

 d. A click on a link

 4. How many lines make up a valid JavaScript statement?

 a. One

 b. Two

 c. Three

 d. As many as you need

 5. How do you separate statements in a script?

 a. A space

 b. A newline

 c. A semicolon

 d. Both B and C

520 LESSON 20: Getting Started with JavaScript Programming

 6. How would you write a statement that defines a variable called myVariable and assigns it
the value 27?

 a. myVariable 27;

 b. var myVariable 27;

 c. var myVariable = 27;

 d. var myVariable == 27;

 7. When would a script tied to an onmouseover attribute run?

 a. When the user clicks the element

 b. When the user taps the element on a touch device

 c. When the mouse hovers over the element

 d. When the mouse leaves the page

 8. Is var Date = "today"; a valid variable statement? Why or why not?

 a. It is not valid because “today” is a string, not a date object.

 b. It is not valid because Date is a built-in object and therefore cannot be used as
a variable name.

 c. It is not valid because you assign variables without any operator (=).

 d. It is a valid statement.

 9. What are two ways to write JavaScript comments?

 a. Use // for single-line comments and /* */ for multi-line comments.

 b. Use ## for single-line comments and // // for multi-line comments.

 c. Use ; for single-line comments and /* */ for multi-line comments.

 d. Use // for single-line comments and && && for multi-line comments.

 10. How would you write a JSON variable with two parameter/value pairs?

 a.

var myObject = {
 "param1" "value1",
 "param2" "value2"
};

 b.

var myObject = (
 "param1":"value1",
 "param2":"value2"
);

Workshop 521

 c.

var myObject = {
 "param1":"value1",
 "param2":"value2"
};

 d.

var myObject = (
 "param1" "value1",
 "param2" "value2"
);

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. b. A script that executes when the user clicks the mouse button is an event handler.

 2. d. Functions can both accept parameters and return values.

 3. a. Scripts defined in the <head> section of an HTML document are executed first by the
browser.

 4. a. A statement is just one line of JavaScript code that performs a single action.

 5. d. Statements can be separated by a newline character, but it’s better to use a semicolon
to separate statements.

 6. c. The statement is var myVariable = 27;.

 7. c. It would run whenever the user hovers over the element with a mouse pointer.

 8. b. It is not valid because Date is a built-in object and therefore cannot be used as a
 variable name.

 9. a. You can use // for single-line comments and /* */ for multi-line comments.

 10. c. You would write it like this:

var myObject = {
 "param1":"value1",
 "param2":"value2"
};

http://www.informit.com/register

522 LESSON 20: Getting Started with JavaScript Programming

Exercises
 N Examine the date and time script you created in Lesson 4, looking for examples of

 methods and objects used there.

 N Add JavaScript comments to the date and time script to make it more clear what each
line does. Verify that the script still runs properly.

LESSON 21
Working with the

Document Object Model (DOM)

What You’ll Learn in This Lesson:

 N How the W3C DOM standard makes dynamic pages easier to control

 N The basics of the standard DOM objects: window, document, history, and location

 N How to work with DOM nodes, parents, children, and siblings

 N How to access and use the properties of DOM nodes

 N How to access and use DOM node methods

 N How to control element positioning with JavaScript

 N How to hide and show elements with JavaScript

 N How to use JavaScript to add and modify text within a page

The preceding lesson introduced you to the basic concepts of programming in JavaScript;

this lesson will help you better understand the Document Object Model (DOM), which is the

 structured framework of a document within a web browser. When using JavaScript objects,

 methods, and other functionality (in addition to basic HTML), controlling the DOM enables you to

develop rich user experiences.

Understanding the Document Object Model
One advantage of JavaScript over plain HTML is that client-side JavaScript scripts can manipulate

the web browser and documents (including their contents) right in the browser after the content

has been loaded. Your script can load a new page into the browser, work with parts of the browser

window and the loaded document, open new windows, and even modify text within the page—all

dynamically, without requiring additional requests to a server.

To work with the browser and documents, JavaScript uses the hierarchy of parent and child

objects found within the DOM. These objects, which are organized into a treelike structure,

 represent all the content and components of a web document and the browser that renders it.

524 LESSON 21: Working with the Document Object Model (DOM)

NOTE

The DOM is not part of JavaScript or any other programming language. Rather, it’s an application
programming interface (API) built into the browser.

The objects in the DOM have properties that describe the web browser or document, and methods,

or built-in code that enables you to work with parts of the web browser or document. You’ll

learn more about these properties and methods and you will practice referencing or using them

throughout this lesson.

You’ve seen DOM object notation already in these lessons, even if it wasn’t called out as such.

When you refer to a DOM object, you use the parent object name followed by the child object

name or names, separated by periods. For example, if you need to refer to a specific image loaded

in your web browser, these are child objects of the document object. But that document object,

in turn, is a child of the DOM’s window object. So, to reference an image called logo_image, the

DOM object notation would look like this:

window.document.logo_image

Using window Objects
At the top of the browser object hierarchy is the window object, which represents a browser win-

dow. You’ve already used at least one method of the window object, alert, which displays a

message in an alert box.

A user might have several windows open at a time, each with its own distinct window object,

since different documents will presumably be loaded in each window. Even if the same document

is loaded into two or more windows, they are considered distinct window objects because they are

in fact distinct instances of the browser. However, when referencing window.document (or just

document) in your JavaScript, the reference is interpreted to be the window currently in focus—

the one actively being used. You’ll learn more about windows, including how to reference out-of-

focus windows, in Lesson 24, “Responding to Events and Using Windows.”

The window object is the parent object for all the objects we will be looking at in this lesson.

Figure 21.1 shows the window section of the DOM object hierarchy and a variety of its objects.

window

document location history navigator

FIGURE 21.1
The window section of the DOM object hierarchy and some of its children.

525Working with the document Object

Working with the document Object
Just as it sounds like it would, the document object represents a web document. Web documents

are displayed within browser windows, so it shouldn’t surprise you to learn that the document

object is a child of the window object. Because the window object always represents the current

window, as you learned in the preceding section, you can use window.document to refer to

the current document. You can also simply refer to document, which automatically refers to the

 current window.

NOTE

In previous lessons, you’ve already used the document.write method to display text within
a web document. The examples in earlier lessons used only a single window and document, so it
was unnecessary to use window.document.write, but this longer syntax would have worked
equally well.

In the following sections, you will look at some of the properties and methods of the document

object that will be useful in your scripting.

Getting Information About a Document
Several properties of the document object include information about the current document in

general:

 N document.URL—Specifies the document’s URL. You (or your code) cannot change the value

of this property.

 N document.title—Refers to the title of the current page, defined by the HTML <title>

tag. You can change the value of this property.

 N document.referrer—Returns the URL of the page the user was viewing before the cur-

rent page—usually the page with a link to the current page. As with document.URL, you

cannot change the value of document.referrer. Note that document.referrer will be

blank if a user has directly accessed a given URL directly.

 N document.lastModified—Indicates the date the document was last modified. This date

is sent from the server along with the page.

 N document.cookie—Enables you to read or set a cookie used within the document.

 N document.images—Returns a collection of images used in the document.

As an example of a document property, Listing 21.1 shows a short HTML document that displays

its last modified date using JavaScript.

526 LESSON 21: Working with the Document Object Model (DOM)

LISTING 21.1 Displaying the Last Modified Date

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying the Last Modified Date</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Displaying the Last Modified Date</h1>
 <p>This page was last modified on:
 <script>
 document.write(document.lastModified);
 </script>
 </p>
 </body>
</html>

Figure 21.2 shows the output of Listing 21.1.

FIGURE 21.2
Viewing the last modified date of a document.

If you use JavaScript to display the value of this document property, you don’t have to remember

to update the date each time you modify the page, should you choose to expose this information

to the user. (You could also use the script to always print the current date instead of the last

 modified date, but that would be cheating.)

NOTE

You might find that the document.lastModified property doesn’t work on your web pages or
that it returns the wrong value. The date is received from the web server, and some servers do not
maintain modification dates correctly.

527Working with the document Object

Writing Text in a Document
The simplest document object methods are also the ones you use most often. In fact, you’ve used

one of them already in the lessons so far, in very basic examples. The document.write method

prints text as part of the HTML in a document window. An alternative statement, document.
writeln, also prints text, but it also includes a newline (\n) character at the end. This is handy

when you want your text to be the last thing on the line in your source code.

CAUTION

Bear in mind that the browser displays the newline character as a space but doesn’t display it on
the visible page, except inside a <pre> container. You need to use the
 tag if you want an
actual line break to be shown in the browser.

You can use these methods only within the body of the web page; you can’t use these methods

to add to a page that has already loaded unless you reload it. You can write new content for a

 document, however, as the next section explains.

NOTE

You can also directly modify the text of a web page by using more advanced features of the DOM, as
you’ll learn later in this lesson.

The document.write method can be used within a <script> tag in the body of an HTML

document. You can also use it in a function, provided that you include a call to the function

within the body of the document, as shown in Listing 21.1.

Using Links and Anchors
Another child of the document object is the link object. There can be, and very likely are,

 multiple link objects in a document. Each link object includes information about a link to

another location or to an anchor.

You can access link objects through the links array. Each member of the array is one of the

link objects in the current page. A property of the links array, document.links.length,

 indicates the number of links in the page. You might use the document.links.length

property in a script to first determine how many links there are, before performing additional

tasks such as dynamically changing the display on a certain number of links.

Each link object (or member of the links array) has a list of properties defining the URL that

is ultimately stored in the object. The href property contains the entire URL, and other proper-

ties define other, smaller, portions of it. The link object uses the same property names as the

 location object, defined later in this lesson, so after you commit one set to memory, you will

also know the other set.

528 LESSON 21: Working with the Document Object Model (DOM)

You can refer to a property by indicating the link number, or position within the array, and prop-

erty name. For example, the following statement assigns the entire URL of the first link stored in

the array to the variable link1:

var link1 = links[0].href;

The anchor objects are also children of the document object. Each anchor object represents an

anchor in the current document—a particular location that can be jumped to directly.

As with links, you can access anchors by using an array. For example, with an array called

anchors, each element of the array is an anchor object. The document.anchors.length

 property gives you the number of elements in the anchors array. An example of using the

anchors array to your advantage would be to use JavaScript to loop through all the anchors on a

given page to dynamically generate a table of contents at the top of the page.

Accessing Browser History
The history object is another child (property) of the window object. This object holds

 information about the locations (URLs) that have been visited before and after the current one,

and it includes methods to go to previous or next locations.

The history object has one property you can access:

 N history.length—Keeps track of the length of the history list—in other words, the num-

ber of different locations the user has visited.

The history object has three methods you can use to move through the history list:

 N history.go—Opens a URL from the history list. To use this method, specify a positive or

negative number in parentheses. For example, history.go(−2) is equivalent to clicking

the Back button twice.

 N history.back—Loads the preceding URL in the history list. This is equivalent to clicking

the Back button or using history.go(−1).

 N history.forward—Loads the next URL in the history list, if available. This is equivalent

to clicking the Forward button or using history.go(1).

You can use the back and forward methods of the history object to add your own

Back and Forward buttons to a web document. The browser already has Back and Forward

buttons, of course, but sometimes it is useful to include your own links that serve the same

purpose.

Accessing Browser History 529

Suppose you want to create a script that displays Back and Forward buttons and then use these

methods to navigate the browser. Here’s the code to create the Back button:

<button type="button" onclick="history.back();">Go Back</button>

In the preceding snippet, the <button> element defines a button labeled Go Back. The onclick

event handler uses the history.back method to go to the preceding page in the browser’s his-

tory. The code for a Go Forward button is similar:

<button type="button" onclick="history.forward();">Go Forward</button>

Let’s take a look at these buttons in the context of a complete web page. Listing 21.2 shows a

complete HTML document, and Figure 21.3 shows a browser’s display of this document. After you

load this document into a browser, visit other URLs and make sure the Go Back and Go Forward

buttons work as expected.

LISTING 21.2 A Web Page That Uses JavaScript to Include Back and

Forward Buttons

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Using Custom Go Back and Go Forward Buttons</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Using Custom Go Back and Go Forward Buttons</h1>
 <p>Buttons on this page allow you to go back or forward in
 your history list.</p>
 <p>These buttons should be the equivalent of the back
 and forward arrow buttons in your browser's toolbar.</p>
 <div>
 <button type="button"
 onclick="history.back();">Go Back</button>
 <button type="button"
 onclick="history.forward();">Go Forward</button>
 </div>
 </body>
</html>

530 LESSON 21: Working with the Document Object Model (DOM)

FIGURE 21.3
Showing custom Go Back and Go Forward buttons.

Working with the location Object
Another child of the window object is the location object. This object stores information about

the URL currently loaded in the browser window. For example, the following JavaScript statement

loads a URL into the current window by assigning a value to the href property of this object:

window.location.href="http://www.google.com";

The href property contains the entire URL of the window’s current location. Using JavaScript, you

can access portions of the URL through various properties of the location object. To understand

these properties a bit better, consider the following URL:

https://www.google.com:443/search?q=javascript

The following properties represent parts of this URL:

 N location.protocol—The protocol part of the URL (http in this example)

 N location.hostname—The hostname of the URL (www.google.com in this example)

 N location.port—The port number of the URL (443 in this example)

 N location.pathname—The filename part of the URL (search in this example)

 N location.search—The query portion of the URL, if any (q=javascript in this example)

The following properties can also be used, though they aren’t in this example:

 N location.host—The hostname of the URL plus the port number (for example,

www.google.com:443)

https://www.google.com:443/search?q=javascript
http://www.google.com

More About the DOM Structure 531

 N location.hash—The anchor name used in the URL, if any (for example,

www.google.com/#home)

The link object, introduced earlier in this lesson, also uses this list of properties for accessing por-

tions of the URL found in the link object.

CAUTION

Although the location.href property usually contains the same URL as the document.URL
property described earlier in this lesson. But you can’t change the document.URL property. Always
use location.href to load a new page in a given window.

The location object has three methods:

 N location.assign—Loads a new document when used as follows:

location.assign("https://www.google.com")

 N location.reload—Reloads the current document. This is the same as using the Reload

button on the browser’s toolbar. If you optionally include the true parameter when calling

this method, the script ignores the browser’s cache and forces a reload, whether the docu-

ment has changed or not.

 N location.replace—Replaces the current location with a new one. This is similar to set-

ting the location object’s properties yourself. The difference is that the replace method

does not affect the browser’s history. In other words, the Back button can’t be used to go to

the preceding location. This is useful for splash screens or temporary pages that it would be

useless to return to. Remember that most people expect to be able to use the back button, so

you should use the location.replace method sparingly.

More About the DOM Structure
Previously in this lesson, you learned how some of the most important DOM objects are orga-

nized: The window object is a parent to the document object, and so on. Although these objects

were the only ones available in the original conception of the DOM years ago, the modern DOM

adds objects under the document object for every element of a page.

To better understand the concept of a document object for every element, look at the simple

HTML document in Listing 21.3. This document has the usual <head> and <body> sections, plus

a heading and a single paragraph of text.

http://www.google.com/#home

532 LESSON 21: Working with the Document Object Model (DOM)

LISTING 21.3 A Simple HTML Document

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Simple HTML Document</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>This is a Level-1 Heading.</h1>
 <p>This is a simple paragraph.</p>
 </body>
</html>

Like all other HTML documents, this one is composed of various containers and their contents.

The <html> tags form a container that includes the entire document, the <body> tags contain

the body of the page, and so on.

In the DOM, each container within the page and its contents are represented by an object. The

objects are organized into a treelike structure, with the document object itself at the root of the

tree and with individual elements such as the heading and paragraph of text at the leaves of

the tree. Figure 21.4 shows a diagram of these relationships.

The following sections examine the structure of the DOM more closely.

document

html

body

ph1title

head

“This is a simple
HTML

Document.”

“This is a
Level-1

Heading.”

“This is a
simple

paragraph.”

FIGURE 21.4
How the DOM represents an HTML document.

More About the DOM Structure 533

NOTE

Don’t worry if this tree structure confuses you right now; just understand that you can assign IDs
to elements and refer to them in your JavaScript. Later on, you will see more complicated examples
that use this newfound information about how objects are organized in the DOM.

Nodes
Each container or element in a document is called a node in the DOM. In the example in

Figure 21.4, each of the objects in boxes is a node, and the lines represent the relationships

between the nodes.

You will often need to refer to individual nodes in scripts. You can do this by assigning an ID or by

navigating the tree using the relationships between the nodes. You will get plenty of practice with

nodes as you move forward in these lessons.

Parents and Children
As you have already learned, an object can have a parent—an object that contains it—and can

also have children—objects that it contains. The DOM uses the same terminology as JavaScript in

this regard.

In Figure 21.4, the document object is the parent object for the other objects shown, and

it does not have a parent itself explicitly listed, although, as you’ve learned previously, the

document object is a child of the window object. The html object is the parent of the head and

body objects, and the h1 and p objects are children of the body object.

Text nodes work a bit differently. The actual text in the paragraph is a node in itself and is a child

of the p object rather than being a grandchild of the body object. Similarly, the text within the

<h1> tags is a child of the h1 object. Don’t worry: We’ll return to this concept throughout these

lessons.

Siblings
The DOM uses another term for organization of objects: siblings. As you might expect, this refers

to objects that have the same parent—in other words, objects at the same level in the DOM

object tree.

In Figure 21.4, the h1 and p objects are siblings because both are children of the body object.

Similarly, the head and body objects are siblings under the html object. There’s not a lot of

 practical use in knowing which objects are siblings, but it is offered here as some knowledge that

completes the family tree.

534 LESSON 21: Working with the Document Object Model (DOM)

Working with DOM Nodes
As you’ve seen, the DOM organizes objects within a web page into a treelike structure. Each node

(object) in this tree can be accessed in JavaScript. In the next sections you will learn how you can

use the properties and methods of nodes to manage them.

NOTE

The following sections describe only the most important properties and methods of nodes and those
that are supported by current browsers. For a complete list of available properties, see the W3C’s
DOM specification at www.w3.org/TR/DOM-Level-3-Core/.

Basic Node Properties
Previously, you used the style property of nodes to change their style sheet values. Each node

also has a number of basic properties that you can examine or set, including the following:

 N nodeName—The name of the node (not the ID). For nodes based on HTML tags, such as <p>

or <body>, the name is the tag name: p or body. For the document node, the name is a spe-

cial code: #document. Similarly, text nodes have the name #text. This is a read-only value.

 N nodeType—An integer describing the node’s type, such as 1 for normal HTML tags, 3 for

text nodes, and 9 for the document node. This is a read-only value.

 N nodeValue—The actual text contained within a text node. This property returns null for

other types of nodes.

 N innerHTML—The HTML content of any node. You can assign a value including HTML tags

to this property and change the DOM child objects for a node dynamically.

NOTE

The innerHTML property is not a part of the W3C DOM specification. However, it is supported by
the major browsers, and using it is often the easiest way to change content in a page. You can also
accomplish this in a more standard way by deleting and creating nodes, as described later on. If
your web page must be 100% standards compliant, then you should not use innerHTML, but in
most situations using it is perfectly fine.

Node Relationship Properties
In addition to the basic properties described previously, each node has various properties that

describe its relationship to other nodes. These include the following read-only properties:

 N firstChild—The first child object for a node. For nodes that contain text, such as h1 or p,

the text node containing the actual text is the first child.

 N lastChild—The node’s last child object.

http://www.w3.org/TR/DOM-Level-3-Core/

Working with DOM Nodes 535

 N childNodes—An array that includes all of a node’s child nodes. You can use a loop with

this array to work with all the nodes under a given node.

 N previousSibling—The sibling (node at the same level) previous to the current node.

 N nextSibling—The sibling after the current node.

CAUTION

Remember that, like all other JavaScript objects and properties, the node properties and functions
described here are case sensitive. Be sure you type them exactly as shown.

Document Methods
The document node itself has several methods you might find useful. You have already used

one of them in exercises (getElementById) to refer to DOM objects by their ID properties. The

 document node’s methods include the following:

 N getElementById(id)—Returns the element with the specified id attribute.

 N getElementsByTagName(tag)—Returns an array of all the elements with a specified tag

name. You can use the wildcard * to return an array containing all the nodes in the document.

 N createTextNode(text)—Creates a new text node containing the specified text, which

you can then add to the document.

 N createElement(tag)—Creates a new HTML element for the specified tag. As with

 createTextNode, you need to add the element to the document after creating it. You can

assign content within the element by changing its child objects or the innerHTML property.

Node Methods
Each node within a page has a number of methods available. Which of them are valid depends

on the node’s position in the page and whether it has parent or child nodes. These methods

include the following:

 N appendChild(new)—Appends the specified new node after all the object’s existing nodes.

 N insertBefore(new, old)—Inserts the specified new child node before the specified old

child node, which must already exist.

 N replaceChild(new, old)—Replaces the specified old child node with a new node.

 N removeChild(node)—Removes a child node from the object’s set of children.

536 LESSON 21: Working with the Document Object Model (DOM)

 N hasChildNodes—Returns the Boolean value true if the object has one or more child

nodes or false if it has none.

 N cloneNode—Creates a copy of an existing node. If a parameter of true is supplied, the

copy will also include any child nodes of the original node.

Creating Positionable Elements (Layers)
Now that you understand a little more about how the DOM is structured, you should be able to

start thinking about how you can control any element in a web page, such as a paragraph or an

image. For example, you can use the DOM to change the position, visibility, and other attributes

of an element.

Before the W3C DOM and CSS2 standards (remember, we’re now on CSS3), you could only reposi-

tion layers, or special groups of elements defined with a proprietary tag. Although you can now

position any element individually, it’s still useful to work with groups of elements in many cases.

You can effectively create a layer, or a group of HTML objects that can be controlled as a group,

by using the <div> container element, which you learned about early in these lessons.

To create a layer with <div>, enclose the content of the layer between the <div> and </div>

tags and specify the layer’s properties in the style attribute of the <div> tag. Here’s a simple

example:

<div id="layer1" style="position:absolute; left:100px; top:100px;">
This is the content of the layer.
</div>

This code defines a layer with the name layer1. This is a movable layer positioned 100 pixels

down and 100 pixels to the right of the upper-left corner of the browser window.

NOTE

As you’ve learned in earlier lessons, you can specify CSS properties such as the position property
and other layer properties in a <style> block, in an external style sheet, or in the style attribute
of an HTML tag, and you can then control these properties by using JavaScript. The code snippets
shown here use properties in the style attribute rather than in a <style> block just because it is
a snippet of an example and not a full code listing.

You’ve already learned about the positioning properties and seen them in action in Parts II,

“Building Blocks of Practical Web Design,” and III, “Advanced Web Page Design with CSS,” of

these lessons. This includes setting object size (such as height and width) and position (such as

absolute or relative), object visibility, and object background and borders. The remaining

examples in this lesson use HTML and CSS much as you’ve already seen them used but show you

JavaScript-based interactions with the DOM in action.

Creating Positionable Elements (Layers) 537

Controlling Positioning with JavaScript
Using the code snippet from the preceding section, in this section you’ll see an example of how

you can control the positioning attributes of an object by using JavaScript.

Here is our sample layer (a <div>):

<div id="layer1" style="position:absolute; left:100px; top:100px;">
This is the content of the layer.
</div>

To move this layer up or down within the page by using JavaScript, you can change its

style.top attribute. For example, the following statements move the layer 100 pixels down

from its original position:

var obj = document.getElementById("layer1");
obj.style.top=200;

The document.getElementById method returns the object corresponding to the layer’s <div>

tag, and the second statement sets the object’s top positioning property to 200px; you can also

combine these two statements, like so:

document.getElementById("layer1").style.top = 200;

This simply sets the style.top property for the layer without assigning a variable to the

layer’s object.

NOTE

Some CSS properties, such as text-indent and border-color, have hyphens in their names.
When you use these properties in JavaScript, you need to combine the hyphenated sections and use
camel case: textIndent and borderColor.

Now let’s create an HTML document that defines a layer and combine it with a script to allow the

layer to be moved, hidden, or shown using buttons. Listing 21.4 shows the HTML document that

defines the buttons and the layer. The script itself (position.js) follows, in Listing 21.5.

LISTING 21.4 The HTML Document for the Movable Layer Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Positioning Elements with JavaScript</title>
 <style>
 #buttons {
 text-align:center;
 }

538 LESSON 21: Working with the Document Object Model (DOM)

 #square {
 position: absolute;
 top: 150px;
 left: 100px;
 width: 200px;
 height: 200px;
 border: 2px solid black;
 padding: 10px;
 background-color: #e0e0e0;
 }
 div {
 padding: 10px;
 }
 </style>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Positioning Elements</h1>
 <div id="buttons">
 <button type="button" name="left"
 onclick="pos(-1,0);">Left</button>
 <button type="button" name="right"
 onclick="pos(1,0);">Right</button>
 <button type="button" name="up"
 onclick="pos(0,-1);">Up</button>
 <button type="button" name="down"
 onclick="pos(0,1);">Down</button>
 <button type="button" name="hide"
 onclick="hideSquare();">Hide</button>
 <button type="button" name="show"
 onclick="showSquare();">Show</button>
 </div>
 <hr>
 <div id="square">
 This square is an absolutely positioned layer
 that you can move using the buttons above.
 </div>
 <script src="position.js"></script>
 </body>
</html>

In addition to some basic HTML, Listing 21.4 contains the following:

 N The <style> section is a brief style sheet that defines the properties for the movable layer.

It sets the position property to absolute to indicate that it can be positioned at an exact

location, sets the initial position in the top and left properties, and sets border and

background-color properties to make the layer clearly visible.

Creating Positionable Elements (Layers) 539

 N The <button> tags define six buttons: four to move the layer left, right, up, or down and

two to control whether it is visible or hidden.

 N The <div> section defines the layer itself. The id attribute is set to the value "square".

This id is used in the style sheet to refer to the layer and will also be used in your script.

 N The <script> tag right before the </body> tag reads a script called position.js,

which is shown in Listing 21.5.

If you load the HTML into a browser, you should see the buttons and the "square" layer, but the

buttons won’t do anything yet. The script in Listing 21.5 adds the capability to use the actions.

When you load the code in Listing 21.4 into your browser, it should look as shown in Figure 21.5.

FIGURE 21.5
The movable layer, ready to be moved.

Listing 21.5 shows the JavaScript variables and functions that are called in the HTML in

Listing 21.4. This code is expected (by the <script> tag) to be in a file called position.js.

540 LESSON 21: Working with the Document Object Model (DOM)

LISTING 21.5 The Script for the Movable Layer Example

var x=100,y=150;
function pos(dx,dy) {
 if (!document.getElementById) return;
 x += 30*dx;
 y += 30*dy;
 obj = document.getElementById("square");
 obj.style.top=y + "px";
 obj.style.left=x + "px";
}
function hideSquare() {
 if (!document.getElementById) return;
 obj = document.getElementById("square");
 obj.style.display="none";
}
function showSquare() {
 if (!document.getElementById) return;
 obj = document.getElementById("square");
 obj.style.display="block";
}

The var statement at the beginning of the script defines two variables, x and y, that store the

 current position of the layer. The pos function is called by the event handlers for all four of the

movement buttons.

The parameters of the pos function, dx and dy, tell the script how the layer should move: If dx is

negative, a number is subtracted from x, moving the layer to the left. If dx is positive, a number is

added to x, moving the layer to the right. Similarly, dy indicates whether to move up or down.

The pos function begins by making sure the getElementById function is supported, so it won’t

attempt to run in older browsers. It then multiplies dx and dy by 30 (to make the movement more

obvious) and applies them to x and y. Finally, it sets the top and left properties to the new

 position (including the px to indicate the unit of measurement), thus moving the layer.

Two more functions, hideSquare and showSquare, hide or show the layer by setting its dis-
play property to "none" (hidden) or "block" (shown).

To use this script, save it as position.js and then load the HTML document in Listing 21.4 into

your browser. Figure 21.6 shows this script in action—well, after an action, at least. Figure 21.6

shows the script after the Right button has been clicked four times and the Down button has been

clicked five times.

Hiding and Showing Objects 541

FIGURE 21.6
The movable layer has been moved.

Hiding and Showing Objects
In the preceding example, you saw some functions that can be used to hide or show the “square.”

In this section, we’ll take a closer look at hiding and showing objects in a page.

As a refresher, objects have a visibility style property that specifies whether they are cur-

rently visible within the page:

Object.style.visibility="hidden"; // hides an object
Object.style.visibility="visible"; // shows an object

Using this property, you can create a script that hides or shows objects in either browser.

Listing 21.6 shows the HTML document for a script that allows two headings to be shown or

hidden.

542 LESSON 21: Working with the Document Object Model (DOM)

LISTING 21.6 Hiding and Showing Objects

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hiding or Showing Objects</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1 id="heading1">This is the first heading</h1>
 <h1 id="heading2">This is the second heading</h1>
 <p>Using the W3C DOM, you can choose whether to show or hide
 the headings on this page using the checkboxes below.</p>
 <form name="checkboxform">
 <input type="checkbox" name="checkbox1"
 onclick="showHide();" checked>
 Show first heading

 <input type="checkbox" name="checkbox2"
 onclick="showHide();" checked>
 Show second heading

 </form>

 <script>
 function showHide() {
 if (!document.getElementById) return;
 var heading1 = document.getElementById("heading1");
 var heading2 = document.getElementById("heading2");
 var showheading1 = document.checkboxform.checkbox1.checked;
 var showheading2 = document.checkboxform.checkbox2.checked;
 heading1.style.visibility=(showheading1) ? "visible" : "hidden";
 heading2.style.visibility=(showheading2) ? "visible" : "hidden";
 }
 </script>
 </body>
</html>

The <h1> tags in this document define headings with the ids heading1 and heading2. Inside

the <form> element are two check boxes, one for each of these headings. When a check box is

modified (checked or unchecked), the onclick method calls the JavaScript showHide func-

tion to perform an action.

The showHide function is defined within the <script> tag at the bottom of the document. This

function assigns the objects for the two headings to two variables named heading1 and

heading2, using the getElementById method. Next, it assigns the value of the check boxes

Modifying Text in a Page 543

within the form to the showheading1 and showheading2 variables. Finally, the function uses

the style.visibility attributes to set the visibility of the headings.

NOTE

The lines that set the visibility property might look a bit strange. The ? and : characters create
conditional expressions, a shorthand way of handling if statements. You’ll learn more about these
conditional expressions in Lesson 23, “Controlling Flow with Conditions and Loops.”

Figure 21.7 shows this example in action. In the figure, the second heading’s check box has been

unchecked, so only the first heading is visible.

FIGURE 21.7
The text hiding/showing example in action.

Modifying Text in a Page
You can create a simple script to modify the contents of a heading (or any element, for that mat-

ter) within a web page. As you learned earlier in this lesson, the nodeValue property of a text

node contains its actual text, and the text node for a heading is a child of that heading. Thus, this

would be how to change the text of a heading with the identifier heading1:

var heading1 = document.getElementById("heading1");
heading1.firstChild.nodeValue = "New Text Here";

This assigns the heading’s object to the variable called heading1. The firstChild property

returns the text node that is the only child of the heading, and its nodeValue property contains

the heading text.

544 LESSON 21: Working with the Document Object Model (DOM)

Using this technique, it’s easy to create a page that allows the heading to be changed dynami-

cally. Listing 21.7 shows the complete HTML document for a script that does this.

LISTING 21.7 The Complete Text-Modifying Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Dynamic Text in JavaScript</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1 id="heading1">Dynamic Text in JavaScript</h1>
 <p>Using the W3C DOM, you can dynamically change the
 heading at the top of this page.</p>
 <p>Enter a new title and click the Change! button. </p>

 <form name="changeform">
 <input name="newtitle" size="40">
 <button type="button" onclick="changeTitle();">Change!</button>
 </form>
 <script>
 function changeTitle() {
 if (!document.getElementById) return;
 var newtitle = document.changeform.newtitle.value;
 var heading1 = document.getElementById("heading1");
 heading1.firstChild.nodeValue=newtitle;
 }
 </script>
 </body>
</html>

This example defines a form that enables the user to enter a new heading for the page. Clicking

the button calls the changeTitle function, defined in the <script> tag at the bottom of the

document. This JavaScript function gets the value the user entered in the form and changes

the heading’s value to the new text by assigning the value of the input to the heading1.
firstChild.nodeValue property.

Figure 21.8 shows this page in action after a new title has been entered and the Change! button

has been clicked.

Adding Text to a Page 545

FIGURE 21.8
The heading-modification example in action.

Adding Text to a Page
Next, you can create a script that actually adds text to a page rather than just changing existing

text. To do this, you must first create a new text node. This statement creates a new text node with

the text “this is a test”:

var node=document.createTextNode("this is a test");

Next, you can add this node to the document. To do this, you use the appendChild method. The

text can be added to any element that can contain text, but in this example, we will just use a

paragraph. The following statement adds the text node defined previously to the paragraph with

the identifier paragraph1:

document.getElementById("paragraph1").appendChild(node);

Listing 21.8 shows the HTML document for a complete example that uses this technique, using a

form to allow the user to specify text to add to the page.

LISTING 21.8 Adding Text to a Page

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Adding Text to a Page</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>

546 LESSON 21: Working with the Document Object Model (DOM)

 <h1 id="heading1">Create Your Own Content</h1>
 <p id="paragraph1"> Using the W3C DOM, you can dynamically add
 sentences to this paragraph.</p>
 <p>Type a sentence and click the Add! button.</p>
 <form name="changeform">
 <input name="sentence" size="65">
 <button type="button" onclick="addText();">Add!</button>
 </form>

 <script>
 function addText() {
 if (!document.getElementById) return;
 var sentence=document.changeform.sentence.value;
 var node=document.createTextNode(" " + sentence);
 document.getElementById("paragraph1").appendChild(node);
 document.changeform.sentence.value="";
 }
 </script>
 </body>
</html>

In this example, the <p> element with the id paragraph1 is the paragraph that will hold the

added text. The <form> element is a form with a text field called sentence, and an Add! but-

ton, which calls the addText function when clicked. This JavaScript function is defined in the

<script> tag at the bottom of the document. The addText function first assigns text typed in

the text field to the sentence variable. Next, the script creates a new text node containing the

value of the sentence variable and appends the new text node to the paragraph.

Load this document into a browser to test it and try adding several sentences by typing them

and clicking the Add! button. Figure 21.9 shows this document after several sentences have been

added to the paragraph.

FIGURE 21.9
The text-addition example in action.

Q&A 547

Summary
In this lesson, you learned a lot about the Document Object Model (DOM), which creates a

hierarchy of web browser and document objects that you can access via JavaScript. You learned

how you can use the document object to work with documents, and you used the history and

location objects to control the current URL displayed in the browser.

You also learned the methods and properties you can use to manage DOM objects, and you

created sample scripts to hide and show elements within a page, modify existing text, and add to

existing text. You also learned how to use HTML and CSS to define a positionable layer and how

you can use positioning properties dynamically with JavaScript.

This foundational knowledge of the DOM puts you in position (no pun intended) to more

effectively work with JavaScript in advanced ways, as you’ll learn in the lessons that follow.

Q&A
 Q. Can I avoid assigning an id attribute to every DOM object I want to handle with a script?

 A. Yes. Although the scripts in this lesson typically use the id attribute for convenience, you
can actually locate any object in the page by using combinations of node properties such as
firstChild and nextSibling. However, keep in mind that any change you make to the
HTML can change an element’s place in the DOM hierarchy, so the id attribute is a reliable
recommended way to handle this.

 Q. I can use history and document instead of window.history and

window.document. Can I leave out the window object in other cases?

 A. Yes. For example, you can use alert instead of window.alert to display a message.
The window object contains the current script, so it’s treated as a default object. However,
be warned that you shouldn’t omit the window object’s name when you’re using multiple
windows or in an event handler.

 Q. Can I change history entries or prevent the user from using the Back and Forward

buttons?

 A. You can’t change the history entries. You also can’t prevent the use of the Back and
Forward buttons. However, you can use the location.replace method to load a series
of pages that don’t appear in the history. There are a few tricks for preventing the Back
button from working properly, but I don’t recommend using them as they’re the sort of thing
that gives JavaScript a bad reputation.

548 LESSON 21: Working with the Document Object Model (DOM)

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. Which of the following DOM objects never has a parent node?

 a. body

 b. div

 c. document

 d. p

 2. Which of the following is the correct syntax to get the DOM object for a heading with the
identifier heading1?

 a. document.getElementById("heading1")

 b. document.GetElementByID("heading1")

 c. document.getElementsById("heading1")

 d. documents.getElementsById("heading1")

 3. Which of the following tags can be used to create a layer?

 a. <layer>

 b. <div>

 c. <style>

 d. <p>

 4. Which property controls an element’s left-to-right position?

 a. left

 b. width

 c. lrpos

 d. position

 5. Which of the following CSS rules would create a heading that is not currently visible in the
page?

 a. h1 {visibility: invisible;}

 b. h1 {display: none;}

 c. h1 {style: invisible;}

 d. h1 {display: invisible;}

549Workshop

 6. What does the document.URL property do?

 a. Links to the defined URL

 b. Changes the current URL

 c. Specifies the current URL

 d. Nothing. It is invalid.

 7. What is nodeValue?

 a. Any non-text content of a node

 b. The function of the node

 c. The method of the node

 d. The text within a node

 8. Does the <body> tag have a nodeValue associated with it?

 a. Yes, the number of nodes attached to it

 b. Yes, the value of the child nodes

 c. Yes, but the value is null

 d. No

 9. What method takes a child node out of an object?

 a. removeNode

 b. removeChild

 c. deleteChild

 d. deleteNode

 10. How can you get the port number for a web page by using JavaScript?

 a. Yes, the number of nodes attached to it

 b. Yes, the value of the child nodes

 c. Yes, but the value is null

 d. No

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

http://www.informit.com/register

550 LESSON 21: Working with the Document Object Model (DOM)

Answers
 1. c. The document object is the root of the DOM object tree and has no parent object.

 2. a. getElementById has a lowercase g at the beginning and a lowercase d at the end.

 3. b. The <div> tag is one of several container elements that can be used to create position-
able layers (but it is the only one in this list that is valid).

 4. a. The left property controls an element’s left-to-right position.

 5. b. The none value for the display property makes it invisible. The visibility property
could also be used, but its possible values are visible or hidden.

 6. c. It specifies the current document’s URL and cannot be changed.

 7. d. It is the actual text contained within a text node.

 8. c. Technically, yes, but the value is null because it’s not a text node.

 9. b. The removeChild method removes a child node from an object.

 10. c. Use the location.port or location.host properties to get the port number for a
web page.

Exercises
 N Modify the example in Listing 21.2 to include a Reload button along with the Back and

Forward buttons. (This button would trigger the location.reload method.)

 N Modify the positioning example in Listings 21.4 and 21.5 to move the square 1 pixel at
a time rather than 30 pixels at a time.

 N Add a third check box to Listing 21.6 to allow the paragraph of text to be shown or
 hidden. You need to add an id attribute to the <p> tag, add a check box to the form,
and add the appropriate lines to the script.

LESSON 22
Using JavaScript Variables,

Strings, and Arrays

What You’ll Learn in This Lesson:

 N How to name, declare, and assign variables

 N How to choose whether to use local or global variables

 N How to convert between different data types

 N How to create and use String objects

 N How to create and use arrays of numbers and strings

 N How to define, call, and return values from functions

 N How to use object properties and values

 N How to define and use object methods

 N How to use the Math object’s methods

 N How to use new and this keywords to work with objects

 N How to use the Date object to work with dates

Now that you have learned some of the fundamentals of JavaScript and the DOM, it’s time to dig

into more details of the JavaScript language.

In this lesson, you’ll learn three tools for storing data in JavaScript: variables, which store numbers

or text; strings, which are special variables for working with text; and arrays, which are multiple

variables you can refer to by number. Variables, strings, and arrays are not the most exciting ele-

ments of any programming language when described individually, but as you will see throughout

the rest of these lessons, variables, strings, and arrays are fundamental to just about every bit of

complex JavaScript that you’ll develop.

In this lesson, you’ll also learn about two more key JavaScript concepts that you’ll use throughout

the rest of these lessons (and in your future JavaScript endeavors). You’ll learn the details of creat-

ing and using functions, which enable you to group any number of statements into a single block.

Functions are useful for creating reusable sections of code, and you can create functions that

accept parameters and return values for later use.

552 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Whereas functions enable you to group sections of code, objects enable you to group data. You

can use objects to combine related data items and functions for working with the data. You’ll

learn how to define and use objects and their methods and will work specifically with two of the

most useful objects built into JavaScript: Math and Date.

Using Variables
Unless you have skipped over all the JavaScript-related lessons so far, you’ve already used a few

variables. You probably can also figure out how to use a few more without any additional help.

Nevertheless, there are some aspects of variables you haven’t learned yet, and they are covered in

the next few sections.

Choosing Variable Names
As a reminder, variables are named containers that can store data (for example, a number, a text

string, or an object). As you learned earlier, every variable has a unique name of your choosing.

However, there are rules you must follow when choosing a variable name:

 N Variable names can include letters of the alphabet, both upper- and lowercase. They can

also include the digits 0–9 and the underscore (_) character.

 N Variable names cannot include spaces or any other punctuation characters.

 N The first character of the variable name must be either a letter or an underscore.

 N Variable names are case sensitive; for example, totalnum, Totalnum, and TotalNum are

interpreted as separate variable names.

 N There is no official limit on the length of a variable name, but it must fit on one line.

Frankly, if your variable names are longer than that—or even longer than 25 or so charac-

ters, you might consider a different naming convention.

Using these rules, the following are examples of valid variable names:

total_number_of_fish
LastInvoiceNumber
temp1
a
_var39

NOTE

You can choose to use either friendly, easy-to-read names or completely cryptic ones. Do yourself a
favor: Use longer (but not too long), friendly names whenever possible. Although you might remem-
ber the difference between a, b, x, and x1 right now, you might not after spending a few days away
from the code, and someone who isn’t you most certainly won’t understand your cryptic naming con-
vention without some documentation.

Using Variables 553

Using Local and Global Variables
Some computer languages require you to declare a variable before you use it. JavaScript includes

the var keyword, which can be used to declare a variable. In many cases you can omit var, and

the variable is still declared the first time you assign a value to it.

To understand where to declare a variable, you need to understand the concept of scope. A vari-

able’s scope is the area of the script in which that variable can be used. There are two types of

variables:

 N Global variables have the entire script (and other scripts in the same HTML document) as

their scope. They can be used anywhere, even within functions.

 N Local variables have a single function as their scope. They can be used only within the

function they are created in.

To create a global variable, you declare it in the main script, outside any functions. You can use

the var keyword to declare the variable, as in this example:

var students = 25;

This statement declares a variable called students and assigns it the value 25. If this statement

is used outside functions, it creates a global variable. The var keyword is optional in this case, so

this statement is equivalent to the preceding one:

students = 25;

Before you get in the habit of omitting the var keyword, be sure you understand exactly when it’s

required. It’s actually a good idea to always use the var keyword; if you always use it, you’ll avoid

errors and make your script easier to read, and it won’t usually cause any trouble.

A local variable belongs to a particular function. Any variable you declare with the var keyword

in a function is a local variable. In addition, the variables in the function’s parameter list are

always local variables.

To create a local variable within a function, you must use the var keyword. This forces JavaScript

to create a local variable, even if there is a global variable with the same name. However, try to

keep your variable names distinct, even if you are using them in different scopes.

You should now understand the difference between local and global variables. If you’re still a bit

confused, don’t worry: If you use the var keyword every time, you’ll usually end up with the right

type of variable.

554 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Assigning Values to Variables
As you learned in Lesson 4, “Understanding JavaScript,” you use the equal sign (=) to assign a

value to a variable. For example, this statement assigns the value 40 to the variable lines:

var lines = 40;

You can use any expression to the right of the equal sign, including other variables. For example,

earlier you used this syntax to add 1 to a variable:

lines = lines + 1;

Because incrementing or decrementing variables is quite common, JavaScript includes two types

of shorthand for this syntax. The first is the += operator, which enables you to create the follow-

ing shorter version of the preceding example:

lines += 1;

Similarly, you can subtract a number from a variable by using the −= operator:

lines −= 1;

If you still think that’s too much to type, JavaScript also includes the increment and decrement

operators, ++ and −−. This statement adds 1 to the value of lines:

lines++;

Similarly, this statement subtracts 1 from the value of lines:

lines−−;

You can alternatively use the ++ or −− operators before a variable name, as in ++lines. However,

++lines and lines++ are not identical. The difference is in when the increment or decrement

happens:

 N If the operator is after the variable name (for example, lines++), the increment or decre-

ment happens after the current expression is evaluated.

 N If the operator is before the variable name (for example, ++lines), the increment or decre-

ment happens before the current expression is evaluated.

This difference is an issue only when you use the variable in an expression and increment or dec-

rement it in the same statement. As an example, suppose you have assigned the lines variable

the value 40. The following two statements have different effects:

alert(lines++);
alert(++lines);

Understanding Expressions and Operators 555

The first statement displays an alert with the value 40 and then increments lines to 41. The

second statement first increments lines to 41 and then displays an alert with the value 41.

NOTE

The increment and decrement operators are strictly for your convenience. If it makes more sense to
you to stick to lines = lines + 1, do it; your script won’t suffer.

Understanding Expressions and Operators
An expression is a combination of variables and values that the JavaScript interpreter can evaluate

to a single value, such as 2 + 2 = 4. The characters that are used to combine these values, such

as + and /, are called operators.

NOTE

Along with variables and constant values, expressions can also include function calls that return
results.

Using JavaScript Operators
In the basic JavaScript examples so far in these lessons, you’ve already used some operators, such

as the + sign (addition) and the increment and decrement operators. Table 22.1 lists some of

the most important (and common) operators used in JavaScript expressions.

TABLE 22.1 Common JavaScript Operators

Operator Description Example

+ Concatenate (combine) strings message="this is" +
" a test";

+ Add result = 5 + 7;

− Subtract score = score − 1;

* Multiply total = quantity *
price;

/ Divide average = sum / 4;

% Modulo (remainder) remainder = sum % 4;

++ Increment tries++;

−− Decrement total−−;

556 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Along with these, there are also many other operators used in conditional statements. You’ll learn

about them in Lesson 23, “Controlling Flow with Conditions and Loops.”

Operator Precedence
When you use more than one operator in an expression, JavaScript uses rules of operator prece-
dence to decide how to calculate the value. Table 22.1 lists the operators from lowest to highest

precedence, and operators with highest precedence are evaluated first. For example, consider this

statement:

result = 4 + 5 * 3;

If you try to calculate this result, there are two ways to do it. You could multiply 5 * 3 first

and then add 4 (result: 19), or you could add 4 + 5 first and then multiply by 3 (result: 27).

JavaScript solves this dilemma by following the precedence rules: Because multiplication has a

higher precedence than addition, JavaScript first multiplies 5 * 3 and then adds 4, producing

a result of 19. Sometimes operator precedence doesn’t produce the result you want. For example,

consider this statement:

result = a + b + c + d / 4;

This is an attempt to average four numbers by adding them all together and then dividing by

four. However, because JavaScript gives division a higher precedence than addition, it will divide

the d variable by 4 before adding the other numbers, producing an incorrect result.

You can control precedence by using parentheses. Here’s the working statement to calculate an

average:

result = (a + b + c + d) / 4;

The parentheses ensure that the four variables are added first, and then the sum is divided by

four. If you’re unsure about operator precedence, you can use parentheses to make sure things

work the way you expect and to make your script more readable.

Data Types in JavaScript
In some computer languages, you have to specify the type of data a variable will store (for

example, a number or a string). In JavaScript, you don’t need to specify a data type in most cases.

However, you should know the types of data JavaScript can deal with.

These are the basic JavaScript data types:

 N Number—Examples of numbers are 3, 25, and 1.4142138. JavaScript supports both

integers and floating-point numbers.

Converting Between Data Types 557

 N Boolean—Booleans are logical values. A Boolean can have one of two values, true or

false, and is useful for indicating whether a certain condition is true.

 N String—A string, such as "I am a jelly doughnut", consists of one or more characters

of text. (Strictly speaking, strings are String objects, which you’ll learn about later in this

lesson.)

 N Null—The null value, represented by the keyword null, is the value of an undefined vari-

able. For example, the statement document.write(fig) will result in a null value (and

an error message) if the variable fig has not been previously used or defined.

Although JavaScript keeps track of the data type currently stored in each variable, it doesn’t

restrict you from changing types midstream. For example, suppose you declare a variable by

assigning it a value, like so:

var total = 31;

This statement declares a variable called total and assigns it the value 31. This is a numeric

variable. Now suppose you change the value of total:

total = "albatross";

This assigns a string value to total, replacing the numeric value. JavaScript will not display an

error when this statement executes; it’s perfectly valid, although it’s probably not a very useful

“total.”

NOTE

Although this feature of JavaScript is convenient and powerful, it can also make it easy to make a
mistake. For example, if the total variable is later used in a mathematical calculation, the result
would be invalid—but JavaScript does not warn you that you’ve made this mistake.

Converting Between Data Types
JavaScript handles conversions between data types for you whenever it can. For example, you’ve

already used statements like this:

document.write("The total is " + total);

This statement prints out the message "The total is 40". Because the document.write

function works with strings, the JavaScript interpreter automatically converts any nonstrings in

the expression (in this case, the value of total) to strings before performing the function.

558 LESSON 22: Using JavaScript Variables, Strings, and Arrays

This works equally well with floating-point and Boolean values. However, there are some

situations in which it won’t work. For example, the following statement will work fine if the

value of total is 40:

average = total / 3;

However, the total variable could also contain a string; in this case, the preceding statement

would result in an error.

In some situations, you might end up with a string containing a number and need to convert it to

a regular numeric variable. JavaScript includes two functions for this purpose:

 N parseInt—Converts a string to an integer number

 N parseFloat—Converts a string to a floating-point number

Both of these functions will read a number from the beginning of the string and return a numeric

version. For example, these statements convert the string "30 angry polar bears" to a

number:

var stringvar = "30 angry polar bears";
var numvar = parseInt(stringvar);

After these statements execute, the numvar variable contains the number 30; the nonnumeric

portion of the string is ignored.

NOTE

These functions look for a number of the appropriate type at the beginning of the string. If a valid
number is not found, the function returns the special value NaN, meaning not a number.

Using String Objects
You’ve already used several strings in the brief JavaScript examples found in previous lessons.

Strings store a group of text characters and are named similarly to other variables. As a simple

example, this statement assigns the string This is a test to a string variable called

stringtest:

var stringtest = "This is a test";

In the following sections, you’ll learn a little more about the String object and see it in action in

a full script.

559Using String Objects

Creating a String Object
JavaScript stores strings as String objects. You usually don’t need to worry about this piece

of information—that your strings are in fact objects—but it will explain some of the common

techniques you’ll see for working with strings, which use methods (built-in functions) of the

String object.

There are two ways to create a new String object. The first is the one you’ve already used, and

the second way involves using object-oriented syntax. The following two statements create the

same string:

var stringtest = "This is a test";
stringtest = new String("This is a test");

The second statement uses the new keyword, which you use to create objects. This tells the browser

to create a new String object containing the text This is a test and assigns it to the vari-

able stringtest.

NOTE

Although you can create a string by using object-oriented syntax, the standard JavaScript syntax is
simpler, and there is no difference in the strings created by these two methods.

Assigning a Value
You can assign a value to a string in the same way as any other variable. Both of the examples in

the preceding section assigned an initial value to the string. You can also assign a value after the

string has already been created. For example, the following statement replaces the contents of the

stringtest variable with a new string:

var stringtest = "This is only a test.";

You can also use the concatenation operator (+) to combine the values of two strings. Listing 22.1

shows a simple example of assigning and combining the values of strings.

LISTING 22.1 Assigning Values to Strings and Combining Them

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>String Text</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>

560 LESSON 22: Using JavaScript Variables, Strings, and Arrays

 <h1>String Test</h1>
 <script>
 var stringtest1 = "This is a test. ";
 var stringtest2 = "This is only a test.";
 var bothstrings = stringtest1 + stringtest2;
 alert(bothstrings);
 </script>
 </body>
</html>

This script assigns values to two string variables, stringtest1 and stringtest2, and then

displays an alert with their combined value (the variable bothstrings). If you load this HTML

document in a browser, your output should resemble what’s shown in Figure 22.1.

FIGURE 22.1
The output of the string sample script.

In addition to using the + operator to concatenate two strings, you can use the += operator to add

text to a string. For example, this statement adds a period to the current contents of a string vari-

able named sentence:

sentence += ".";

NOTE

The plus sign (+) is also used to add numbers in JavaScript. The browser knows whether to use
addition or concatenation based on the type or types of data you use with the plus sign. If you use it
between a number and a string, the number is converted to a string and concatenated.

Calculating the Length of a String
From time to time, you might find it useful to know how many characters a string variable con-

tains. You can do this with the length property of String objects, which you can use with any

string. To use this property, type the string’s name followed by .length.

561Using String Objects

For example, stringtest.length refers to the length of the stringtest string. Here is an

example of this property:

var stringtest = "This is a test.";
document.write(stringtest.length);

The first statement assigns the string This is a test. to the stringtest variable. The sec-

ond statement displays the length of the string—in this case, 15 characters. The length property

is a read-only property, so you cannot assign a value to it to change a string’s length.

NOTE

Remember that although stringtest refers to a string variable, the value of stringtest.
length is a number and can be used in any numeric expression.

Converting the Case of a String
Two methods of the String object enable you to convert the contents of a string to all uppercase

or all lowercase:

 N toUpperCase—Converts all characters in the string to uppercase

 N toLowerCase—Converts all characters in the string to lowercase

For example, the following statement displays the value of the stringtest string variable in

lowercase:

document.write(stringtest.toLowerCase());

If this variable contained the text This Is A Test, the result would be the following string:

this is a test

Note that the statement doesn’t change the value of the stringtest variable. These methods

return the upper- or lowercase version of the string, but they don’t change the string itself. If you

want to change the string’s value, you can use a statement like this:

stringtest = stringtest.toLowerCase();

NOTE

Note that the syntax for these methods is similar to the syntax for the length property introduced
earlier. The difference is that methods always use parentheses, whereas properties don’t. The
toUpperCase and toLowerCase methods do not take any parameters, but you still need to use
the parentheses.

562 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Working with Substrings
In the short examples so far in this lesson, you’ve worked only with entire strings. Like most other

programming languages, JavaScript also enables you to work with substrings, or portions of a

string. You can use the substring method to retrieve a portion of a string or the charAt

method to get a single character. These are explained in the following sections.

Using Part of a String
The substring method returns a string consisting of a portion of the original string between two

index values, which you must specify in parentheses. For example, the following statement dis-

plays the fourth through sixth characters of the stringtest string:

document.write(stringtest.substring(3,6));

At this point, you’re probably wondering where the 3 and the 6 come from. There are three things

you need to understand about using index parameters, regardless of when you’re using them:

 N Indexing starts with 0 for the first character of the string, so the fourth character is actually

index 3.

 N The second index is noninclusive. A second index of 6 includes up to index 5 (the sixth

character).

 N You can specify the two indexes in either order. The smaller one will be assumed to be the

first index. In the previous example, (6,3) would produce the same result. Of course, there

is rarely a reason to use the reverse order.

As another example, suppose you define a string called alpha to hold an uppercase version of

the alphabet:

var alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

The following are examples of the substring method using the alpha string:

 N alpha.substring(0,4) returns ABCD.

 N alpha.substring(10,12) returns KL.

 N alpha.substring(12,10) also returns KL. Because 10 is the smaller of the two values,

it is used as the first index.

 N alpha.substring(6,7) returns G.

 N alpha.substring(24,26) returns YZ.

Working with Substrings 563

 N alpha.substring(0,26) returns the entire alphabet.

 N alpha.substring(6,6) returns the null value, an empty string. This is true whenever

the two index values are the same.

Getting a Single Character
Using the charAt method is a simple way to grab a single character from a specified position

within a string. To use this method, specify the character’s index, or position, in parentheses. As

you’ve learned, the index begins at 0 for the first character. Here are a few examples of using the

charAt method on the alpha string:

 N alpha.charAt(0) returns A.

 N alpha.charAt(12) returns M.

 N alpha.charAt(25) returns Z.

 N alpha.charAt(27) returns an empty string because there is no character at that position.

Finding a Substring
Another use for substrings is to find a string within another string. One way to do this is with the

indexOf method. To use this method, add indexOf to the string you want to search and specify

the string to search for in the parentheses. This example searches for this in the stringtest

string and assigns the result to a variable called location:

var location = stringtest.indexOf("this");

CAUTION

As with most other JavaScript methods and property names, indexOf is case sensitive. Make sure
you type it exactly as shown here when you use it in scripts.

The value returned in the location variable is an index into the string, similar to the first index

in the substring method. The first character of the string is index 0.

You can specify an optional second parameter in this method to indicate the index value to begin

the search. For example, this statement searches for the word fish in the moretext string, start-

ing with the 20th character:

var newlocation = moretext.indexOf("fish",19);

564 LESSON 22: Using JavaScript Variables, Strings, and Arrays

NOTE

One use for the second parameter of this method is to search for multiple occurrences of a string.
After finding the first occurrence, you search starting with that location for the second one, and
so on.

A second method, lastIndexOf, works the same way but finds the last occurrence of the string.

It searches the string backward, starting with the last character. For example, this statement finds

the last occurrence of Fred in the names string:

var namelocation = names.lastIndexOf("Fred");

As with indexOf, you can specify a location to search from as the second parameter. In this case,

the string will be searched backward, starting at that location.

Using Numeric Arrays
An array is a numbered group of data items that you can treat as a single unit. For example, you

might use an array called scores to store several scores for a game. Arrays can contain strings,

numbers, objects, or other types of data. Each item in an array is called an element of the array.

Creating a Numeric Array
Unlike with most other types of JavaScript variables, you typically need to declare an array before

you use it. The following example creates an array with four elements:

scores = new Array(4);

To assign a value to the array, you use an index in brackets. As you’ve seen earlier in this lesson,

an index begins with 0, so the elements of the array in this example would be numbered 0 to 3.

These statements assign values to the four elements of the array:

scores[0] = 39;
scores[1] = 40;
scores[2] = 100;
scores[3] = 49;

You can also declare an array and specify values for elements at the same time. This statement

creates the same scores array in a single line:

scores = new Array(39,40,100,49);

You can also use a shorthand syntax to declare an array and specify its contents. Using the follow-

ing statement is an alternative way to create the scores array:

scores = [39,40,100,49];

Using String Arrays 565

CAUTION

Remember to use parentheses when declaring an array with the new keyword, as in a = new
Array(3,4,5), and use brackets when declaring an array without new, as in a = [3,4,5].
Otherwise, you’ll run into JavaScript errors.

Understanding Array Length
Like strings, arrays have a length property. This property tells the number of elements in the

array. If you specified the length when creating the array, this value becomes the length prop-

erty’s value. For example, these statements would print the number 30:

scores = new Array(30);
document.write(scores.length);

You can declare an array without a specific length and change the length later by assigning

values to elements or changing the length property. For example, these statements create a new

array and assign values to two of its elements:

test = new Array();
test[0]=21;
test[5]=22;

In this example, because the largest index number assigned so far is 5, the array has a length

property of 6. Remember that elements are numbered starting at 0.

Accessing Array Elements
You can read the contents of an array by using the same notation you used when assigning val-

ues. For example, the following statements would display the values of the first three elements of

the scores array:

scoredisplay = "Scores: " + scores[0] + "," + scores[1] +
 "," + scores[2];

document.write(scoredisplay);

NOTE

Looking at this example, you might imagine it would be inconvenient to display all the elements of a
large array. This is an ideal job for loops, which enable you to perform the same statements several
times with different values. You’ll learn all about loops in Lesson 23.

Using String Arrays
So far, you’ve used arrays of numbers. JavaScript also enables you to use string arrays, or arrays of strings.

This is a powerful feature that enables you to work with a large number of strings at the same time.

566 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Creating a String Array
You declare a string array in the same way as a numeric array—in fact, JavaScript does not make

a distinction between them:

names = new Array(30);

You can then assign string values to the array elements:

names[0] = "John H. Watson";
names[1] = "Sherlock Holmes";

As with numeric arrays, you can also specify a string array’s contents when you create it. Either of

the following statements would create the same string array as the preceding example:

names = new Array("John H. Watson", "Sherlock Holmes");
names = ["John H. Watson", "Sherlock Holmes"];

You can use string array elements anywhere you would use a string. You can even use the string

methods introduced earlier. For example, the following statement prints the first four characters

of the first element of the names array, resulting in John:

document.write(names[0].substring(0,4));

Splitting a String
JavaScript includes a string method called split, which splits a string into its component parts.

To use this method, specify the string to split and a character to divide the parts:

name = "John Q. Public";
parts = name.split(" ");

In this example, the name string contains the name John Q. Public. The split method in

the second statement splits the name string at each space, resulting in three strings. These are

stored in a string array called parts. After the sample statements execute, the elements of parts

contain the following:

 N parts[0] = "John"

 N parts[1] = "Q."

 N parts[2] = "Public"

JavaScript also includes an array method, join, that performs the opposite function. This

statement reassembles the parts array into a string:

fullname = parts.join(" ");

Sorting a Numeric Array 567

The value in the parentheses specifies a character to separate the parts of the array. In this case,

a space is used, resulting in the final string John Q. Public. If you do not specify a character,

commas are used.

Sorting a String Array
JavaScript also includes a sort method for arrays, which returns an alphabetically sorted version

of the array. For example, the following statements initialize an array of four names and sort it:

names[0] = "Public, John Q.";
names[1] = "Doe, Jane";
names[2] = "Duck, Daisy";
names[3] = "Mouse, Mickey";
sortednames = names.sort();

The last statement sorts the names array and stores the result in a new array, sortednames.

Sorting a Numeric Array
Because the sort method sorts alphabetically, it won’t work with a numeric array—at least not

the way you’d expect. If an array contains the numbers 4, 10, 30, and 200, for example, it would

sort them as 10, 200, 30, 4—not even close. Fortunately, there’s a solution: You can specify a func-

tion in the sort method’s parameters, and that function is used to compare the numbers. The

following code sorts a numeric array correctly:

function numbercompare(a,b) {
 return a−b;
}
numbers = new Array(30, 10, 200, 4);
sortednumbers = numbers.sort(numbercompare);

This example defines a simple function, numbercompare, that subtracts the two numbers. After

you specify this function in the sort method, the array is sorted in the correct numeric order: 4,

10, 30, 200.

NOTE

JavaScript expects the comparison function to return a negative number if a belongs before b, 0 if
they are the same, or a positive number if a belongs after b. This is why a−b is all you need for the
function to sort numerically.

To gain more experience working with JavaScript’s string and array features, you can create a script

that enables the user to enter a list of names and displays the list in sorted form. Because this will

be a larger script, you should create separate HTML and JavaScript files, as described in Lesson 20,

568 LESSON 22: Using JavaScript Variables, Strings, and Arrays

“Getting Started with JavaScript Programming.” First, the sort.html file will contain the HTML

structure and form fields for the script to work with. Listing 22.2 shows the HTML document.

LISTING 22.2 The HTML Document for the Sorting Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Array Sorting Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Sorting String Arrays</h1>
 <p>Enter two or more names in the field below,
 and the sorted list of names will appear in the
 textarea.</p>
 <form name="theform">
 Name:
 <input name="newname" size="20">
 <input type="button" name="addname" value="Add"
 onclick="SortNames();">

 <h2>Sorted Names</h2>
 <textarea cols="60" rows="10" name="sorted">
 The sorted names will appear here.
 </textarea>
 </form>

 <script src="sort.js"></script>
 </body>
</html>

Because the script is in a separate document, the <script> tag in this document uses the src

attribute to include a JavaScript file called sort.js. This document defines a form named

theform, a text field named newname, an addname button, and a <textarea> named

sorted. Your script will use these form fields as its user interface.

Listing 22.3 provides the JavaScript necessary for the sorting process.

LISTING 22.3 The JavaScript File for the Sorting Example

// initialize the counter and the array
var numbernames=0;
var names = new Array();
function SortNames() {

http://sort.html

Sorting a Numeric Array 569

 // Get the name from the text field
 thename=document.theform.newname.value;
 // Add the name to the array
 names[numbernames]=thename;
 // Increment the counter
 numbernames++;
 // Sort the array
 names.sort();
 document.theform.sorted.value=names.join("\n");
}

The script begins by defining two variables with the var keyword: numbernames is a counter

that increments as each name is added, and the names array stores the names.

When you type a name into the text field and click the button, the onclick event handler calls

the SortNames function. This function stores the text field value in a variable, thename, and

then adds the name to the names array, using numbernames as the index. It then increments

numbernames to prepare for the next name.

The final section of the script sorts the names and displays them. First, the sort method is used

to sort the names array. Next, the join method is used to combine the names, separating them

with line breaks, and display them in the <textarea>.

To test the script, save it as sort.js and then load the sort.html file you created previously

into a browser. You can then add some names and test the script. Figure 22.2 shows the result

after several names have been sorted.

FIGURE 22.2
The output of the name-sorting example.

http://sort.html

570 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Using Functions
The scripts you’ve seen so far have been simple lists of instructions. The browser begins with the

first statement after the <script> tag and follows each instruction, in order, until it reaches the

closing </script> tag (or encounters an error).

Although this is a straightforward approach for short scripts, it can be confusing to read a longer

script written in this fashion. To make it easier for you to organize your scripts, JavaScript supports

functions, which you learned about briefly in Lesson 20. In this section, you will learn how to

define and use functions.

Defining a Function
A function is a group of JavaScript statements that can be treated as a single unit. To use a func-

tion, you must first define it. Here is a simple example of a function definition:

function Greet() {
 alert("Greetings!");
}

This snippet defines a function that displays an alert message to the user. It begins with the

function keyword followed by the name you’re giving to the function—in this case, the func-

tion’s name is Greet. Notice the parentheses after the function’s name. As you’ll learn in short

order, the parentheses are not always empty, as they are here.

The first and last lines of the function definition include curly braces ({}). You use these curly

braces to enclose all the statements within the function. The browser uses the curly braces to

determine where the function begins and ends.

Between the braces is the core JavaScript code of the function. This particular function contains a

single line that invokes the alert method, which displays an alert message to the user. The mes-

sage contains the text "Greetings!".

CAUTION

Function names are case sensitive. If you define a function such as Greet with a capital letter, be
sure you use the identical name when you call the function. If you define the function with the name
Greet but you attempt to call the function using greet, it will not work.

Now, about those parentheses. The current version of the Greet function always does the same

thing: Each time you use it, it displays the same message in the alert pop-up window.

To make this function more flexible, you can add parameters, also known as arguments. These

are variables that are received by the function each time it is called. For example, you can add a

Using Functions 571

parameter called who that tells the function the name of the person to greet, based on the value

of that parameter when the function is called. Here is the modified Greet function:

function Greet(who) {
 alert("Greetings, " + who + "!");
}

Of course, to actually call this function and see its behavior in action, you need to include it in an

HTML document. It used to be common to include all functions in the <head> of the document,

but best practices now recommend that you include them at the end of the HTML unless there is

some specific reason they need to be positioned higher in the document.

Listing 22.4 shows the Greet function embedded in the header section of an HTML document but

not yet called into action.

LISTING 22.4 The Greet Function in an HTML Document

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Functions</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <p>This is the body of the page.</p>

 <script>
 function Greet(who) {
 alert("Greetings, " + who + "!");
 }
 </script>
 </body>
</html>

Calling the Function
You have defined a function and placed it in an HTML document. However, if you load Listing

22.4 into a browser, you’ll notice that it does absolutely nothing besides display the text “This is

the body of the page.” This lack of action is because the function is defined—ready to be used—but

you haven’t used it yet.

Making use of a function is referred to as calling the function. To call a function, use the function’s

name as a statement in a script or as an action associated with an event. To call a function, you

572 LESSON 22: Using JavaScript Variables, Strings, and Arrays

need to include the parentheses and the values for the function’s parameters, if any. For example,

here’s a statement that calls the Greet function:

Greet("Fred");

This tells the JavaScript interpreter to go ahead and start processing the first statement in the

Greet function. When you call the function in this manner, with a parameter within the paren-

theses, you pass the parameter "Fred" to the function. This value of "Fred" is then assigned to

the who variable inside the function.

NOTE

A function can have more than one parameter. To define a function with multiple parameters, list
a variable name for each parameter, separating the parameters with commas. To call the function,
specify values for the parameters, separated by commas.

Listing 22.5 shows a complete HTML document that includes the function definition and a few

buttons within the page that call the function as an action associated with an event. To demon-

strate the usefulness of functions, we’ll call it twice to greet two different people—using two

different parameters.

LISTING 22.5 The Complete Function Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Functions</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Function Example</h1>
 <p>Who are you?</p>
 <button type="button" onclick="Greet('Fred');">I am Fred</button>
 <button type="button" onclick="Greet('Ethel');">I am Ethel</button>

 <script>
 function Greet(who) {
 alert("Greetings, " + who + "!");
 }
 </script>
 </body>
</html>

Using Functions 573

This listing includes two buttons, each of which calls the Greet function a bit differently—with a

different parameter associated with the call from each button.

Now that you have a script that actually does something, try loading it into a browser. If you click

one of the buttons, you should see something like the screen in Figure 22.3, which shows the

alert that appears when one of the buttons (I Am Ethel, in this case) is clicked.

FIGURE 22.3
The output of the Greet function example, with one button clicked.

Returning a Value
The function you created in the preceding example displays a message to the user in an alert pop-

up, but a function can also return a value to the script that called it. This means you can use

functions to calculate values. As an example, let’s create a function that averages four numbers.

As usual, your function should begin with the function keyword, the function’s name, and the

parameters it accepts. Here we will use the variable names a, b, c, and d for the four numbers to

average. Here is the first line of the function:

function Average(a,b,c,d) {

NOTE

Here we include the opening brace ({) on the first line of the function. This is a common style, but
you can also place the brace on the next line or on a line by itself.

Next, the function needs to calculate the average of the four parameters. You can calculate this

by adding them and then dividing by the number of parameters (in this case, 4). Thus, here is the

next line of the function:

var result = (a + b + c + d) / 4;

This statement creates a variable called result and calculates the value assigned to result by

adding the four numbers and then dividing by 4. (The parentheses are necessary to tell JavaScript

to be absolutely sure to perform the addition before the division.)

574 LESSON 22: Using JavaScript Variables, Strings, and Arrays

To send this result back to the script that called the function, you use the return keyword. Here

is the last part of the function:

return result;
}

Listing 22.6 shows the complete Average function in an HTML document. This HTML document

also includes a small script in the <body> section that calls the Average function and displays

the result.

LISTING 22.6 The Average Function in an HTML Document

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Function Example: Average</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <script>
 function Average(a,b,c,d) {
 var result = (a + b + c + d) / 4;
 return result;
 }
 </script>
 </head>
 <body>
 <h1>Function Example: Average</h1>
 <p>The following is the result of the function call.</p>
 <p>
 <script>
 var score = Average(3,4,5,6);
 document.write("The average is: " + score);
 </script>
 </p>
 </body>
</html>

The script in Listing 22.6 is an example of a script that won’t work if the function is not loaded in

the <head> of the document. This script is not unobtrusive, as you’ve learned in previous lessons,

but making it unobtrusive would require more advanced JavaScript.

If you open the script in Listing 22.6 in your web browser, you will see the average printed on the

screen, courtesy of the document.write method, as shown in Figure 22.4.

Introducing Objects 575

FIGURE 22.4
The output of the Average function example.

You can use a variable with the function call, as shown in Listing 22.6. This statement averages

the numbers 3, 4, 5, and 6 and stores the result in a variable called score:

var score = Average(3,4,5,6);

NOTE

You can also use the function call directly in an expression. For example, you could use the alert
statement to display the result of the function alert(Average(1,2,3,4)).

Introducing Objects
Earlier in this lesson, you learned how to use variables to represent different kinds of data in

JavaScript. JavaScript also supports objects, a more complex kind of variable that can store mul-

tiple data items and functions. Although a variable can have only one value at a time, an object

can contain multiple values, which enables you to group related data items into a single object.

In this lesson, you’ll learn how to define and use your own objects. You’ve already worked with

some of them, including the following:

 N DOM objects—These objects enable your scripts to interact with elements of the web browser

and web documents. You learned about these in Lesson 21, “Working with the Document

Object Model (DOM).”

 N Built-in objects—These include strings and arrays, which you learned about previously in

this lesson.

The syntax for working with all three types of objects—DOM objects, built-in objects, and custom

objects—is the same, so even if you don’t end up creating your own objects, you should have a

good understanding of JavaScript’s object terminology and syntax.

576 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Creating Objects
When you create an array, you use the following JavaScript statement:

scores = new Array(4);

The new keyword tells the JavaScript interpreter to use built-in functionality to create an object of

the Array type. Objects have one or more properties—essentially, properties are variables, with

values, that are stored within the object. For example, in Lesson 21, you learned you can use the

location.href property to get the URL of the current document because the value (the URL) is

assigned to that property, just as a value is assigned to a variable. The href property is one of the

properties of the location object in the DOM.

You’ve also used the length property of String objects, as in the following example:

var stringtest = "This is a test.";
document.write(stringtest.length);

To reiterate, as with variables, each object property has a value. To read a property’s value, you

simply reference the object name and property name, separated by a period, in any expression.

For instance, the example you just saw uses stringtest.length. You can change a property’s

value by using the = operator, just as you can change the assignment of a value to a variable.

The following example sends the browser to a new URL by assigning a new variable to the

location.href property:

location.href="http://www.google.com/";

NOTE

An object can also be a property of another object. This is referred to as a child object.

Understanding Methods
Along with properties, each object can have one or more methods. These are functions that work

with an object’s data. For example, as you learned in Lesson 21, the following JavaScript state-

ment reloads the current document:

location.reload();

When you use the reload method, you’re using a method of the location object. Like other

functions, methods can accept arguments in parentheses, and they can return values. Each object

type in JavaScript has its own list of built-in methods. For example, a list of built-in methods for

the Array object can be found at https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/Array/prototype#Methods.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Methods

Using Objects to Simplify Scripting 577

Using Objects to Simplify Scripting
Although JavaScript’s variables and arrays provide versatile ways to store data, sometimes you

need a more complicated structure, which is when objects are useful. For example, suppose you

are creating a script to work with a business card database that contains names, addresses, and

phone numbers for various people.

If you were using regular variables, you would need several separate variables for each person in

the database: a name variable, an address variable, and so on. This would be very confusing, not

to mention quite lengthy to define.

Arrays would improve things—but only slightly. You could have a names array, an addresses array,

and a phone number array. Each person in the database would have an entry in each array. This

would be more convenient than having many individually named variables, but it is still not perfect.

With objects, you can make the variables that store the database as logical as the physical busi-

ness cards they are supposed to represent. Each person could be represented by a new Card

object, which would contain properties for name, address, and phone number. You can even add

methods to the object to display or work with the information, which is where the real power of

using objects comes into play.

In the following sections, you’ll use JavaScript to create a Card object and some properties and

methods. Later in this lesson, you’ll use the Card object in a script that will be used to display

information for several members of this datastore you’ve created through the use of objects.

Defining an Object
The first step in creating an object is to name it and its properties. In this case, you should call

your object Card, and it will have the following properties:

 N name

 N email

 N address

 N phone

To use this object in a JavaScript program, you need to create a function to make new instances of

the Card object. This function is called the constructor for an object. Here is the constructor func-

tion for the Card object:

function Card(name,email,address,phone) {
 this.name = name;
 this.email = email;
 this.address = address;
 this.phone = phone;
}

578 LESSON 22: Using JavaScript Variables, Strings, and Arrays

The constructor is a simple function that accepts parameters to initialize a new object and assigns

them to the corresponding properties. You can think of it like setting up a template for the object.

The Card function in particular accepts several parameters from any statement that calls the

function and then assigns these parameters as properties of an object. Because the function is

called Card, the object created is a Card object.

Notice the this keyword. You’ll use it anytime you create an object definition. Use this to refer

to the current object—the one that is being created by the function.

Defining an Object Method
Next, you need to create a method to work with the Card object. Because all Card objects will

have the same properties, it might be handy to have a function that prints the properties in a

neat format. You can call this function printCard.

Your printCard function will be used as a method for Card objects, so you don’t need to ask for

parameters. Instead, you can use the this keyword again to refer to the current object’s proper-

ties. Here is a function definition for the printCard function:

function printCard() {
 var name_line = "Name: " + this.name + "
\n";
 var email_line = "Email: " + this.email + "
\n";
 var address_line = "Address: " + this.address + "
\n";
 var phone_line = "Phone: " + this.phone + "<hr>\n";
 document.write(name_line, email_line, address_line, phone_line);
}

This function simply reads the properties from the current object (this), prints each one with a

label string before it, and then creates a new line.

You now have a function that prints a card, but it isn’t officially a method of the Card object. The

last thing you need to do is make printCard part of the function definition for Card objects.

Here is the modified function definition:

function Card(name,email,address,phone) {
 this.name = name;
 this.email = email;
 this.address = address;
 this.phone = phone;
 this.printCard = printCard;
}

The added statement looks just like another property definition, but it refers to the printCard func-

tion. This new method will work as long as printCard has its own function definition elsewhere in

the script. (A method is essentially a property that defines a function rather than a simple value.)

Using Objects to Simplify Scripting 579

NOTE

The previous example uses lowercase names such as address for properties and a mixed-case
name (printCard) for the method. You can use any case for property and method names, but fol-
lowing the convention shown here is one way to make it clear that printCard is a method rather
than an ordinary property.

Creating an Object Instance
Now you can use the object definition and method you just created. To use an object definition,

you use the new keyword to create a new object. This is the same keyword you’ve already used to

create Date and Array objects. The following statement creates a new Card object called tom:

tom = new Card("Tom Jones", "tom@jones.com",
 "123 Elm Street, Sometown ST 77777",
 "555-555-9876");

As you can see, creating an object is easy. All you do is call the Card function (the object defini-

tion) and enter the required attributes in the same order that you defined originally (in this case,

the parameters name, email, address, phone).

After this statement executes, you will have a new object to hold Tom’s information. This new

object, now named tom, is called an instance of the Card object. Just as there can be several string

variables in a program, there can be several instances of an object you define.

Rather than specify all the information for a card with the new keyword, you can assign the

properties after the fact. For example, the following script creates an empty Card object called

holmes and then assigns its properties:

holmes = new Card();
holmes.name = "Sherlock Holmes";
holmes.email = "sherlock@holmes.com";
holmes.address = "221B Baker Street";
holmes.phone = "555-555-3456";

After you’ve created an instance of the Card object, using either of these methods, you can use

the printCard method to display its information. For example, this statement displays the prop-

erties of the tom card:

tom.printCard();

Now you’ve created a new object to store business cards and a method to print them. As a final

demonstration of objects, properties, functions, and methods, you will now use this object in a

web page to display data for several cards.

580 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Your script needs to include the function definition for printCard, along with the function defi-

nition for the Card object. You will then create three cards and print them in the body of the

document. You will use separate HTML and JavaScript files for this example. Listing 22.7 shows

the complete script.

LISTING 22.7 A Sample Script That Uses the Card Object

// define the functions
function printCard() {
 var name_line = "Name: " + this.name + "
\n";
 var email_line = "Email: " + this.email + "
\n";
 var address_line = "Address: " + this.address + "
\n";
 var phone_line = "Phone: " + this.phone + "<hr>\n";
 document.write(name_line, email_line, address_line, phone_line);
}

function Card(name,email,address,phone) {
 this.name = name;
 this.email = email;
 this.address = address;
 this.phone = phone;
 this.printCard = printCard;
}

// Create the objects
var sue = new Card("Sue Suthers",
 "sue@suthers.com",
 "123 Elm Street, Yourtown ST 99999",
 "555-555-9876");
var fred = new Card("Fred Fanboy",
 "fred@fanboy.com",
 "233 Oak Lane, Sometown ST 99399",
 "555-555-4444");
var jimbo = new Card("Jimbo Jones",
 "jimbo@jones.com",
 "233 Walnut Circle, Anotherville ST 88999",
 "555-555-1344");
// Now print them
sue.printCard();
fred.printCard();
jimbo.printCard();

Notice that the printCard function has been modified slightly to make things look good, with

the labels in boldface. To prepare to use this script, save it as cards.js. Next, you’ll need to

include the cards.js script in a simple HTML document. Listing 22.8 shows the HTML document

for this example.

Using Objects to Simplify Scripting 581

LISTING 22.8 The HTML File for the Card Object Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>JavaScript Business Cards</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>JavaScript Business Cards</h1>
 <p>External script output coming up...</p>
 <script src="cards.js"></script>
 <p>External script output has ended.</p>
 </body>
</html>

To test the complete script, save this HTML document in the same directory as the cards.js file

you created earlier and then load the HTML document into a browser. Figure 22.5 shows how this

example looks in a browser.

FIGURE 22.5
Displaying the output of the business card example.

582 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Extending Built-in Objects
JavaScript includes a feature that enables you to extend the definitions of built-in objects. For

example, if you think the String object doesn’t quite fit your needs, you can extend it by adding

a new property or method. This might be very useful, for example, if you want to create a large

script that uses many strings and manipulates those strings in unique ways.

You can add both properties and methods to an existing object by using the prototype keyword.

(A prototype is another name for an object’s definition, or constructor function.) The prototype

keyword enables you to change the definition of an object outside its constructor function.

As an example, you can add a method to the String object definition. You will create a method

called heading, which converts a string into an HTML heading. The following statement defines

a string called myTitle:

var myTitle = "Fred's Home Page";

This statement would output the contents of the myTitle string as an HTML level 1 heading

(<h1>):

document.write(myTitle.heading(1));

Listing 22.9 adds a heading method to the String object definition that will display the string

as a heading and then displays three headings using the new method.

LISTING 22.9 Adding a Method to the String Object

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Test of Heading Method</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <script>
 function addHeading(level) {
 var html = "h" + level;
 var text = this.toString();
 var opentag = "<" + html + ">";
 var closetag = "</" + html + ">";
 return opentag + text + closetag;
 }
 String.prototype.heading = addHeading;
 document.write("This is a heading 1".heading(1));
 document.write("This is a heading 2".heading(2));
 document.write("This is a heading 3".heading(3));

583Using the Math Object

 </script>
 </body>
</html>

CAUTION

The code in Listing 22.9 is not unobtrusive, nor is it particularly accessible. You should use it as
an example of how the heading method works, but it’s not a good idea to use this script in live
content.

You need to define the addHeading function, which will serve as the new string method. It

accepts a number to specify the heading level. The opentag and closetag variables are used to

store the HTML “begin heading tag” and “end heading tag” tags, such as <h1> and </h1>.

After the function is defined, use the prototype keyword to add it as a method of the String

object. You can then use this method on any String object or, in fact, any JavaScript string. This

is demonstrated by the last three statements, which display quoted text strings as level 1, 2, and 3

headings.

If you load this document into a browser, it should look something like what’s shown in

Figure 22.6.

FIGURE 22.6
Displaying the dynamic heading example.

Using the Math Object
The Math object is a built-in JavaScript object that includes math constants and functions. You’ll

never need to create a Math object because it exists automatically in any JavaScript program. The

Math object’s properties represent mathematical constants, and its methods are mathematical

functions. If you’re working with numbers in any way in your JavaScript, the Math object will be

your new best friend.

584 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Rounding and Truncating
Three of the most useful methods of the Math object enable you to round decimal values up

and down:

 N Math.ceil—Rounds a number up to the next integer

 N Math.floor—Rounds a number down to the next integer

 N Math.round—Rounds a number to the nearest integer

All these methods take the number to be rounded as their only parameter. You might notice one

thing missing: the capability to round to a decimal place, such as for dollar amounts. Fortunately,

you can easily simulate this, as shown in this simple function that rounds numbers to two decimal

places:

function round(num) {
 return Math.round(num * 100) / 100;
}

The function shown here multiplies the value by 100 to move the decimal and then rounds the

number to the nearest integer. Finally, the value is divided by 100 to restore the decimal to its

original position.

Generating Random Numbers
One of the most commonly used methods of the Math object is the Math.random method, which

generates a random number. This method doesn’t require any parameters. The number it returns

is a random decimal number between zero and one.

You’ll usually want a random number between one and some predetermined value. You can gen-

erate such a number by using a general-purpose random number function. The following function

generates random numbers between one and the parameter you send it:

function rand(num) {
 return Math.floor(Math.random() * num) + 1;
}

This function multiplies a random number by the value specified in the num parameter and then

converts it to an integer between one and the number by using the Math.floor method.

Other Math Methods
The Math object includes many methods beyond those you’ve looked at here. For example,

Math.sin and Math.cos calculate sines and cosines. The Math object also includes proper-

ties for various mathematical constants, such as Math.PI. You can see a list of all the built-in

585Working with Math Methods

methods you can use with the Math object at https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Math#Methods.

Working with Math Methods
The Math.random method generates a random number between 0 and 1. However, it’s essential-

ly impossible for a computer to generate a truly random number. (It’s also hard for a human being

to do so, which is why dice were invented.) Today’s computers do reasonably well at generating

random numbers, but just how good is JavaScript’s Math.random function? One way to test it is

to generate many random numbers and calculate the average of all of them.

In theory, the average of all generated numbers should be somewhere near .5, or halfway

between 0 and 1. The more random values you generate, the closer the average should get to this

middle ground. To really do this test, you can create a script that tests JavaScript’s random num-

ber function by generating 5,000 random numbers and calculating their average.

This example will use a for loop, which you’ll learn more about in the next lesson, but this is a

simple enough example that you should be able to follow along. In this case, the for loop will

generate the random numbers. You’ll be surprised how fast JavaScript can do this.

To begin your script, initialize a variable called total. This variable will store a running total of

all the random values, so it’s important that it starts at 0, like so:

var total = 0;

Next, begin a loop that will execute 5,000 times. Use a for loop because you want it to execute

for a fixed number of times (in this case 5,000):

for (i=1; i<=5000; i++) {

Within the for loop, you need to create a random number and add its value to the total vari-

able. Here are the statements that do this and continue with the next iteration of the loop:

 var num = Math.random();
 total += num;
}

Depending on the speed of your computer, it might take a few seconds to generate those 5,000

random numbers. Just to be sure something is happening, you can have the script display a status

message after each 1,000 numbers:

if (i % 1000 == 0) {
 document.write("Generated " + i + " numbers...
");
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math#Methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math#Methods

586 LESSON 22: Using JavaScript Variables, Strings, and Arrays

NOTE

The % symbol in the previous code is the modulo operator, which gives you the remainder after divid-
ing one number by another. In this case it is used to find even multiples of 1,000.

The final part of your script calculates the average by dividing the value of the total variable by

5,000. It also rounds the average to three decimal places, for fun:

var average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write("<h2>Average of 5000 numbers is: " + average + "</h2>");

To test this script and see just how random the numbers are, combine the complete script with an

HTML document and <script> tags. Listing 22.10 shows the complete random number testing

script.

LISTING 22.10 A Script to Test JavaScript’s Random Number Function

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Math Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Math Example</h1>
 <p>How random are JavaScript's random numbers?

 Let's generate 5000 of them and find out.</p>
 <script>
 var total = 0;
 for (i=1; i<=5000; i++) {
 var num = Math.random();
 total += num;
 if (i % 1000 == 0) {
 document.write("Generated " + i + " numbers...
");
 }
 }
 var average = total / 5000;
 average = Math.round(average * 1000) / 1000;
 document.write("<h2>Average of 5000 numbers is: " +
 average + "</h2>");
 </script>
 </body>
</html>

Working with Dates 587

To test the script, load the HTML document into a browser. After a short delay, you should see a

result. If it’s close to .5, the numbers are reasonably random. My result was .502, as shown in

Figure 22.7. If you reload the page, you’ll likely get different results, but they should all be

around .5.

NOTE

The average used here is called an arithmetic mean. This type of average isn’t a perfect way to
test randomness. Actually, all it tests is the distribution of the numbers above and below .5.
For example, if the numbers turned out to be 2,500 .4s and 2,500 .6s, the average would be a
perfect .5—but the numbers wouldn’t be very random. (Thankfully, JavaScript’s random numbers
don’t have this problem.)

FIGURE 22.7
The random number testing script in action.

Working with Dates
The Date object is a built-in JavaScript object that enables you to work more easily with dates and

times. You can create a Date object anytime you need to store a date and use the Date object’s

methods to work with the date.

You encountered one example of a Date object in Lesson 4 with the time and date script. The

Date object has no properties of its own. To set or obtain values from a Date object, use the

methods described in the next section.

588 LESSON 22: Using JavaScript Variables, Strings, and Arrays

NOTE

JavaScript dates are stored as the number of milliseconds since midnight on January 1, 1970. This
date is called the epoch. Dates before 1970 weren’t allowed in early versions but are now repre-
sented by negative numbers.

Creating a Date Object
You can create a Date object by using the new keyword. You can also optionally specify the date

to store in the object when you create it. You can use any of the following formats:

birthday = new Date();
birthday = new Date("November 1, 2014 08:00:00");
birthday = new Date(11,1, 2014);
birthday = new Date(11,1,2014, 8, 0, 0);

You can choose any of these formats, depending on which values you want to set. If you use no

parameters, as in the first example, the current date is stored in the object. You can then set the

values by using the set methods, described in the next section.

Setting Date Values
Various set methods enable you to set components of a Date object to values:

 N setDate—Sets the day of the month.

 N setMonth—Sets the month, from 0 for January to 11 for December

 N setFullYear—Sets the year

 N setTime—Sets the time (and the date) by specifying the number of milliseconds since

January 1, 1970

 N setHours, setMinutes, and setSeconds—Set the time

As an example, the following statement sets the year of a Date object called holiday to 2018:

holiday.setFullYear(2018);

Reading Date Values
You can use the get methods to get values from a Date object. This is the only way to obtain

these values because they are not available as properties. Here are the available get methods for

dates:

 N getDate—Gets the day of the month

 N getMonth—Gets the month

Working with Dates 589

 N getFullYear—Gets the four-digit year

 N getTime—Gets the time (and the date) as the number of milliseconds since January 1, 1970

 N getHours, getMinutes, getSeconds, and getMilliseconds—Get the components

of the time

NOTE

Along with setFullYear and getFullYear, which require four-digit years, JavaScript includes the
setYear and getYear methods, which use two-digit year values.

Working with Time Zones
Finally, a few functions are available to help your Date objects work with local time values and

time zones:

 N getTimeZoneOffset—Gives you the local time zone’s offset from UTC (Coordinated

Universal Time, based on the old Greenwich Mean Time standard). In this case, local refers

to the location of the browser. (Of course, this works only if the user has set his or her sys-

tem clock accurately.)

 N toUTCString—Converts the date object’s time value to text, using UTC.

 N toLocalString—Converts the date object’s time value to text, using local time.

Along with these basic functions, JavaScript includes UTC versions of several of the functions

described previously. These are identical to the regular commands but work with UTC instead of

local time:

 N getUTCDate—Gets the day of the month in UTC time

 N getUTCDay—Gets the day of the week in UTC time

 N getUTCFullYear—Gets the four-digit year in UTC time

 N getUTCMonth—Returns the month of the year in UTC time

 N getUTCHours, getUTCMinutes, getUTCSeconds, and getUTCMilliseconds—Return

the components of the time in UTC

 N setUTCDate, setUTCFullYear, setUTCMonth, setUTCHours, setUTCMinutes,

setUTCSeconds, and setUTCMilliseconds—Set the time in UTC

590 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Converting Between Date Formats
Two special methods of the Date object enable you to convert between date formats:

 N Date.parse—Converts a date string, such as March 1, 2018, to a Date object (the

number of milliseconds since 1/1/1970)

 N Date.UTC—Converts a Date object value (the number of milliseconds) to a UTC (GMT) time

Instead of using these methods with a Date object you have created, you use them with the

 built-in object Date.

Summary
In this lesson, we focused on variables and how JavaScript handles them. You’ve learned how to

name variables, how to declare them, and the differences between local and global variables. You

also explored the data types supported by JavaScript and how to convert between them.

You learned about JavaScript’s more complex variable types—strings and arrays—and looked at

features that enable you to perform operations on them, such as converting strings to uppercase

and sorting arrays.

You learned several important features of JavaScript in this lesson. First, you learned how to use

functions to group JavaScript statements and how to call functions and use the values they return.

Next, you learned about JavaScript’s object-oriented features—defining objects with constructors,

creating object instances, and working with properties, property values, and methods.

As an example of these object-oriented features, you looked more closely at the Math and Date

built-in JavaScript objects and learned more than you ever wanted to know about random

numbers.

Q&A
 Q. What is the importance of the var keyword? Should I always use it to declare variables?

 A. You only need to use var to define a local variable in a function. However, if you’re unsure
at all, it’s always safe to use var. Using it consistently will help you keep your scripts
 organized and error free.

 Q. Is there any reason I would want to use the var keyword to create a local variable with the

same name as a global one?

 A. Not on purpose. The main reason to use var is to avoid conflicts with global variables you
might not know about. For example, you might add a global variable in the future, or you
might add another script to the page that uses a similar variable name. This is more of an
issue with large, complex scripts.

591Workshop

 Q. What good are Boolean variables?

 A. Often in scripts you’ll need a variable to indicate whether something has happened—for
example, whether a phone number the user has entered is in the right format. Boolean
variables are ideal for this; they’re also useful in working with conditions, as you’ll see in
Lesson 23.

 Q. Can I store other types of data in an array? For example, can I have an array of dates?

 A. Absolutely. JavaScript enables you to store any data type in an array.

 Q. Many objects in JavaScript, such as DOM objects, include parent and child objects. Can

I include child objects in my custom object definitions?

 A. Yes. Just create a constructor function for the child object and then add a property to the
parent object that corresponds to it. For example, if you created a Nicknames object to
store several nicknames for a person in the card file example, you could add it as a child
object in the Card object’s constructor: this.nick = new Nicknames();.

 Q. Can I create an array of custom objects?

 A. Yes. First, create the object definition as usual and define an array with the required
number of elements. Then assign a new object to each array element (for example,
cardarray[1] = new Card();). You can use a loop, as described in the next lesson,
to assign objects to an entire array at once.

 Q. Can I modify all properties of objects?

 A. With custom objects, yes—but this varies with built-in objects and DOM objects. For exam-
ple, you can use the length property to find the length of a string, but it is a read-only
property and cannot be modified.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. Which of the following is not a valid JavaScript variable name?

 a. 2names

 b. first_and_last_names

 c. FirstAndLast

592 LESSON 22: Using JavaScript Variables, Strings, and Arrays

 2. If the statement var fig=2 appears in a function, which type of variable does it declare?

 a. A global variable

 b. A local variable

 c. A constant variable

 3. If the string test contains the value The eagle has landed., what would be the value
of test.length?

 a. 4

 b. 21

 c. The

 4. Using the same sample string, which of these statements would return the word eagle?

 a. test.substring(4,9)

 b. test.substring(5,9)

 c. test.substring("eagle")

 5. What will be the result of the JavaScript expression 31 + " angry polar bears"?

 a. An error message

 b. 32

 c. "31 angry polar bears"

 6. What JavaScript keyword is used to create an instance of an object?

 a. object

 b. new

 c. instance

 7. What is the meaning of the this keyword in JavaScript?

 a. It refers to the current object.

 b. It refers to the current script.

 c. It has no meaning.

 8. Which of the following objects cannot be used with the new keyword?

 a. Date

 b. Math

 c. String

593Workshop

 9. How does JavaScript store dates in a Date object?

 a. The number of milliseconds since January 1, 1970

 b. The number of days since January 1, 1900

 c. The number of seconds since Netscape’s public stock offering

 10. What is the range of random numbers generated by the Math.random function?

 a. Between 1 and 100

 b. Between 1 and the number of milliseconds since January 1, 1970

 c. Between 0 and 1

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. a. 2names is an invalid JavaScript variable name because it begins with a number. The

 others are valid, although they’re probably not ideal choices for names.

 2. b. Because the variable is declared in a function, it is a local variable. The var keyword
ensures that a local variable is created.

 3. b. The length of the string is 21 characters.

 4. a. The correct statement is test.substring(4,9). Remember that the indexes start
with 0 and that the second index is noninclusive.

 5. c. JavaScript converts the whole expression to the string "31 angry polar bears".
(We mean no offense to polar bears, who are seldom angry and are rarely seen in groups
this large.)

 6. b. The new keyword creates an object instance.

 7. a. The this keyword refers to the current object.

 8. b. The Math object is static; you can’t create a Math object.

 9. a. Dates are stored as the number of milliseconds since January 1, 1970.

 10. c. JavaScript’s random numbers are between 0 and 1.

http://www.informit.com/register

594 LESSON 22: Using JavaScript Variables, Strings, and Arrays

Exercises
 N Modify the sorting example in Listing 22.3 to convert the names to all uppercase and

display a numbered list of names in the <textarea>.

 N Modify the definition of the Card object to include a property called personal_notes
to store your own notes about the person. Modify the object definition and printCard
function in Listings 22.7 and 22.8 to include this property.

 N Modify the random number script in Listing 22.10 to run three times to calculate a total
of 15,000 random numbers and then display a separate total for each set of 5,000
numbers. (Hint: You’ll need to use another for loop that encloses most of the script.)

LESSON 23
Controlling Flow with
Conditions and Loops

What You’ll Learn in This Lesson:

 N How to test conditions with the if statement

 N How to use comparison operators to compare values

 N How to use logical operators to combine conditions

 N How to use alternative conditions with else

 N How to create expressions with conditional operators

 N How to test for multiple conditions

 N How to perform repeated statements with the for loop

 N How to use while and do...while loops

 N How to create infinite loops (and why you shouldn’t)

 N How to escape from loops and continue loops

 N How to loop through an array’s properties

Statements in a JavaScript program generally execute in the order in which they appear, one after

the other. Because this order isn’t always practical, most programming languages provide flow
control statements that let you control the order in which code is executed. Functions, which you

learned about in the preceding lesson, are one type of flow control; although a function might be

defined first thing in your code, its statements can be executed anywhere in the script.

In this lesson, you’ll look at two other types of flow control in JavaScript: conditions, which allow a

choice of different options depending on values that are tested, and loops, which allow statements

to repeat based on certain conditions.

The if Statement
One of the most important features of a computer language is the capability to test and compare

values and to perform different actions based on the results of the test or the values that are

596 LESSON 23: Controlling Flow with Conditions and Loops

 present. This allows your scripts to behave differently based on the values of variables or based on

input from the user.

The if statement is the main conditional statement in JavaScript. This statement means much the

same in JavaScript as it does in English. For example, here is a typical conditional statement in

English:

If the phone rings, answer it.

This statement consists of two parts: a condition (If the phone rings) and an action (answer it).
The if statement in JavaScript works much the same way. Here is an example of a basic if

statement:

if (a == 1) alert("I found a 1!");

This statement includes a condition (if a equals 1) and an action (display a message). This state-

ment checks the variable a and, if it has a value of 1, displays an alert message. Otherwise, it

does nothing.

If you use an if statement all on one line, as in the preceding example, you can use only a single

statement as the action. However, you can also use multiple statements for the action by enclosing

the entire if statement in curly braces ({}), as shown here:

if (a == 1) {
 alert("I found a 1!");
 a = 0;
}

This block of statements checks the variable a once again. If the value of the variable matches 1,

it displays a message and sets a to 0.

It’s up to you, as a matter of personal style, whether you use the curly braces for single statements

within flow control structures. Some people find it easier to read if all the flow control structures

are clearly delineated through the use of curly braces no matter their length, and other develop-

ers are perfectly happy using a mix of single-line conditional statements and statements within

braces. It doesn’t really matter which you use; just try to use them consistently for easier ongoing

maintenance.

Conditional Operators
The action part of an if statement can include any of the JavaScript statements you’ve already

learned (and those you haven’t, for that matter), but the condition part of the statement uses its

own syntax. This is called a conditional expression.

A conditional expression usually includes two values to be compared (in the preceding example,

the values a and 1). These values can be variables, constants, or even expressions in themselves.

597The if Statement

NOTE

Either side of the conditional expression can be a variable, a constant, or an expression. You can
compare a variable and a value or compare two variables. (You can also compare two constants, but
there’s usually no reason to do this.)

Between the two values to be compared is a conditional operator. This operator tells JavaScript how

to compare the two values. For instance, the == operator that you saw in the preceding section is

used to test whether the two values are equal.

Various conditional operators are available:

 N ==—Is equal to

 N !=—Is not equal to

 N <—Is less than

 N >—Is greater than

 N >=—Is greater than or equal to

 N <=—Is less than or equal to

CAUTION

Be sure not to confuse the equality operator (==) with the assignment operator (=), even though they
both might be read or referred to as “equals.” Remember to use = when assigning a value to a vari-
able and == when comparing values. Confusing these two is one of the most common mistakes in
programming (JavaScript or otherwise).

Combining Conditions with Logical Operators
Often, you’ll want to check a variable for more than one possible value or check more than one

variable at once. JavaScript includes logical operators, also known as Boolean operators, for this

purpose. For example, the following two statements check different conditions and use the same

action:

if (phone == "") alert("error!");
if (email == "") alert("error!");

Using a logical operator, you can combine them into a single statement:

if ((phone == "") || (email == "")) alert("Something Is Missing!");

This statement uses the logical OR operator (||) to combine the conditions. Translated to English,

this would be, “If the phone number is blank or the email address is blank, display an error

message.”

598 LESSON 23: Controlling Flow with Conditions and Loops

An additional logical operator is the AND operator, &&. Consider this statement:

if ((phone == "") && (email == "")) alert("Both Values Are Missing!");

In this case, the error message will be displayed only if both the email address and phone number

variables are blank.

NOTE

If the JavaScript interpreter discovers the answer to a conditional expression before reaching the
end, it does not evaluate the rest of the condition. For example, if the first of two conditions separat-
ed by the || operator is true, the second is not evaluated because the condition (one or the other)
has already been met. You can therefore use operators to improve the speed of your scripts.

A third logical operator is the exclamation point (!), which means NOT. It can be used to invert

an expression—in other words, make a true expression false and a false expression true. For

example, here’s a statement that uses the NOT operator:

if (!phone == "") alert("phone is OK");

In this statement, the ! (NOT) operator inverts the condition, so the action of the if statement is

executed only if the phone number variable is not blank. You could also use the != (NOT EQUAL)

operator to simplify this statement:

if (phone != "") alert("phone is OK");

Both of the preceding statements will alert you if the phone variable has a value assigned to it

(that is, if it is not blank or null).

NOTE

Logical operators are powerful, but it’s easy to accidentally create an impossible condition with them.
For example, the condition ((a < 10) && (a > 20)) might look correct at first glance. However,
if you read it out loud, you get “If a is less than 10 and a is greater than 20”—which is an impossi-
bility in our universe. In this case, OR (||) should have been used to make a meaningful condition.

The else Keyword
An additional feature of the if statement is the else keyword. Much like its English-language

counterpart, else tells the JavaScript interpreter what to do if the condition in the if statement

isn’t met. The following is a simple example of the else keyword in action:

if (a == 1) {
 alert("Found a 1!");
 a = 0;

Using Shorthand Conditional Expressions 599

} else {
 alert("Incorrect value: " + a);
}

This snippet displays a message and resets the variable a if the condition is met. If the condition is

not met (if a is not 1), a different message is displayed, courtesy of the else statement.

NOTE

Like the if statement, else can be followed either by a single action statement or by a number of
statements, enclosed in braces.

Using Shorthand Conditional Expressions
In addition to the if statement, JavaScript provides a shorthand type of conditional expression

that you can use to make quick decisions. This uses a peculiar syntax that is also found in other

languages, such as C. A conditional expression looks like this:

variable = (condition) ? (value if true) : (value if false);

This construction ends up assigning one of two values to the variable: one value if the condition is

true, and another value if it is false. Here is an example of a conditional expression:

value = (a == 1) ? 1 : 0;

This statement might look confusing, but it is equivalent to the following if statement:

if (a == 1) {
 value = 1;
} else {
 value = 0;
}

In other words, the value directly after the question mark (?) will be used if the condition is true,

and the value directly after the colon (:) will be used if the condition is false. The colon and what

follows represents the else portion of the statement, were it written as an if...else statement

and, like the else portion of the if statement, it is optional.

These shorthand expressions can be used anywhere JavaScript expects a value. They provide a

quick way to make simple decisions about values. As an example, here’s a quick way to display a

grammatically correct message about a variable:

document.write("Found " + counter +
 ((counter == 1) ? " word." : " words."));

600 LESSON 23: Controlling Flow with Conditions and Loops

This prints the message Found 1 word if the counter variable has a value of 1 and Found 2
words if its value is 2 or greater.

You might, in fact, find that conditional expressions are not quicker or easier for you to use, and

that is perfectly fine. You should, however, know what they look like and how to read them in case

you encounter them in someone else’s code in the future.

Testing Multiple Conditions with
if and else
You now have all the pieces necessary to create a script using if and else statements to control

flow. In Lesson 4, “Understanding JavaScript,” you created a simple script that displays the current

date and time. You’ll use that knowledge here as you create a script that uses conditions to dis-

play a greeting that depends on the time: “Good morning,” “Good afternoon,” “Good evening,” or

“Good day.” To accomplish this task, you can use a combination of several if statements, like so:

if (hour_of_day < 10) {
 document.write("Good morning.");
} else if ((hour_of_day >= 14) && (hour_of_day <= 17)) {
 document.write("Good afternoon.");
} else if (hour_of_day >= 17) {
 document.write("Good evening.");
} else {
 document.write("Good day.");
}

The first statement checks the hour_of_day variable for a value less than 10. In other words, it

checks whether the current time is before 10:00 a.m. If so, it displays the greeting “Good morning.”

The second statement checks whether the time is between 2:00 p.m. and 5:00 p.m. and, if so, dis-

plays “Good afternoon.” This statement uses else if to indicate that this condition will be tested

only if the preceding one failed; if it’s morning, there’s no need to check whether it’s afternoon.

Similarly, the third statement checks for times after 5:00 p.m. and displays “Good evening.”

The final statement uses a simple else, meaning it will be executed if none of the previous condi-

tions matched. This covers the times between 10:00 a.m. and 2:00 p.m. (neglected by the other

statements) and displays “Good day.”

The HTML File
To try the time and greeting example in a browser, you need an HTML file. In this case, you

can keep the JavaScript code separate. Listing 23.1 is the complete HTML file. Save it as

timegreet.html but don’t load it into the browser until you’ve prepared the JavaScript file

in the next section.

http://timegreet.html

601Testing Multiple Conditions with if and else

LISTING 23.1 The HTML File for the Time and Greeting Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Time Greet Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Current Date and Time</h1>
 <script src="timegreet.js"></script>
 </body>
</html>

The JavaScript File
Listing 23.2 shows the complete JavaScript file for the time and greeting example. This uses

the built-in Date object functions to find the current date and store it in hour_of_day,

minute_of_hour, and seconds_of_minute variables, as you learned in the last lesson.

Next, document.write statements display the current time, and the if and else statements,

introduced earlier, display an appropriate greeting.

LISTING 23.2 A Script to Display the Current Time and a Greeting

// Get the current date
now = new Date();

// Split into hours, minutes, seconds
hour_of_day = now.getHours();
minute_of_hour = now.getMinutes();
seconds_of_minute = now.getSeconds();

// Display the time
document.write("<h2>");
document.write(hour_of_day + ":" + minute_of_hour +
 ":" + seconds_of_minute);
document.write("</h2>");

// Display a greeting
// open the paragraph
document.write("<p>");

602 LESSON 23: Controlling Flow with Conditions and Loops

// change the greetings
if (hour_of_day < 10) {
 document.write("Good morning.");
} else if ((hour_of_day >= 14) && (hour_of_day <= 17)) {
 document.write("Good afternoon.");
} else if (hour_of_day >= 17) {
 document.write("Good evening.");
} else {
 document.write("Good day.");
}
// close the paragraph
document.write("</p>");

To try this example, save this file as timegreet.js and then load the timegreet.html file

into your browser. Figure 23.1 shows the results of this script.

FIGURE 23.1
The output of the time and greeting example.

Using Multiple Conditions with switch
In Listing 23.2, you used several if...else statements in a row to test for different conditions.

Here is another example of this technique:

if (button=="next") {
 window.location="next.html";
} else if (button=="previous") {
 window.location="previous.html";
} else if (button=="home") {
 window.location="home.html";
} else if (button=="back") {
 window.location="menu.html";
}

http://timegreet.html
http://"next.html"
http://"previous.html"
http://"home.html"
http://"menu.html"

603Using Multiple Conditions with switch

Although using this construction is a logical way of doing things, this method can get messy

if each if statement has its own block of code with several statements in it. As an alternative,

JavaScript includes the switch statement, which enables you to combine several tests of the same

variable or expression into a single block of statements. The following shows the same example

converted to use switch:

switch(button) {
 case "next":
 window.location="next.html";
 break;
 case "previous":
 window.location="previous.html";
 break;
 case "home":
 window.location="home.html";
 break;
 case "back":
 window.location="menu.html";
 break;
 default:
 window.alert("Wrong button.");
}

The switch statement has several components:

 N The initial switch statement—This statement includes the value to test (in this case,

button) in parentheses.

 N Braces ({ and })—Braces enclose the contents of the switch statement, much as with a

function or an if statement.

 N One or more case statements—Each of these statements specifies a value to compare with

the value specified in the switch statement. If the values match, the statements after the

case statement are executed. Otherwise, the next case is tried.

 N The break statement—This statement is used to end each case to skip to the end of the

switch. If break is not included, statements in multiple cases might be executed, whether

or not they match.

 N The default case—Optionally, the default case can be included and followed by one or

more statements that are executed if none of the other cases were matched.

NOTE

You can use multiple statements after each case statement within the switch structure and not just
the single-line statements shown here. You don’t need to enclose them in braces. If the case matches,
the JavaScript interpreter executes statements until it encounters a break or the next case.

http://"next.html"
http://"previous.html"
http://"home.html"
http://"menu.html"

604 LESSON 23: Controlling Flow with Conditions and Loops

One of the main benefits of using a switch statement instead of an if...else statement is

readability: In one glance you know that all the conditional tests are for the same expression, and

you can therefore focus on understanding the desired outcome of the conditional tests. But using

a switch statement is purely optional; you might find that you prefer if...else statements,

and there’s nothing wrong with that. Any efficiency gains in using a switch statement instead of

an if...else statement will not be noticeable to human eyes, if any is even present at all. The

bottom line is this: Use what you like.

Using for Loops
The for keyword is the first tool to consider for creating loops, much as you saw in the preceding

lesson, in the random number example. A for loop typically uses a variable (called a counter or

an index) to keep track of how many times the loop has executed, and it stops when the counter

reaches a certain number. A basic for statement looks like this:

for (var = 1; var < 10; var++) {
 // more code
}

There are three parameters in the for loop, each separated by semicolons:

 N Initial expression—The first parameter (var = 1 in the example) specifies a variable and

assigns an initial value to it. This is called the initial expression because it sets up the initial

state for the loop.

 N Condition—The second parameter (var < 10 in the example) is a condition that must

remain true to keep the loop running. This is called the condition of the loop.

 N Increment expression—The third parameter (var++ in the example) is a statement that

executes with each iteration of the loop. This is called the increment expression because it is

typically used to increment the counter. The increment expression executes at the end of

each loop iteration.

After the three parameters are specified, a left brace ({) is used to signal the beginning of a block.

A right brace (}) is used at the end of the block. All the statements between the braces will be

executed with each iteration of the loop.

The parameters for a for loop might sound a bit confusing, but when you’re used to for, you’ll

use for loops frequently. Here is a simple example of this type of loop:

for (i=0; i<10; i++) {
 document.write("This is line " + i + "
");
}

605Using for Loops

These statements define a loop that uses the variable i, initializes it with the value 0, and loops

as long as the value of i is less than 10. The increment expression, i++, adds 1 to the value of i

with each iteration of the loop. Because this happens at the end of the loop, the output will be

nine lines of text.

When a loop includes only a single statement between the braces, as in this example, you can

omit the braces if you want. The following statement defines the same loop without braces:

for (i=0; i<10; i++)
 document.write("This is line " + i + "
");

NOTE

It’s a good style convention to use braces with every loop, whether it contains one statement or
many statements. This makes it easy to add statements to the loop later, without causing syntax
errors.

The loop in this example contains a document.write statement that will be repeatedly executed.

To see what this loop does, you can add it to a <script> section of an HTML document, as shown

in Listing 23.3.

LISTING 23.3 A Loop Using the for Keyword

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Using a for Loop</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Using a for Loop</h1>
 <p>The following is the output of the for loop:</p>
 <script>
 for (i=1;i<10;i++) {
 document.write("This is line " + i + "
");
 }
 </script>
 </body>
</html>

This example displays a message containing the current value of the loop’s counter during each

iteration. The output of Listing 23.3 is shown in Figure 23.2.

606 LESSON 23: Controlling Flow with Conditions and Loops

FIGURE 23.2
The results of the for loop example.

Notice that the loop was executed only nine times. This is because the conditional is i<10—that

is, i is less than 10. When the counter (i) is incremented to 10, the expression is no longer true. If

you want the loop to count to 10, you have to change the conditional; either i<=10 or i<11 will

work fine.

The for loop is traditionally used to count from one number to another, but you can use just

about any statement for the initialization, condition, and increment. However, there’s usually a

better way to do other types of loops with the while keyword, as described in the next section.

Using while Loops
Another keyword for loops in JavaScript is while. Unlike for loops, while loops don’t necessar-

ily use a variable to count. Instead, they continue to execute as long as a condition is true. In fact,

if the condition starts out as false, the statements won’t execute at all.

The while statement includes the condition in parentheses, and it is followed by a block of state-

ments within braces, just like a for loop. Here is a simple while loop:

while (total < 10) {
 n++;
 total += values[n];
}

This loop uses a counter, n, to iterate through the values array. Rather than stopping at a

certain count, however, it stops when the total of the values reaches 10.

607Working with Loops

You might have thought that you could have done the same thing with a for loop, and you’d be

correct:

for (n=0;total < 10; n++) {
 total += values[n];
}

As a matter of fact, the for loop is nothing more than a special kind of while loop that handles

an initialization and an increment for you, all in one line. You can generally use while for any

loop. However, it’s best to choose whichever type of loop makes the most sense for the job or takes

the least amount of typing.

Using do...while Loops
JavaScript, like many other programming languages, includes a third type of loop: the do...
while loop. This type of loop is similar to an ordinary while loop, with one difference: The con-

dition is tested at the end of the loop rather than the beginning, so the commands inside the loop

will always execute at least one time. Here is a typical do...while loop:

do {
 n++;
 total += values[n];
}
while (total < 10);

As you’ve probably noticed, this is basically an upside-down version of the previous while exam-

ple. There is one difference: With the do loop, the condition is tested at the end of the loop. This

means that the statements in the loop will always be executed at least once, even if the condition

is never true.

NOTE

As with the for and while loops, the do ... while can include a single statement without
braces or a number of statements enclosed in braces.

Working with Loops
Although you can use simple for and while loops for straightforward tasks, there are some

considerations you should make when using more complicated loops. In the next sections, you’ll

look at infinite loops (to be avoided!) and the break and continue statements, which give

you more control over the execution of your loops.

608 LESSON 23: Controlling Flow with Conditions and Loops

Creating an Infinite Loop
The for and while loops give you quite a bit of control over the loops. In some cases, this can

cause problems if you’re not careful. For example, look at the following loop code:

while (i < 10) {
 n++;
 values[n] = 0;
}

There’s a mistake in this example. The condition of the while loop refers to the i variable, but

that variable doesn’t actually change during the loop; the n variable does. This creates an infinite
loop, which means the loop will continue executing until the user stops it or until it generates an

error of some kind—usually because the browser runs out of memory.

Infinite loops can’t always be stopped by the user, except by quitting the browser—and some loops

can even prevent the browser from quitting or may cause crashes.

Obviously, you should avoid infinite loops. They can be difficult to spot because JavaScript won’t

give you an error that actually tells you there is an infinite loop. Thus, each time you create a loop

in a script, you should be careful to make sure there’s a way out.

NOTE

Depending on the browser version in use, an infinite loop might even make the browser stop
responding to the user because all the memory is used up. Be sure you provide an escape route
from infinite loops and be sure to always test your work.

Occasionally, you might want to create a long-running and seemingly infinite loop deliberately.

For example, you might want your program to execute until the user explicitly stops it or until you

provide an escape route with the break statement, which is introduced in the next section. Here’s

an easy way to create an infinite loop:

while (true) {
 //more code
}

Because the value true is the conditional, this loop will always find its condition to be true.

Escaping from a Loop
There is a way out of a long-running and seemingly infinite loop. You can use the break state-

ment at some point during the loop to exit immediately and continue with the first statement

after the loop. Here is a simple example of the use of break:

while (true) {
 n++;
 if (values[n] == 1) break;
}

Looping Through Object Properties 609

Although the while statement is set up as an infinite loop, the if statement checks the

corresponding value of an array, and if it finds the value 1, it exits the loop.

When the JavaScript interpreter encounters a break statement, it skips the rest of the loop and

continues the script with the first statement after the right brace at the loop’s end. You can use

the break statement in any type of loop, whether infinite or not. This provides an easy way to

exit if an error occurs or if another condition is met.

Continuing a Loop
One more JavaScript statement is available to help you control the execution of a loop. The

continue statement skips the rest of the loop but, unlike break, it continues with the next

iteration of the loop. Here is a simple example:

for (i=1; i<21; i++) {
 if (score[i]==0) continue;
 document.write("Student number "+ i + ", Score: "
 + score[i] + "
");
}

This script uses a for loop to print scores for 20 students, stored in the score array (not shown

here). The if statement is used to check for scores with a value of 0. The script assumes that a

score of 0 means that the student didn’t take the test, so it continues the loop without printing

that score.

Looping Through Object Properties
Yet another type of loop is available in JavaScript. The for...in loop is not as flexible as an

ordinary for or while loop, but it is specifically designed to perform an operation on each

property of an object.

For example, the built-in navigator object contains properties that describe the user’s browser.

You can use for...in to display this object’s properties:

for (i in navigator) {
 document.write("<p>Property: " + i + "
");
 document.write("Value: " + navigator[i] + "</p>");
}

Like an ordinary for loop, this type of loop uses an index variable (i in the example). For each

iteration of the loop, the variable is set to the next property of the object. This makes it easy when

you need to check or modify each of an object’s properties.

610 LESSON 23: Controlling Flow with Conditions and Loops

One common use of loops is to work with arrays. Without loops, it can be very difficult to initialize

arrays. The following script will prompt the user for a series of names. After all the names have

been entered, it will display the list of names in a numbered list. First, initialize some variables:

names = new Array();
var i = 0;

The names array will store the names the user enters. You don’t know how many names will be

entered, so you don’t need to specify a dimension for the array. The i variable will be used as

a counter in the loops.

Next, use the prompt statement to prompt the user for a series of names. The prompt statement

acts like alert, only it asks for user input rather than just displaying a message. Use a loop to

repeat the prompt for each name. You want the user to enter at least one name, so a do...
while loop is ideal:

do {
 next = prompt("Enter the Next Name", "");
 if (next > " ") names[i] = next;
 i = i + 1;
 } while (next > " ");

NOTE

If you’re interested in making your scripts as short as possible, remember that you could use the
increment (++) operator to combine the i = i + 1 statement with the preceding statement, like
so:

names[i++]=1

This loop prompts for a string called next. If a name was entered and isn’t blank, it’s stored as

the next entry in the names array. The i counter is then incremented. The loop repeats until the

user doesn’t enter a name or clicks Cancel in the prompt dialog.

Next, your script can display the number of names entered:

document.write("<h2>" + (names.length) + " names entered.</h2>");

This statement displays the length property of the names array, surrounded by level 2 heading

tags for emphasis.

Next, the script should display all the names in the order in which they were entered. Because the

names are in an array, the for...in loop is a good choice:

document.write("");
for (i in names) {
 document.write("" + names[i] + "");
}
document.write("");

http://.in

Looping Through Object Properties 611

Here you have a for...in loop that loops through the names array, assigning the counter i to

each index in turn. The script then prints the name between opening and closing tags as an

item in an ordered list. Before and after the loop, the script prints beginning and ending tags.

You now have everything you need for a working script. Listing 23.4 shows the HTML file for this

example, and Listing 23.5 shows the JavaScript file.

LISTING 23.4 HTML to Prompt for Names and Display Them

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Loops Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Loops Example</h1>
 <p>Enter a series of names and JavaScript will display them
 in a numbered list.</p>
 <script src="loops.js"></script>
 </body>
</html>

LISTING 23.5 JavaScript to Prompt for Names and Display Them

// create the array
names = new Array();
var i = 0;

// loop and prompt for names
do {
 next = window.prompt("Enter the Next Name", "");
 if (next > " ") names[i] = next;
 i = i + 1;
} while (next > " ");

document.write("<h2>" + (names.length) + " names entered.</h2>");

// display all of the names
document.write("");
for (i in names) {
 document.write("" + names[i] + "");
}
// close the list
document.write("");

http://.in

612 LESSON 23: Controlling Flow with Conditions and Loops

To try this example, save the JavaScript file as loops.js and then load the HTML document into

a browser. You’ll be prompted for one name at a time. Enter several names and then click Cancel

to indicate that you’re finished. Figure 23.3 shows what the final results should look like in a

browser.

FIGURE 23.3
The output of the names example.

Summary
In this lesson, you’ve learned two ways to control the flow of your scripts. First, you learned how

to use the if statement to evaluate conditional expressions and react to them. You also learned

a shorthand form of conditional expression using the ? operator and the switch statement for

working with multiple conditions.

You also learned about JavaScript’s looping capabilities using for, while, and the do...while

loops, and how to control loops further by using the break and continue statements. Finally,

you looked at the for...in loop for working with each property of an object.

Q&A
 Q. What happens if I compare two items of different data types (for example, a number and a

string) in a conditional expression?

 A. The JavaScript interpreter does its best to make the values a common format and compare
them. In this case, it would convert them both to strings before comparing. You can use the
special equality operator === to compare two values and their types. Using this operator, the
expression will be true only if the expressions have the same value and the same data type.

http://.in

Workshop 613

 Q. Why don’t I get a friendly error message if I accidentally use = instead of ==?

 A. In some cases, using = does result in an error. However, the incorrect version often appears
to be a correct statement. For example, in the statement if (a=1), the variable a is
assigned the value 1. The if statement is considered true, and the value of a is lost.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. Which of the following operators means “is not equal to” in JavaScript?

 a. !

 b. !=

 c. <>

 2. What does the switch statement do?

 a. Tests a variable or expression for a number of different values

 b. Turns a variable on or off

 c. Makes ordinary if statements longer and more confusing

 3. Which type of JavaScript loop checks the condition at the end of the loop?

 a. for

 b. while

 c. do...while

 4. Within a loop, what does the break statement do?

 a. Crashes the browser

 b. Starts the loop over

 c. Escapes the loop entirely

 5. The statement while (3==3) is an example of which of the following?

 a. A typographical error

 b. An infinite loop

 c. An illegal JavaScript statement

614 LESSON 23: Controlling Flow with Conditions and Loops

 6. How would you write the statement “if J is 10, then M is 40” in JavaScript?

 a. if (j == 10) m = 40;

 b. if (j == 10) then m = 40;

 c. if (j equals 10) m = 40;

 d. if (j equals 10) then m = 40;

 7. Which of these is a logical operator?

 a. $$

 b. &*

 c. =

 d. !

 8. What does the following statement say in English?

Wilma = (Barney == 50) ? 44 : 29;

 a. Wilma is 44 and Barney is 50 if Wilma is 29

 b. Wilma is 44 if Barney is 50; otherwise, Wilma is 29

 c. Wilma is 29 if Barny is 50, otherwise Wilma is 44.

 d. Wilma is 29 less than Barney if Barney is 50; otherwise Wilma is 44.

 9. What does the statement scooby++ mean in JavaScript?

 a. The function scooby subtracts 1 from the argument.

 b. The function scooby adds 1 to the argument.

 c. The variable scooby has 1 subtracted from its value.

 d. The variable scooby has 1 added to its value.

 10. Why would you want to create an infinite loop?

 a. To let the script run until the user stops it.

 b. To let the script run until the computer ends it.

 c. To let the script run until the server stops it.

 d. You would never want to create an infinite loop.

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

http://www.informit.com/register

Exercises 615

Answers
 1. b. The != operator means is not equal to.

 2. a. The switch statement can test the same variable or expression for a number of
different values.

 3. c. The do...while loop uses a condition at the end of the loop.

 4. c. The break statement escapes the loop.

 5. b. Because the condition (3==3) will always be true, this statement creates an
infinite loop.

 6. a. The statement would be written as follows:

if (j == 10)
 m = 40;

 7. d. JavaScript has the logical operators AND, OR, and NOT, written as &&, ||, and !.

 8. b. The statement says that Wilma is 44 if Barney is 50; otherwise, Wilma is 29.

 9. d. This is an increment expression, and it means that scooby will have 1 added to its
value.

 10. a. An infinite or long-running loop is usually created to let the script run until the user
explicitly stops it or until a break or continue statement occurs.

Exercises
 N Modify Listing 23.4 to sort the names in alphabetical order before displaying them.

You can use the sort method of the Array object, described in Lesson 22, “Using
JavaScript Variables, Strings, and Arrays.”

 N Modify Listing 23.4 to prompt for exactly 10 names. What happens if you click the
Cancel button instead of entering a name?

This page intentionally left blank

LESSON 24
Responding to Events and

Using Windows

What You’ll Learn in This Lesson:

 N How event handlers work

 N How event handlers relate to objects

 N How to create an event handler

 N How to detect mouse and keyboard actions

 N How to use onclick to change the appearance of <div>

 N How to access and use the window object hierarchy with JavaScript

 N How to delay a script’s actions by using timeouts

 N How to display alerts, confirmations, and prompts

In your experience with JavaScript so far, most of the scripts you’ve written have executed in a

calm, orderly fashion, quietly and methodically moving from the first statement to the last. You’ve

seen a few event handlers used in sample scripts and it is likely that you have noticed that the

event handler names provide clues to their meaning. For example, onclick means “when a click

happens.” That alone speaks to the relative ease and simplicity of using JavaScript event handlers

within your HTML.

In this lesson, you’ll learn to use various event handlers supported by JavaScript. Rather than

execute statements in a methodical order, a user can interact directly with different parts of your

scripts by invoking an event handler. You’ll use event handlers in just about every script you

write throughout the rest of these lessons, and event handlers are likely to feature prominently

in most scripts you will write, especially if you want to follow best practices and use unobtrusive

JavaScript.

In this lesson we’ll also return to some specific aspects of the Document Object Model (DOM).

You’ll learn more about some of the structural objects in the DOM—browser windows and dialog

boxes—and how JavaScript can interact with them using events.

618 LESSON 24: Responding to Events and Using Windows

Understanding Event Handlers
As you learned in Lesson 20, “Getting Started with JavaScript Programming,” JavaScript programs

don’t have to execute in order. You also learned that JavaScript programs can detect events and

react to them. Events are things that happen within the scope of the browser—the user clicks a

button, the mouse pointer moves, or a web page finishes loading from the server (just to name a

few). Various events enable your scripts to respond to the mouse, the keyboard, and other circum-

stances. Events are the key methods JavaScript uses to make web documents interactive.

A script that you create and use to detect and respond to an event is generally referred to as an

event handler. Event handlers are among the most powerful features of JavaScript. Luckily, they’re

also among the easiest features to learn and use; often, a useful event handler requires only

a single statement.

Objects and Events
As you learned in Lesson 21, “Working with the Document Object Model (DOM),” JavaScript uses

a set of objects to store information about the various parts of a web page—buttons, links, images,

windows, and so on. An event can often happen in more than one place (for example, the user

could click any one of the links on a page), and each event is associated with an object.

Each event has a name. For example, the onmouseover event occurs when the mouse

 pointer moves over an object on the page. When the pointer moves over a particular link, the

onmouseover event is sent to that link’s event handler, if it has one. In the next few sections

you’ll learn more about creating and using event handlers in your own code.

Creating an Event Handler
You don’t need the <script> tag to invoke an event handler. Instead, you use the event name

and code to invoke the event handler as an attribute of an individual HTML tag. For example,

here is a link that invokes an event handler script when a mouse-over occurs on a link:

<a href="http://www.google.com/"
 onmouseover="alert('You moved over the link.');">
 This is a link.

Note that this snippet is all one <a> element, although it’s split into multiple lines for readability

here. In this example, the onmouseover attribute specifies a JavaScript statement to invoke—

namely, an alert message that is displayed when the user’s mouse moves over the link.

NOTE

The previous example uses single quotation marks to surround the text. This is necessary in an event
handler because double quotation marks are used to surround the event handler itself. You can also
use single quotation marks to surround the event handler and double quotes within the script state-
ments. Just don’t use the same type of quotation marks because that is a JavaScript syntax error.

Understanding Event Handlers 619

You can invoke JavaScript statements like the preceding one in response to an event, but if you

need to invoke more than one statement, it’s a good idea to use a function instead. Just define the

function elsewhere in the document or in a referenced document and then call the function as the

event handler, like this:

Move the mouse over this link.

This example calls a function called doIt() when the user moves the mouse over the link. Using

a function in this type of situation is convenient because you can use longer, more readable

JavaScript routines as event handlers—and you can also reuse the function elsewhere without

duplicating all of its code.

NOTE

For simple event handlers, you can use two statements if you separate them with a semicolon.
However, in most cases it’s easier and more maintainable to use a function to perform multiple
statements.

Defining Event Handlers with JavaScript
Rather than specify an event handling script each time you want to invoke it, you can use

JavaScript to assign a specific function as the default event handler for an event. This enables you

to set event handlers conditionally, turn them on and off, and dynamically change the function

that handles an event.

NOTE

Setting up event handlers this way enables you to use an external JavaScript file to define
the function and set up the event, keeping the JavaScript code completely separate from the
HTML file.

To define an event handler in this way, first define a function and then assign the function

as an event handler. Event handlers are stored as properties of the document object or another

object that can receive an event. For example, these statements define a function called

mousealert and then assign it as the event handler for all instances of onmousedown in the

current document:

function mousealert() {
 alert("You clicked the mouse!");
}
document.onmousedown = mousealert;

620 LESSON 24: Responding to Events and Using Windows

You can use this technique to set up an event handler for only a specific HTML element, but an

additional step is required to achieve that goal: You must first find the object corresponding to the

element. To do this, use the document.getElementById function.

First, define an element in the HTML document and specify an id attribute:

Next, in the JavaScript code, find the object and apply the event handler:

var link1_obj = document.getElementById("link1");
link1_obj.onclick = myCustomFunction;

You can do this for any object as long as you’ve defined it and therefore can reference it by a

unique id attribute in the HTML file. Using this technique, you can easily assign the same

function to handle events for multiple objects without adding clutter to your HTML code.

Supporting Multiple Event Handlers
What if you want more than one thing to happen when you click on an element? For example,

suppose you want two functions, called update and display, to both execute when a button

is clicked. It’s very easy to run into syntax errors or logic errors such that two functions assigned

to the same event won’t work as expected. One solution for clean separation and execution is to

define a single function that calls both functions:

function updateThenDisplay() {
 update();
 display();
}

This isn’t always the ideal way to do things. For example, if you’re using two third-party scripts

and both of them want to add an onload event to the page, there should be a way to add both

events. The W3C DOM standard defines a function, addEventListener, for this purpose. This

function defines a listener for a particular event and object, and you can add as many listener

functions as you need.

There are many events you can listen for. These are some of the most commonly used ones:

 N focus—When the element is focused on with a mouse or keyboard (tab)

 N blur—When the element loses focus

 N click—When the element is clicked

 N dblclick—When the element is clicked twice

 N keydown—When a key is pressed down

 N keyup—When a key is released

Understanding Event Handlers 621

 N keypress—When a key is pressed, relaying the key value

 N mouseover—When the mouse pointer is over the element

 N mouseout—When the mouse pointer is moved off an element after hovering

 N mousemove—When the mouse moves

 N mousedown—When the mouse button is pressed over an element

 N mouseup—When the mouse button is released over an element

 N load—When the element has fully loaded

There are many more events you can listen for. You can learn more about them at https://

developer.mozilla.org/en-US/docs/Web/Events#Standard_events. To listen for an event, you simply

attach the event listener to the element you want to listen for. For example, to apply the

mousealert function when a user clicks a link with the link1 id, you would write the

following:

document.getElementById("link1").addEventListener("click",
 mousealert);

You can also remove event listeners when you’re done with them: Simply use the

removeEventListener method. As with the addEventListener method, simply attach it to

the element you want to stop listening to.

NOTE

Remember that you can attach event listeners to any element in the DOM, including the document
itself. When you write document.addEventListener("click", myFunction); you tell the
browser to run the function myFunction whenever someone clicks anywhere on the document.

The addEventListener method is well supported in modern browsers, but if you have

to support extremely old versions of Internet Explorer, you have to use a different function,

 attachEvent, to support them. In Lesson 25, “JavaScript Best Practices,” you’ll create a function

that combines these two for a cross-browser event-adding script.

Using the event Object
When an event occurs, you might want or need to know more about the event in order for your

script to perform different actions; for example, for a keyboard event, you might want to know

which key was pressed, especially if your script performs different actions depending on whether

the j key or the l key was pressed. The DOM includes an event object that provides this type of

granular information.

https://developer.mozilla.org/en-US/docs/Web/Events#Standard_events
https://developer.mozilla.org/en-US/docs/Web/Events#Standard_events

622 LESSON 24: Responding to Events and Using Windows

CAUTION

Don’t include the on prefix on your listeners when using addEventListener. Instead just use the
event itself. For example, use click rather than onclick. This is a common error, especially if
you’re used to using HTML attributes rather than listeners.

To use the event object, you can pass it on to your event handler function. For example, this

statement defines a keypress event that automatically passes the event object to the

getKey function:

document.addEventListener("keypress", getKey);

You then define your function to accept the event as a parameter:

function getKey(e) {
 // more code
}

In modern browsers, an event object is automatically passed to the event handler function. This

is why you don’t need to define the parameter in your function.

NOTE

Internet Explorer 8 and below handle events differently. If you must support these older versions,
you need to check the window object for the event properties. One way to do this is to check
 whether the properties exist inside your function. For example, you could add the line
if (!e) var e = window.event; to your function.

The following are some of the commonly used properties of the event object for modern

 browsers:

 N event.modifiers—A flag that indicates which modifier keys (Shift, Ctrl, Alt, and so on)

were held down during the event. This value is an integer that combines binary values

 representing the different keys.

 N event.pageX—The x coordinate of the event within the web page.

 N event.pageY—The y coordinate of the event within the web page.

 N event.which—The key code for keyboard events (in Unicode) or the button that was

pressed for mouse events.

 N event.button—The mouse button that was pressed. The left button’s value is 0, and the

right button’s value is 2. If the mouse has a middle button, the value is 1.

 N event.target—The object where the element occurred.

Using Mouse Events 623

NOTE

The event.pageX and event.pageY properties are based on the top-left corner of the element
where the event occurred, not always the exact position of the mouse pointer.

Using Mouse Events
The DOM includes a number of event handlers for detecting mouse actions. Your script can detect

the movement of the mouse pointer and when a button is clicked, released, or both. Some of these

events will be familiar to you already because you have seen them in action in previous lessons.

Over and Out
You’ve already seen the first and most common event handler, mouseover, which is called when

a user’s mouse pointer moves over a link or another object. Note that mouseout is the opposite:

It is called when the user’s mouse pointer moves out of the object’s border. Unless something

strange happens and the user’s mouse never moves again while the viewer is viewing the particu-

lar document, you can count on mouseout happening sometime after mouseover.

mouseout is particularly useful if your script has made a visual change within the document

when the user’s mouse pointer moved over the object—for example, displaying a message in the

status line or changing an image. You can use a mouseout event handler to undo the action

when the pointer moves away.

NOTE

One of the most common uses for the mouseover and mouseout event handlers is to create
rollovers—images that change when the mouse moves over them. You’ll learn how to create these
later in the lesson.

Ups and Downs (and Clicks)
You can also use events to detect when the mouse button is clicked. The basic event handler for

this is onclick. This event handler is called when the mouse button is clicked while positioned

over the appropriate object.

For example, you can use the following event handler to display an alert when a link is clicked:

<a href="http://www.google.com/"
 onclick="alert('You are about to leave this site.');">
 Go Away

624 LESSON 24: Responding to Events and Using Windows

Or you can do it unobtrusively by giving the link the id goAway and this script:

function goAway(e) {
 alert('You are about to leave this site.');
}
document.getElementById("goAway").addEventListener("click", goAway);

In this case, the click event handler invokes the JavaScript alert before the linked page is

loaded into the browser. This is useful for making links conditional or displaying a disclaimer

before sending the user away to the linked page.

If your click event handler returns the false value, the link will not be followed. For example,

the following is a link that displays a confirmation dialog. If you click Cancel, the link is not

 followed; if you click OK, the new page is loaded:

function goAway(e) {
 if (!confirm('Are you sure?'))
 e.preventDefault();
}
document.getElementById("goAway").addEventListener("click", goAway);

This example uses the confirm method to display a modal dialog box. Then if the user chooses

Cancel, it adds the preventDefault property to the event. This stops the link from being

 followed.

The dblclick event handler is similar but is used only if the user double-clicks on an object.

Because links usually require only a single click, you could use this to make a link do two dif-

ferent things, depending on the number of clicks. (Needless to say, this could be confusing to

the user, but it is technically possible.) You can also detect double-clicks on images and other

objects.

To give you even more control of what happens when the mouse button is pressed, two more

events are included:

 N mousedown—Used when the user presses the mouse button

 N mouseup—Used when the user releases the mouse button

These two events are the two halves of a mouse click. If you want to detect an entire

click, use click, but you can use mouseup and mousedown to detect just one part or

the other.

Using Mouse Events 625

To detect which mouse button is pressed, you can use the button property of the event object.

This property is assigned the value 0 for the left button or 2 for the right button. This property is

assigned for click, dblclick, mouseup, and mousedown events.

CAUTION

Browsers don’t normally detect click or dblclick events for the right mouse button. If you want
to detect the right button, using mousedown is the most reliable way.

As an example of these event handlers, you can create a script that displays information about

mouse button events and determines which button is pressed. Listing 24.1 shows a script that

handles some mouse events.

LISTING 24.1 The JavaScript File for the Mouse Click Example

function mousestatus(e) {
 if (!e) e = window.event;
 btn = e.button;
 switch(btn) {
 case 0:
 whichone = "Left";
 break;
 case 1:
 whichone = "Middle";
 break;
 case 2:
 whichone = "Right";
 break;
 default:
 whichone = "UNKNOWN";
 }
 message=e.type + " : " + whichone + "
";
 document.getElementById('testarea').innerHTML += message;
 e.preventDefault();
}
obj=document.getElementById('testlink');

obj.addEventListener("click", mousestatus);
obj.addEventListener("mousedown", mousestatus);
obj.addEventListener("mouseup", mousestatus);
obj.addEventListener("dblclick", mousestatus);

626 LESSON 24: Responding to Events and Using Windows

This script includes a function, mouseStatus, that detects mouse events. This function uses

the button property of the event object to determine which button was pressed. It also

uses the type property to display the type of event, since the function will be used to handle

multiple event types.

After the function, the script finds the object for a link with the id attribute testlink and

assigns its mousedown, mouseup, click, and dblclick events to the mousestatus function.

The mousestatus function uses a switch statement to determine if the left, center, or right

mouse button was clicked and then writes that information to the testarea <div>.

Save this script as click.js. Next, you need an HTML document to work with the script; this is

shown in Listing 24.2.

LISTING 24.2 The HTML File for the Mouse Click Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Mouse Click Test</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Mouse Click Test</h1>
 <p>
 Click the mouse on the test link below. A message will
 indicate which button was clicked.
 </p>
 <h2>Test Link</h2>
 <div id="testarea"></div>

 <script src="click.js"></script>
 </body>
</html>

This file defines a test link with the id property testlink, which is used in the script to assign

event handlers. It also defines a <div> with an id of testarea, which is used by the script to

display the message regarding the events. To test this document, save it in the same folder as the

JavaScript file you created previously and load the HTML document into a browser. Some sample

results are shown in Figure 24.1.

Using Keyboard Events 627

FIGURE 24.1
The mouse click example in action.

NOTE

Notice that a single click of the left mouse button triggers three events: mousedown, mouseup, and
then click, whereas clicking the right mouse button triggers only two events.

Using Keyboard Events
JavaScript can also detect keyboard actions. The main event handler for this purpose is keypress,

which occurs when a key is pressed and released or held down. As with mouse buttons, you can

detect the down and up parts of a keypress with the keydown and keyup event handlers.

NOTE

The keypress and keydown events may seem to be the same thing, but they are subtly different.
The keydown event references the exact moment that the key is moving down, while the keypress
event references the key being pressed and sends the value of that key back to the script. The
keydown event does not relay which key was pressed.

628 LESSON 24: Responding to Events and Using Windows

Of course, you might find it useful to know which key the user pressed. You can find this out with

the event object, which is sent to your event handler when the event occurs. The event.which

property stores the ASCII character code for the key that was pressed.

NOTE

ASCII (American Standard Code for Information Interchange) is the standard numeric code used by
most computers to represent characters. It assigns the numbers 0 to 128 to various characters. For
example, the capital letters A through Z are ASCII values 65 to 90.

If you’d rather deal with actual characters than key codes, you can use the fromCharCode

String method to convert them. This method converts a numeric ASCII code to its corresponding

string character. For example, the following statement converts the event.which property to a

character and stores it in the key variable:

var key = String.fromCharCode(event.which);

NOTE

In older versions of Internet Explorer, event.keyCode stores the ASCII character code for the key
that was pressed rather than event.which. If you must support Internet Explorer 8 or earlier, you
should include a check for the e.keyCode property, like so:

if (e.keyCode) {

 var keycode = e.keyCode;

} else {

 var keycode = e.which;

}

The following function displays each key as it is typed:

function displayKey(e) {
 // which key was pressed?
 var keycode=e.which;
 character=String.fromCharCode(keycode);

 // find the object for the destination paragraph
 var keys_paragraph = document.getElementById('keys');

 // add the character to the paragraph
 keys_paragraph.innerHTML += character;
}

Using Keyboard Events 629

The displayKey function receives the event object from the event handler and stores it in the

variable e. It assigns keycode to the e.which property. Then the remaining lines of the

function convert the key code to a character and add it to the paragraph in the document with

the id attribute keys. Listing 24.3 shows a complete example using this function.

NOTE

The final lines in the displayKey function use the getElementById function and the
innerHTML attribute to display the keys you type within a paragraph on the page—in this case,
a paragraph with an id of keys.

LISTING 24.3 Displaying Typed Characters

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying Keypresses</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Displaying Typed Characters</h1>
 <p>
 This document includes a simple script that displays the keys
 you type as a new paragraph below. Type a few keys to try it.
 </p>
 <p id="keys"></p>

 <script>
 function displayKey(e) {
 // which key was pressed?
 var keycode=e.which;
 character=String.fromCharCode(keycode);

 // find the object for the destination paragraph
 var keys_paragraph = document.getElementById('keys');

 // add the character to the paragraph
 keys_paragraph.innerHTML += character;
 }
 document.addEventListener("keypress",displayKey);
 </script>
 </body>
</html>

630 LESSON 24: Responding to Events and Using Windows

When you load this example, you can type and then watch the characters you’ve typed appear in

a paragraph of the document. Figure 24.2 shows the result of some typing, but you should try it

yourself to see the full effect!

FIGURE 24.2
Displaying the output of the keys that were pressed.

Using the load and unload Events
Another event you are likely to use often is load. This event occurs when the current page

(including all of its images) finishes loading from the server.

The load event is related to the window object, and to define it you use an event handler in the

<body> tag. For example, the following is a <body> element that uses a simple event handler to

display an alert when the page finishes loading:

window.addEventListener("load", function() {
 alert("Loading complete");
});

This event handler uses an anonymous function to display the alert. An anonymous function is

 typically used when the functionality of the function doesn’t have a long-term use or doesn’t need

to be used in several locations.

CAUTION

Because the load event occurs after the HTML document has finished loading and displaying, you
should not use the document.write or document.open statements within a load event handler
because it would overwrite the current document.

631Using click to Change the Appearance of a <div>

An image can also have a load event handler. When you define a load event handler for an

 element, it is triggered as soon as the specified image has completely loaded.

You can also specify an unload event for the <body> element. This event will be triggered

 whenever the browser unloads the current document—which occurs when another page is loaded

or when the browser window is closed.

Using click to Change the Appearance
of a <div>
As you’ve learned already in this lesson, the click event can be used to invoke all sorts of

actions. You might think of a mouse click as a way to submit a form by clicking on a button, but

you can capture this event and use it to provide interactivity within your pages as well. In the

example that follows, you will see how you can use the click event to show or hide information

contained in a <div> element.

In this case, you will be adding interactivity to a web page by allowing the user to show previously

hidden information by clicking on a piece of text. I refer to it as a piece of text because, strictly

speaking, the text is not a link. Although to the user it will look like a link and act like a link, it

will not be marked up within an <a> tag.

Listing 24.4 provides the complete code for this example, which we’ll walk through momentarily.

LISTING 24.4 Using click to Show or Hide Content

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Steptoe Butte</title>
 <style>
 a {
 text-decoration: none;
 font-weight: bold;
 }
 img {
 margin-right: 12px;
 margin-bottom: 6px;
 border: 1px solid #000;
 }

632 LESSON 24: Responding to Events and Using Windows

 .mainimg {
 float: left;
 max-width: 35%;
 height: auto;
 }
 #eHide, #pHide, #elevation, #photos {
 display: none;
 }
 #eShow, #pShow {
 display: block;
 }
 #photos {
 clear: both;
 }
 #photos img { max-width: 20%; height: auto; clear: left; }
 .fakelink {
 cursor: pointer;
 text-decoration: none;
 font-weight: bold;
 color: #E03A3E;
 }
 section {
 margin-bottom: 6px;
 }
 </style>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <header>
 <h1>Steptoe Butte</h1>
 </header>

 <section>
 <p>
 <img src="images/steptoe-butte.jpg" class="mainimg"
 alt="View from Steptoe Butte">Steptoe Butte is a quartzite
 island jutting out of the silty loess of the Palouse
 hills in Whitman County, Washington. The rock that forms
 the butte is over 400 million years old, in contrast with
 the 15-7 million year old Columbia

633Using click to Change the Appearance of a <div>

 River basalts that underlie the rest of the Palouse
 (such "islands" of ancient rock have come to be called
 buttes, a butte being defined as a small hill with a flat
 top, whose width at top does not exceed its height).
 </p>
 <p>
 A hotel built by Cashup Davis stood atop Steptoe Butte from
 1888 to 1908, burning down several years after it closed.
 In 1946, Virgil McCroskey donated 120 acres (0.49 km2) of
 land to form Steptoe Butte State Park, which was later
 increased to over 150 acres (0.61 km2). Steptoe Butte is
 currently recognized as a National Natural Landmark because
 of its unique geological value. It is named in honor of
 Colonel Edward Steptoe.
 </p>
 </section>

 <section>
 <button class="fakelink" id="eShow">
 » Show Elevation
 </button>
 <button class="fakelink" id="eHide">
 « Hide Elevation
 </button>
 <div id="elevation">
 3,612 feet (1,101 m), approximately 1,000 feet (300 m)
 above the surrounding countryside.
 </div>
 </section>

 <section>
 <button class="fakelink" id="pShow">
 » Show Photos from the Top of Steptoe Butte
 </button>
 <button class="fakelink" id="pHide">
 « Hide Photos from the Top of Steptoe Butte
 </button>

 <div id="photos">

 </div>
 </section>

634 LESSON 24: Responding to Events and Using Windows

 <footer>
 <p>
 Text from

 Wikipedia, photos by Julie C. Meloni.
 </p>
 </footer>

 <script>
document.getElementById("eShow").addEventListener("click", function() {
 this.style.display = 'none';
 document.getElementById("eHide").style.display='block';
 document.getElementById("elevation").style.display='block';
});
document.getElementById("eHide").addEventListener("click", function() {
 this.style.display = 'none';
 document.getElementById("eShow").style.display='block';
 document.getElementById("elevation").style.display='none';
});
document.getElementById("pShow").addEventListener("click", function() {
 this.style.display = 'none';
 document.getElementById("pHide").style.display='block';
 document.getElementById("photos").style.display='block';
});
document.getElementById("pHide").addEventListener("click", function() {
 this.style.display = 'none';
 document.getElementById("pShow").style.display='block';
 document.getElementById("photos").style.display='none';
});
 </script>
 </body>
</html>

Figure 24.3 shows how this code renders in a browser.

To begin, look at the entries in the style sheet. The first entry simply styles links that are surrounded

by the <a> tag pair; these links display as non-underlined, bold, blue links. You can see these

regular links in the two paragraphs of text in Figure 24.3 (and in the line at the bottom of the page).

The next two entries make sure that the images used in the page have appropriate margins; the

entry for element sets some margins and a border, and the .mainimg class enables you to

apply a style to the main image on the page but not the set of three images at the bottom of

the page.

635Using click to Change the Appearance of a <div>

FIGURE 24.3
The initial display of Listing 24.4. Although you can’t see it here, the mouse pointer changes to a hand when
you hover over the buttons.

The next entry is for specific IDs, and those IDs are all set to be invisible (display: none;)

when the page initially loads. In contrast, the two IDs that follow are set to display as block

 elements when the page initially loads. Again, strictly speaking, these two IDs do not have

to be defined as block elements because that is the default display. However, this style sheet

includes these entries to illustrate the differences between the two sets of elements. If you

count the number of <button> elements in Listing 24.4, you will find four in the code:

two that are invisible and two that are visible upon page load. There are also two <div>

elements that are not visible when the page loads: the ones with the IDs elevation

and photos.

636 LESSON 24: Responding to Events and Using Windows

The goal in this example is to change the display value of two IDs when another ID is clicked. But

first you have to make sure users realize that a piece of text is clickable, and that typically hap-

pens when users see their mouse pointers change to reflect a present link. Although you can’t see

it in Figure 24.3, if you load the sample code on your machine and view it in your browser, the

mouse pointer changes to a hand with a finger pointing at a particular link.

This functionality is achieved by defining a class for this particular text; the class is called

fakelink, as you can see in this snippet of code:

<button class="fakelink" id="eShow">
 » Show Elevation
</button>

The fakelink class ensures that the button is rendered as non-underlined, bold, and red;

cursor: pointer; causes the mouse pointer to change in such a way that users think the text

is a link of the type that would normally be enclosed in an <a> element.

But the really interesting stuff happens when we associate a click event with a <button>. To

be unobtrusive, we do this with an event listener on the element, as you can see in this snippet

of code:

document.getElementById("eShow").addEventListener("click", function() {
 this.style.display = 'none';
 document.getElementById("eHide").style.display='block';
 document.getElementById("elevation").style.display='block';
});

In the sample snippet just shown, when the click event is seen on the eShow element, a

 function runs a series of commands to change the current value of CSS elements. Let’s look at

them separately:

this.style.display = 'none';
document.getElementById("eHide").style.display='block';
document.getElementById("elevation").style.display='block';

In the first line of the snippet, the this keyword refers to the element itself. In other words, this

refers to the <button> element (actually any element) with the ID eShow. The keyword style

refers to the style object; the style object contains all the CSS styles that you assign to the ele-

ment. In this case, we are most interested in the display style. Therefore, this.style.display

means “the display style of the eShow ID,” and we are setting the value of the display style to

none when the button is clicked.

But three actions also occur within the click event. The other two actions begin with

document.getElementById() and include a specific ID name within the parentheses.

We use document.getElementById() instead of this because the second and third actions

637Using click to Change the Appearance of a <div>

set CSS style properties for elements that are not the parent element. As you can see in the

snippet, in the second and third actions, we are setting the display property values for the ele-

ment IDs eHide and elevation. When users click the currently visible <div> called eShow,

the following happens:

 N The eShow <div> becomes invisible.

 N The eHide <div> becomes visible and is displayed as a block.

 N The elevation <div> becomes visible and is displayed as a block.

Figure 24.4 shows the result of these actions.

FIGURE 24.4
When Show Elevation is clicked, the visibility of it and other elements changes based on the commands in the
click event listener function.

Another set of elements in the code in Listing 24.4 controls the visibility of the additional photos.

These elements are not affected by the click events in the elevation-related elements. That is,

when you click either Show Elevation or Hide Elevation, the photo-related <div> elements do not

638 LESSON 24: Responding to Events and Using Windows

change. You can show the elevation and not the photos (as shown in Figure 24.4), the photos and

not the elevation, or both the elevation and the photos at the same time (see Figure 24.5).

FIGURE 24.5
The page after both Show Elevation and Show Photos from the Top of Steptoe Butte have been clicked.

This brief example has shown you the very beginning of the layout and interaction possibilities

that await you when you master CSS in conjunction with events. For example, you can code your

pages so that your users can change elements of the style sheet or change to an entirely different

style sheet, move blocks of text to other places in the layout, take quizzes or submit forms, and do

much, much more.

Controlling Windows with Objects
In Lesson 21 you learned that you can use DOM objects to represent various parts of the browser

window and the current HTML document. You also learned that the history, document, and

location objects are all children of the window object.

Controlling Windows with Objects 639

Now we’ll take a closer look at the window object itself. As you’ve probably guessed by now, this

means you’ll be dealing with browser windows.

The window object always refers to the current window (the one containing the script). The self

keyword is also a synonym for the current window. As you’ll learn in the next sections, you can

have more than one window on the screen at the same time and can refer to these windows by

using different names.

Properties of the window Object
Although there is normally a single window object available in a browser session, users might

have more than one window object available in their browser session because they have multiple

tabs open or a web page has opened a pop-up window. As you learned in Lesson 21, the

document, history, and location objects are properties (or children) of the window object,

and each open window object has these properties available for scripting purposes. In addition to

these properties, each window object has the following useful properties:

 N window.closed—Indicates whether the window has been closed. This makes sense only

when you’re working with multiple windows because the current window contains the script

and cannot be closed without ending the script.

 N window.name—Specifies the name for a window opened by a script.

 N window.opener—In a new window opened by a script, provides a reference to the window

containing the script that opened it.

 N window.outerHeight and window.outerWidth—Specify the height and width, respec-

tively, of the outside of a browser window.

 N window.screen—Provides a child object that stores information about the screen the

 window is in—its resolution, color depth, and so on.

 N window.self—Acts as a synonym for the current window object.

NOTE

The properties of the window.screen object include height, width, availHeight, and
availWidth (the available height and width rather than the total), colorDepth (which indicates
the color support of the monitor: 8 for 8-bit color, 32 for 32-bit color, and so on), and pixelDepth,
which indicates the color resolution, in bits per pixel of the screen.

You can find a complete list of window properties (and methods) at https://developer.mozilla.org/

en-US/docs/Web/API/Window.

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window

640 LESSON 24: Responding to Events and Using Windows

Creating a New Window
One of the most convenient uses for the window object is to create a new window. You can do this

to display a new document—for example, a pop-up advertisement or the instructions for a game—

without clearing the current window. You can also create windows for specific purposes, such as

navigation windows.

You can create a new browser window with the window.open method. A typical statement to

open a new window looks like this:

myNewWindow=window.open("URL", "WindowName", "LIST_OF_FEATURES");

The following are the components of the window.open statement in this syntax:

 N The myNewWindow variable is used to store the new window object. You can access methods

and properties of the new object by using this name.

 N The first parameter of the window.open method is a URL, which will be loaded into the

new window. If URL is left blank, no web page will be loaded. In this case, you could use

JavaScript to fill the window with content.

 N The second parameter, WindowName, specifies a window name. This is assigned to the

window object’s name property and is used to refer to the window.

 N The third parameter, LIST_OF_FEATURES, is a list of optional features, separated by com-

mas. You can customize the new window by choosing whether to include the toolbar, status

line, and other features. This enables you to create various “floating” windows, which might

look nothing like a typical browser window.

The features available in the third parameter of the window.open() method include width and

height, to set the size of the window in pixels; left and top, to set the distance in pixels of the

new window from the left side and top of the user’s desktop, respectively; and several features

that can be set to either yes (1) or no (0): toolbar, location, status, menubar,

personalbar, scrollbars, and resizable, among a few others. You list only the

features you want to use.

This example creates a small window with no toolbar or status bar:

newSmallWin = window.open("","small", "width=300,height=220,toolbar=0,status=0");

Opening and Closing Windows
Of course, if you can open a window, you can use JavaScript to close windows as well. The

window.close method closes a window. Browsers don’t normally allow you to close the main

Controlling Windows with Objects 641

browser window without the user’s permission; this method’s main purpose is for closing windows

you have created. For example, this statement closes a window called updateWindow:

updateWindow.close();

As another example, Listing 24.5 shows an HTML document that enables you to open a small

new window by clicking a button. You can then click another button to close the new window. The

third button attempts to close the current window, and you’ll see how well that works out later in

this lesson.

LISTING 24.5 An HTML Document That Uses JavaScript to Enable You to

Create and Close Windows

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Create a New Window</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Create a New Window</h1>
 <p>
 Use the buttons below to open and close windows using
 JavaScript.
 </p>
 <button type="button" id="openNew">Open New Window</button>

 <button type="button" id="closeNew">Close New Window</button>

 <button type="button" id="closeSelf">Close Main Window</button>

 <script>
 document.getElementById("openNew").addEventListener("click", function() {
 newWin = window.open("", "NewWin", "toolbar=no,status=no,width=200,
 height=100");
 });

 document.getElementById("closeNew").addEventListener("click", function() {
 newWin.close();
 });

642 LESSON 24: Responding to Events and Using Windows

 document.getElementById("closeSelf").addEventListener("click", function() {
 window.self.close();
 });
 </script>

 </body>
</html>

This example uses simple event handlers to do its work by providing a different listener for each

of the buttons. Figure 24.6 shows the result of clicking the Open New Window button: It opens a

small new window on top of the main browser window.

FIGURE 24.6
A new browser window opened with JavaScript.

However, notice the error message shown in the JavaScript console in Figure 24.7. This error mes-

sage appears after an attempt is made to close the main browser window from this script. As you

can see, modern web browsers do not allow JavaScript to close the entire browser window because

JavaScript did not originally open the window.

Moving and Resizing Windows 643

FIGURE 24.7
The console appropriately displays an error when JavaScript tries to close a window it did not open.

Moving and Resizing Windows
The DOM enables you to move or resize windows that your scripts have created. You can do this

by using the following methods for a window object:

 N window.moveTo(x, y)—Moves the window to a new position. The parameters specify

the x (column) and y (row) position.

 N window.moveBy(numX, numY)—Moves the window relative to its current position, by

numX or numY pixels. The numX and numY parameters can be positive or negative and are

added to the current values to reach the new position.

 N window.resizeTo(width, height)—Resizes the window to the width and height

specified as parameters.

 N window.resizeBy(numX, numY)—Resizes the window relative to its current size, by

numX or numY pixels. The parameters are used to modify the current width and height.

644 LESSON 24: Responding to Events and Using Windows

As an example, Listing 24.6 shows an HTML document with a simple script that enables you to

resize and move a new window you’ve created based on values entered in a form.

LISTING 24.6 Moving and Resizing a New Window

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Moving and Resizing Windows</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>

 <h1>Moving and Resizing Windows</h1>

 <form name="changeform">
 <p>
 Resize to:

 <input size="5" type="text" name="w"> pixels wide and
 <input size="5" type="text" name="h"> pixels high
 </p>
 <p>-- AND/OR --</p>
 <p>
 Move to:

 X-position: <input size="5" type="text" name="x">
 Y-position: <input size="5" type="text" name="y">
 </p>
 <p><input type="button" value="Change Window" id="doIt"></p>
 </form>

 <script>
 function doIt() {
 if ((document.changeform.w.value) &&
 (document.changeform.h.value)) {
 NewWin.resizeTo(document.changeform.w.value,
 document.changeform.h.value);
 }
 if ((document.changeform.x.value) &&
 (document.changeform.y.value)) {
 NewWin.moveTo(document.changeform.x.value,
 document.changeform.y.value);
 }
 }

Using Timeouts 645

 window.addEventListener("load", function() {
 NewWin=window.open('','NewWin', 'width=200,height=100');
 });

 document.getElementById("doIt").addEventListener("click", doIt);
 </script>
 </body>
</html>

In this example, the doIt function is called as an event handler when you click the Change

Window button. This function checks whether you have specified width and height values. If you

have, the function uses the self.resizeTo method to resize the current window. Similarly, if

you have specified x and y values, it uses NewWin.moveTo to move the window. If you have set

both pairs of values, the script both resizes and moves your window. Load up this code in a web

browser and give it a try!

Using Timeouts
Sometimes the hardest thing to get a script to do is to do nothing at all—for a specific amount of

time. Fortunately, JavaScript includes a built-in function to do this “nothing at all,” which is also

called “sleeping.” The window.setTimeout method enables you to specify a time delay and a

command that will execute after the delay passes.

NOTE

Timeouts don’t make the browser stop what it’s doing. Although the statement you specify in the
setTimeout method won’t be executed until the delay passes, the browser will continue to do
other things while it waits (for example, acting on other event handlers and loading external content).

You begin a timeout with a call to the setTimeout method, which has two parameters. The

first is a JavaScript statement, or group of statements, enclosed in quotation marks. The second

parameter is the time to wait in milliseconds (thousandths of seconds). For example, the following

statement displays an alert dialog box after 10 seconds:

timeoutID=window.setTimeout("alert('Time's up!')",10000);

CAUTION

Like an event handler, a timeout uses a JavaScript statement within quotation marks. Make sure
that you use a single quote on each side of each string within the statement, as shown in the
 previous code snippet.

646 LESSON 24: Responding to Events and Using Windows

A variable (timeoutID in this example) stores an identifier for the timeout. This enables you to

set multiple timeouts, each with its own identifier. Before a timeout has elapsed, you can stop by

using the clearTimeout method and specifying the identifier of the timeout to stop:

window.clearTimeout(timeoutID);

Normally, a timeout happens only once because the statement you specify in the setTimeout

statement is executed only once. But often you’ll want a statement to execute over and over. For

example, your script might be updating a clock or a countdown and might need to execute once

per second.

You can make a timeout repeat by issuing the setTimeout method call again in the function called

by the timeout. Listing 24.7 shows an HTML document that demonstrates a repeating timeout.

LISTING 24.7 Using Timeouts to Update a Page Every Two Seconds

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Timeout Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Timeout Example</h1>
 <p>The counter will update every two seconds.</p>
 <p>Press RESTART or STOP to restart or stop the count.</p>
 <p id="showText"></p>
 <section>
 <button type="button" id="restart">RESTART</button>
 <button type="button" id="stop">STOP</button>
 </section>

 <script>
 var counter = 0;

 // call Update function 2 seconds after first load
 timeoutID=window.setTimeout("Update();",2000);

 function Update() {
 counter++;
 var textField = document.getElementById("showText");
 textField.innerHTML = "The counter is now at " + counter;

 // set another timeout for the next count
 timeoutID=window.setTimeout("Update();",2000);
 }

Using Timeouts 647

 // set event listeners for the buttons
 document.getElementById("restart").addEventListener("click", function() {
 counter = 0;
 Update();
 });
 document.getElementById("stop").addEventListener("click", function() {
 window.clearTimeout(timeoutID);
 });
 </script>
 </body>
</html>

This script displays a message inside a specially named <p> element every two seconds, and it

includes an incrementing counter that displays as part of that message. The specific <p> tag has

an id value of showText, and the Update function includes two lines that tell the script that the

text should be placed between these two tags:

textField = document.getElementById("showText");
textField.innerHTML = "The counter is now at " + counter;

The first line creates a variable called textField that holds the value of the element, given the

id value of showText. The second line says that, given that value, the text message about

the counter and the counter number should be placed inside the starting and ending tags of the

element with the id value of showText; that is the purpose of the innerHTML method, as you

learned previously.

This script calls the setTimeout method when the page loads and again at each update. The

Update function performs the update, adding one to the counter and setting the next timeout.

Clicking the RESTART button sets the counter to zero and reasserts the Update function, and

clicking the STOP button demonstrates the clearTimeout method. Figure 24.8 shows the display

of the timeout example after the counter has been running for a while.

FIGURE 24.8
The output of the timeout example, after it has been running for some time.

648 LESSON 24: Responding to Events and Using Windows

Displaying Dialog Boxes
The window object includes three methods that are useful for displaying messages and interact-

ing with the user. You’ve already used them in some of your scripts. Here’s a summary:

 N window.alert(message)—Displays an alert dialog box. This dialog box simply gives the

user a message.

 N window.confirm(message)—Displays a confirmation dialog box that displays a mes-

sage and includes OK and Cancel buttons. This method returns true if OK is pressed and

false if Cancel is pressed.

 N window.prompt(message,default)—Displays a message and prompts the user for

input. It returns the text entered by the user. If the user does not enter anything, the default

value is used.

When using the confirm and prompt methods, you should use a variable to receive the user’s

response. For example, this statement displays a prompt and stores the text the user enters in the

text variable:

text = window.prompt("Enter some text","Default value");

NOTE

You can usually omit the explicit reference to the window object when referring to these methods
because it is the default context of a script. For example, you can use alert("text") instead of
window.alert("text").

As a further illustration of these types of dialog boxes, Listing 24.8 shows an HTML document that

includes buttons and event handlers to enable you to test dialog boxes.

LISTING 24.8 An HTML Document That Uses JavaScript to Display Alerts,

Confirmations, and Prompts

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Alerts, Confirmations, and Prompts</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Alerts, Confirmations, and Prompts</h1>
 <p>
 Use the buttons below to test dialogs in JavaScript.
 </p>

Displaying Dialog Boxes 649

 <button type="button" id="alert">
 Display an Alert
 </button>

 <button type="button" id="confirm">
 Display a Confirmation
 </button>

 <button type="button" id="prompt">
 Display a Prompt
 </button>

 <script>
 document.getElementById("alert").addEventListener("click",
 function() {
 alertVal = window.alert("This is a test alert.");
 });
 document.getElementById("confirm").addEventListener("click",
 function() {
 confirmVal = window.confirm("Would you like to confirm?");
 });
 document.getElementById("prompt").addEventListener("click",
 function() {
 promptVal = window.prompt("Enter Text:","This is the default.");
 });
 </script>
 </body>
</html>

This document displays three buttons, and each button uses an event handler to display one of

the three types of dialog boxes.

Figure 24.9 shows the Listing 24.8 script in action, with the prompt dialog box currently displayed

and showing the default value.

FIGURE 24.9
Showing a prompt dialog box as a result of clicking a button.

650 LESSON 24: Responding to Events and Using Windows

Summary
In this lesson, you learned to use events to detect mouse actions, keyboard actions, and other

events, such as the loading of the page. You can use event handlers to perform a simple JavaScript

statement when an event occurs or to call a more complicated function. In learning this, you

learned how to make nearly every JavaScript script you write unobtrusive. By listening for events,

you can place the script last in the HTML document so that it doesn’t disrupt the loading of the

rest of the page.

JavaScript includes various events. Many of them are related to forms, which you’ll learn more

about in Lesson 27, “Working with Web-Based Forms.” In a longer example in this chapter, you

saw how to use click to show or hide text in a page with some design elements in it. Some new

CSS was introduced: the use of the cursor property. Assigning a cursor property of pointer

enabled you to indicate to users that particular text or an HTML element was acting as a link even

though it was not enclosed in <a> tags, as you are used to seeing.

In this lesson, you learned how to use the window object to work with browser windows and used

its properties and methods to set timeouts and display dialog boxes. You also worked through

 several examples in which you put together all the pieces of the puzzle from the previous several

lessons: working with the Document Object Model to change content and window display,

 creating new functions, and invoking those new functions through events.

Q&A
 Q. Can you capture mouse or keyboard events on elements other than text, such as images?

 A. Yes, these types of events can be applied to actions related to clicking on or rolling over
images as well as text. However, some multimedia objects, such as embedded YouTube vid-
eos or Flash files, are not used in the same way, because those objects are played via addi-
tional software for which other mouse or keyboard actions are applicable. For instance, if a
user clicks on a YouTube video that is embedded in your web page, he or she is interacting
with the YouTube player and no longer your actual web page; that action cannot be captured
in the same way.

 Q. What happens if I define both keydown and keypress event handlers? Will they both be

called when a key is pressed?

 A. The keydown event handler is called first. If it returns true, the keypress event is
called. Otherwise, no keypress event is generated.

Workshop 651

 Q. When a script is running in a window created by another script, how can it refer to the

 original window?

 A. JavaScript includes the window.opener property, which lets you refer to the window that
opened the current window.

 Q. What are some examples of using timeouts in JavaScript? I’m not sure why I would want

code to go to sleep.

 A. Ideally, you want your code to execute all the time, but sometimes you need to wait for user
input, or for long processes to finish, or even to ensure that users are not overloading your
system by clicking on elements too often. In such cases, you can include a timeout that
effectively disables certain buttons for a certain amount of time, such as to limit voting or
“liking” something more than once every second.

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of
the material covered. Try to answer all questions before looking at the “Answers” section that
follows.

Quiz
 1. Which of the following is the correct event handler for detecting a mouse click on a link?

 a. mouseup

 b. link

 c. click

 2. When does the load event handler for the <body> element execute?

 a. When an image is finished loading

 b. When the entire page is finished loading

 c. When the user attempts to load another page

 3. Which of the following event object properties indicates which key was pressed for
a keypress event?

 a. event.which

 b. event.keyCode

 c. event.onKeyPress

652 LESSON 24: Responding to Events and Using Windows

 4. Which of the following methods displays a dialog box with OK and Cancel buttons and waits
for a response?

 a. window.alert

 b. window.confirm

 c. window.prompt

 5. What does the window.setTimeout method do?

 a. Executes a JavaScript statement after a delay

 b. Locks up the browser for the specified amount of time

 c. Sets the amount of time before the browser exits automatically

 6. True or False: JavaScript can take control of a browser window and resize it, even if the
script did not open it.

 a. True

 b. False

 7. What is an anonymous function?

 a. A function that only runs when other functions cannot.

 b. A function with no name that is used as a default value.

 c. A function that takes the place of other functions.

 d. A function that has no name and doesn’t need to be used anywhere except the one
location.

 8. How do you write an event that happens when the user leaves the page?

 a. window.addListener("unload", function() { });

 b. window.addEvent("unload", function() { });

 c. window.addEventListener("unload", function() { });

 d. window.addEventListener("leave", function() { });

 9. What does the resizeBy method do, and what arguments does it use?

 a. Resizes the window relative to its current size with two arguments: numX and numY

 b. Resizes the window relative to the browser’s current size with the arguments:
numX and numY

 c. Resizes the current element using the arguments: numX and numY

 d. Resizes the current element using the arguments: numX, numY, and numZ

653Workshop

 10. What does window.self do?

 a. A synonym for the current window object

 b. Reloads the current window

 c. Sends the link to the current open window

 d. Opens the link in a new window

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. c. The event handler for a mouse click is click.

 2. b. The <body> element’s load handler executes when the page and all its images are
finished loading.

 3. b. The event.which property stores the character code for each keypress.

 4. b. The window.confirm method displays a dialog box with OK and Cancel buttons and
waits for a response.

 5. a. The window.setTimeout method executes a JavaScript statement after a delay.

 6. b. False. Only windows created by a script can be manipulated by the script.

 7. d. An anonymous function is a function that has no name and doesn’t need to be used
anywhere except the one location.

 8. c. These lines will do something when the user leaves the page:

window.addEventListener("unload", function() {
 // add statements here
});

 9. a. The window.resizeBy method resizes the window relative to its current size. It takes
two arguments: numX and numY.

 10. a. The window.self property is a synonym for the current window object.

http://www.informit.com/register

654 LESSON 24: Responding to Events and Using Windows

Exercises
To gain more experience using event handlers and controlling windows in JavaScript, try the
 following exercises:

 N Extend any (or all!) of the sample scripts in this lesson to check for specific values of
keypress actions before continuing on to execute the underlying JavaScript statements
within their associated functions.

 N Add commands to the click attributes in Listing 24.4 such that only one of the
elements—the elevation or photos—is visible at a time.

 N Using timeouts and JavaScript to display date and time (which you learned earlier
in these lessons), create a script to display a “live” clock with hours, minutes, and
 seconds shown.

 N Modify Listing 24.9 to do something with the results of the window.prompt() dialog
box—print the text, perform another action depending on specific text, or do something
that combines the two.

LESSON 25
JavaScript Best Practices

What You’ll Learn in This Lesson:

 N Best practices for creating unobtrusive scripts

 N The importance of separating content, presentation, and behavior

 N The importance of following web standards to create cross-browser scripts

 N How to read and display browser information

 N How to use feature sensing to avoid errors

 N How to support older, less compliant browser versions

 N How to support non-JavaScript browsers

In this lesson, you’ll learn some guidelines for unobtrusive scripting—creating scripts and pages

that are easy to maintain and easy to use and that follow web standards. Unobtrusive scripting

adds features without getting in the way of the user, the developer maintaining the code, or the

designer building the layout of the site. You’ll also learn how to make sure your scripts will work

in multiple browsers and won’t stop working when a new browser comes along. In addition, and

perhaps most importantly, these practices will help you become a better developer and a better

member of the overall JavaScript developer community.

Scripting Best Practices
As you start to develop more complex scripts, it’s important to know some scripting best practices.

These are guidelines for using JavaScript that more experienced programmers have learned the

hard way. Here are a few of the benefits of following these best practices:

 N Your code will be readable and easy to maintain, whether you’re turning the page over to

someone else or just trying to remember what you did a year ago.

 N You’ll create code that follows standards and won’t be crippled when a new version of a

browser is released.

 N You’ll create pages that work even without JavaScript.

656 LESSON 25: JavaScript Best Practices

 N It will be easy to adapt code you create for one site to another site or project.

 N Your users will thank you for creating a site that is easy to use and easy to fix when things

go wrong.

Whether you’re writing an entire AJAX web application or simply enhancing a page with a

 three-line script, it’s useful to know some of the concepts that are regularly considered by those who

write complex scripts for a living. The following sections introduce some of these best practices.

Avoid Overusing JavaScript
An important best practice is to avoid overusing JavaScript. This might seem counterintuitive in

lessons teaching you to become a competent developer using JavaScript, but it’s true. Because

HTML5 and CSS3 have matured, and so has browser support for these advanced standards,

there’s now much less reason to use JavaScript for some of the enhanced interactions that

required it even just a few years ago. For example, some developers spent years crafting useful

JavaScript-based form validation scripts, all of which have been rendered moot by the inclusion

of native HTML5 form field validation. So, as you’re thinking about what to build with JavaScript,

keep the following in mind:

 N Many of the visual effects that once needed to be coded in JavaScript can now be achieved

perfectly well using CSS. When both approaches are possible (for example, with image

 rollovers, animations, and some types of menus), CSS is usually preferable. It’s well

 supported across browsers. In the rare case that CSS isn’t supported, the page is rendered

as standard HTML, usually creating a page that’s at least perfectly functional, even if it’s

not so pretty.

 N Users are likely to spend a lot of their Internet time on sites other than yours. Experienced

Internet users become accustomed to popular interface components such as menus, bread-

crumb trails, and tabbed browsing. These elements are popular, in general, because they

work well, can be made to look good, and don’t require the user to read a manual first.

Familiarity with a site’s operation will likely increase a user’s productivity more than the

potential benefits of your all-new JavaScript-heavy whizz-bang design. And if users are more

productive, they will be happier with your site and stay longer.

 N Users in many areas of the world are still using outdated, underpowered, hand-me-down

computers and might also have slow and/or unreliable Internet access and old versions of

web browsers. The CPU cycles taken up by unnecessary JavaScript code might be precious

to them.

 N In some cases you might cost yourself a degree of search engine page rank because the

search engines’ spiders don’t always correctly index content that’s been generated by

JavaScript or designs that require it for navigation. Plus, if the JavaScript makes the page

less mobile friendly, you will definitely get penalized by search engines.

Scripting Best Practices 657

Used carefully and with forethought, JavaScript can be a great tool, but sometimes there is such a

thing as too much of a good thing.

Content, Presentation, and Behavior
When you create a web page, or especially an entire site or application, you need to deal with

three key areas, content, presentation, and behavior, all of which you’ve learned about in the

 previous lessons:

 N Content consists of the words that a visitor can read on your pages. You create the content as

text and mark it up with HTML to define different classes of content—headings, paragraphs,

links, and so on.

 N Presentation is the appearance and layout of the words, images, and other elements on each

page—text formatting, fonts, colors, and graphics. This is where the power of CSS comes

into play.

 N Behavior is what happens when you interact with a page—items that highlight when you

move over them, forms you can submit, and so on. This is where JavaScript enters into the

picture for enhanced front-end interactivity, along with server-side languages such as PHP

and Ruby.

It’s a good idea to keep these three areas in mind, especially as you create larger sites. It’s also a

good idea to keep content, presentation, and behavior separated as much as possible. One good

way to do this is to create an external CSS file for the presentation and an external JavaScript file

for the behavior and link them to the HTML document.

Keeping things separated like this makes it easier to maintain a large site. If you need to change

the color of the headings, for example, you can make a quick edit to the CSS file without having

to look through all the HTML markup to find the right place to edit. This separation also makes it

easy for you to reuse the same CSS and JavaScript on multiple pages of a site. Last but not least,

this separation encourages you to use each language where its strengths lie, which ultimately

makes your job easier.

Speed and Web Page Loading
JavaScript can be a huge drain on a web page because it is downloaded all by itself. The browser

cannot download anything else while the script is loading. This means that if there are other

page elements to download that come after the script or scripts on your page, they will not begin

 downloading until the scripts are done.

There are two techniques to remedy this: Use only one external JavaScript file and place the

<script> tag last in the HTML. By placing the <script> tag last—right before the closing

</body> tag—you ensure that the entire page will render and be visible even as the script is

658 LESSON 25: JavaScript Best Practices

 loading. And putting all your scripts together in one JavaScript file ensures that the browser has to

make only one call to the server for those scripts. This isn’t always possible—sometimes you need

to load things like libraries that are housed on other servers—but any scripts you write should all

be contained in the same file as much as possible.

Graceful Degradation
Some of the earliest web browsers didn’t even support the inclusion of images in HTML. As the

 element and other tags were introduced, it became important for those text-only browsers

to present something helpful to the user whenever an unsupported tag was encountered. In

the case of the tag, that facility was provided by the alt attribute. Web designers could

assign a string of text to alt, and text-only browsers would display that text to the user instead of

 showing the image. At the whim of the page designer, the alt text might be simply a title for the

image, a description of what the picture would have displayed, or a suggestion for an alternative

source of the information that would have been carried in the graphic.

This was an early example of graceful degradation—the process by which a user whose browser

lacks the required technical features to make full use of a web page’s design (or has those features

disabled) can still benefit from the site’s content.

Let’s take JavaScript itself as another example. Virtually every browser supports JavaScript, and

only a small percentage of users turn it off. So, do you really need to worry about that 1% of pos-

sible visitors who don’t have JavaScript enabled? The answer is probably yes. One type of frequent

visitor to your site will no doubt be the spider programs from search engines, busy indexing the

pages of the Web. A spider attempts to follow all the navigation links on your pages to build a full

index of your site’s content; if such navigation requires the services of JavaScript, you might find

some parts of your site not being indexed. Your search ranking will probably suffer as a result.

Another important example lies in the realm of accessibility. No matter how capable a browser

program is, there are some users who will access your site with other limitations, such as the

inability to use a traditional mouse or the necessity to use screen-reading software. You probably

want your site to be accessible to this part of your audience, and that may mean doing without all

your JavaScript bells and whistles.

Many mobile devices also have limitations compared to traditional desktop computers. The

 obvious limitation is the small screen size. In addition, mobile devices don’t have a mouse or other

pointer device, so click and hover events don’t work on them. Mobile devices are becoming an

increasingly large portion of the web browsing audience, and ignoring them is a really bad idea.

Progressive Enhancement
The counterpart of graceful degradation is progressive enhancement, in which the primary

 development principle is to keep HTML documents as simple as possible so that they’ll definitely

Scripting Best Practices 659

work in even the most primitive browsers. After you’ve tested that and made sure that the basic

functionality is always available, you can dynamically add features that make the site easier to

use or better looking for those with new browsers. If you add these features unobtrusively, they

have little chance of preventing the site from working in its primitive HTML form.

Here are some guidelines for progressive enhancement:

 N Enhance your site’s presentation by adding style rules to a separate CSS file. Try to avoid

using HTML tags for presentation only, such as for boldface or <blockquote> for an

indented section.

 N Enhance behavior by adding scripts to an external JavaScript file.

 N Add events without using inline event handlers, as described later in this lesson and in

Lesson 24, “Responding to Events and Using Windows.”

 N Use feature sensing, described later in this lesson, to ensure that JavaScript code executes

only on browsers that support the features it requires.

Adding Event Handlers
In Lesson 24, you learned that there is more than one way to set up event handlers. The simplest

way is to add them directly to an HTML tag. For example, this <body> tag has an event handler

that calls a function called Startup:

<body onload="Startup();">

This method works, but it does involve putting JavaScript code in the HTML page, which means

you haven’t fully separated content and behavior. To keep things entirely separate, you can set up

the event handler in the JavaScript file instead, like this:

window.onload=Startup;

This is an acceptable way to set up events: It keeps JavaScript out of the HTML file, and it works in

all modern browsers. However, it does involve one problem: You can’t attach more than one event

to the same element of a page. For example, you can’t have two different load event handlers

that both execute when the page loads.

When you’re the only one writing scripts, this is no big deal; you can combine the two into one

function. But when you’re trying to use two or three third-party scripts on a page, and all of them

want to add a load event handler to the body, you have a problem.

The W3C Event Model
To solve this problem and standardize event handling, the W3C created an event model as part

of the DOM Level 2 standard. It uses a method, addEventListener, to attach a handler to any

660 LESSON 25: JavaScript Best Practices

event on any element. For example, the following uses the W3C model to set up the same

load event handler as the previous examples:

window.addEventListener('load', Startup, false);

The first parameter of addEventListener is the event name, without the on prefix—load,

click, mouseover, and so on. The second parameter specifies the function to handle the event,

and the third is an advanced flag that indicates how multiple events should be handled

(false works for most purposes).

Any number of functions can be attached to an event in this way. Because one event handler

doesn’t replace another, you use a separate function, removeEventListener, which uses the

same parameters:

window.removeEventListener('load', Startup, false);

One problem with the W3C model is that although Internet Explorer 9 supports it, Internet

Explorer 8 does not. Instead, Internet Explorer 8 supports a proprietary method, attachEvent,

that does much the same thing. Here’s the Startup event handler defined Microsoft-style:

window.attachEvent('onload', Startup);

The attachEvent method has two parameters. The first is the event, with the on prefix—

onload, onclick, onmouseover, and so on. The second is the function that will handle the

event. Internet Explorer also supports the detachEvent method, which has the same param-

eters, for removing an event handler.

Attaching Events the Cross-Browser Way
As you can see, attaching events in this new way is complex and requires different code for

 different browsers. In most cases, you’re better off using the traditional method to attach events,

and that method is used in most of the examples in these lessons. However, if you really need to

support multiple event handlers, you can use some if statements to use either the W3C method

or Microsoft’s method. For example, the following code adds the ClickMe function as an event

for the element with the id attribute btn:

obj = document.getElementById("btn");
if (obj.addEventListener) {
 obj.addEventListener('click',ClickMe,false);
} else if (obj.attachEvent) {
 obj.attachEvent('onclick',ClickMe);
} else {
 obj.onclick=ClickMe;
}

This checks for the addEventListener method and uses it if it’s found. Otherwise, it checks for the

attachEvent method and uses that. If neither is found, it uses the traditional method to attach the

event handler. This technique, called feature sensing, is explained in detail later in this lesson.

Scripting Best Practices 661

Many universal functions are available to compensate for the lack of a consistent way to attach

events. If you are using a third-party library, there’s a good chance it includes an event function

that can simplify this process for you.

NOTE

The YUI library, like many other third-party libraries, includes an event-handling function that can
attach events in any browser, attach the same event handler to many objects at once, and perform
other nice functions. See https://yuilibrary.com for details, and see Lesson 26, “Using Third-Party
JavaScript Libraries and Frameworks,” for information about using various other available libraries.
Be aware that the YUI library is no longer being maintained, but you can still use the scripts and
styles in it.

Web Standards: Avoiding Being Browser Specific
The Web was built on standards, such as the HTML standard developed by the W3C. Now

there are a lot of standards involved with JavaScript—CSS, the W3C DOM, and the ECMAScript

 standard that defines JavaScript’s syntax.

Microsoft, the Mozilla Project, Google, and other browser developers such as Opera Software

 continually improve their browsers’ support for web standards, but there are always going to be

some browser-specific, nonstandard features, and some parts of the newest standards won’t be

consistently supported between browsers.

Although it’s perfectly fine to test your code in multiple browsers and do whatever it takes to get

it working, it’s a good idea to follow the standards rather than browser-specific techniques when

possible. This ensures that your code will work on future browsers that improve their standards

support, whereas browser-specific features might disappear in new versions.

NOTE

One reason to make sure you follow standards is that your pages can be better interpreted by
search engines, which often helps your site get search traffic. Separating content, presentation, and
behavior is also good for search engines because they can focus on the HTML content of your site
without having to skip over JavaScript or CSS.

One place you can go to find out what features are supported by which browsers and browser

 versions is Can I Use: www.caniuse.com. This site provides up-to-date information on both desktop

and mobile browsers and what features of JavaScript, HTML, CSS, and other web technologies

they support.

https://yuilibrary.com
http://www.caniuse.com

662 LESSON 25: JavaScript Best Practices

Handling Errors Well
No matter how good your development skills are or might become, your code will have errors.

All code has errors at some point, and handling errors well is a sign of a careful developer. When

your JavaScript program encounters an error of some sort, a warning or an error will be created

inside the JavaScript interpreter and displayed in the JavaScript console of your web browser.

Whether and how this is displayed to the user depends on the browser in use and the user’s set-

tings; the user might see some form of error message, or the failed program might simply remain

silent but inactive.

Neither situation is good for the user; he or she is likely to have no idea what has gone wrong or

what to do about it. As you try to write your code to handle a wide range of browsers and circum-

stances, it’s possible to foresee some areas in which errors might be generated. Examples include

the following:

 N The uncertainty about whether a browser fully supports a certain object and whether that

support is standards compliant

 N Whether an independent procedure has completed its execution, such as an external file

being loaded

A useful way to try to intercept potential errors and deal with them cleanly is by using the try

and catch statements. The try statement enables you to attempt to run a piece of code. If the

code runs without errors, all is well; however, if an error occurs, you can use the catch statement

to intervene before an error message is sent to the user and determine what the program should

then do about the error. The syntax looks like this:

try {
 doSomething();
}
catch(identifier) {
 doSomethingElse();
}

Here, identifier is an object created when an error is caught. It contains information about

the error. For instance, if you wanted to alert the user to the nature of a JavaScript runtime error,

you could use a code construct like this to open a dialog containing details about the error:

catch(err) {
 alert(err.description);
}

Documenting Your Code
As you create more complex scripts, don’t forget to include comments in your code to document

what it does, especially when some of the code seems confusing or is difficult to get working. It’s

Scripting Best Practices 663

also a good idea to document all the data structures, variables, and function arguments used in a

larger script.

Using comments is a good way to organize code and will help you work on the script in the future.

If you’re creating websites for a living, you’ll definitely need to use comments so that others can

work on your code as easily as you can. The following are some examples of how to use comments:

 N Using comments as a prologue to any object or function that contains more than a few lines

of simple code:

function calculateGroundAngle(x1, y1, z1, x2, y2, z2) {
/**
* Calculates the angle in radians at which
* a line between two points intersects the
* ground plane.
* @author Jane Doe you@yourdomain.com
*/
if(x1 > 0) {
.... more statements

 N Using inline comments wherever the code would otherwise be confusing or prone to

 misinterpretation:

// need to use our custom sort method for performance reasons
var finalArray = rapidSort(allNodes, byAngle) {
.... more statements

 N Using a comment wherever the original author can pass on specialist knowledge that the

reader is unlikely to know:

// workaround for image onload bug in browser X version Y
if(!loaded(image1)) {
.... more statements

 N Using comments as instructions for commonly used code modifications:

// You can change the following dimensions to your preference:
var height = 400px;

Ensuring Usability
While you’re adding cool features to your site, don’t forget about usability—making things as easy,

logical, and convenient as possible for users of your site. Although there are many books and

 websites devoted to usability information, a bit of common sense goes a long way.

For example, suppose you provide a drop-down list as the only way to navigate between pages of

your site. This is a common interface element, and it works well, but do your users find it usable?

664 LESSON 25: JavaScript Best Practices

Try comparing it to using a simple set of links across the top of a page, and you might find that

the following is true:

 N The list of links lets you see at a glance what the site contains; the drop-down list requires

you to click to see the same list.

 N Users expect links and can spot them quickly; a drop-down list is more likely to be part of

a form than a navigation tool, and thus it won’t be the first thing users look for when they

want to navigate your site.

 N Navigating with a link takes a single click, whereas navigating with a drop-down list takes

at least two clicks.

Remember to consider the user’s point of view whenever you add any functionality—and

 especially potentially intrusive JavaScript functionality—to a site. Ensure that you’re making the

site easier to use—or at least not harder to use. Also make sure that the site is easy to use without

JavaScript; although this might apply to only a small percentage of your users, that percentage

is likely to include users of screen readers or other software packages necessary for people with

visual impairments.

Ensuring Accessibility
As a developer you must consider accessibility—making your site as accessible as possible for all

users, including disabled users. For example, blind users might use a text-reading program that

will ignore images and most scripts on your site. Accessibility is more than just good manners; it is

mandated by law in some countries.

The subject of accessibility is complex, but you can provide most what is needed by following the

philosophy of progressive enhancement: Keep the HTML as simple as possible, keep JavaScript and

CSS separate, and make JavaScript an enhancement rather than a requirement for using your site.

NOTE

Ensuring that a site functions without JavaScript is one of the first steps toward accessibility
 compliance. For more information on accessibility, see www.w3.org/WAI/.

Benefitting from Design Patterns
If you learn more about usability, you’ll undoubtedly see design patterns mentioned. In computer

science, a design pattern is an optimal solution to a common problem. In web development,

you use design patterns to design and implement part of a site that you run into over and over.

For example, if you have a site that displays multiple pages of data, you’ll have Next Page and

Previous Page links, and perhaps numeric links for each page. This is a common design pattern—

a problem many web designers have had to solve, and one with a generally agreed-on solution.

http://www.w3.org/WAI/

Scripting Best Practices 665

Other common web design patterns include a login form, a search engine, and a list of navigation

links for a site.

Of course, you can be completely original and make a search engine, a shopping cart, or a login

form that looks nothing like any other, but unless you have a way of making them even easier to

use, you’re better off following the pattern and giving your users an experience that matches their

expectations.

Although you can find some common design patterns just by browsing sites similar to yours and

noticing how they have solved particular problems, there are also sites that specialize in docu-

menting these patterns, and they’re a good place to find ideas on how to make your site work.

NOTE

Google Developers offers a number of tools web designers can use to create more effective sites.
For a bunch of responsive design patterns, visit https://developers.google.com/web/fundamentals/
design-and-ux/responsive/patterns.

Reusing Code Where You Can
Now that you have all this JavaScript code sitting around, remember that the more you can mod-

ularize your code and make it reusable, the better. Take a look at this function:

function getElementArea() {
 var high = document.getElementById("id1").style.height;
 var wide = document.getElementById("id1").style.width;
 return high * wide;
}

This function attempts to return the area of screen covered by a particular HTML element.

Unfortunately, it can work only with an element that has an id with the value id1, which is really

not very helpful at all: It eliminates the possibility for you to use this code anywhere else, and if

you want to do something similar, you’re going to have to duplicate around 98% of this function

elsewhere.

Collecting your code into modules such as functions and objects that you can use and reuse

throughout your code is a process known as abstraction. You can give the preceding function a

higher level of abstraction to make its use more general by passing as an argument the id of the

element to which the operation should be applied:

function getElementArea(elementId) {
 var element = document.getElementById(elementId);
 var high = element.style.height;
 var wide = element.style.width;
 return parseInt(high) * parseInt(wide);
}

https://developers.google.com/web/fundamentals/design-and-ux/responsive/patterns
https://developers.google.com/web/fundamentals/design-and-ux/responsive/patterns

666 LESSON 25: JavaScript Best Practices

You can now call this function into action for any element that has an id, by passing the value of

id as a parameter when the function is called:

var area1 = getElementArea("id1");
var area2 = getElementArea("id2");

Reading Browser Information
In Lesson 21, “Working with the Document Object Model (DOM),” you learned about the various

objects (such as window and document) that represent portions of the browser window and the

current web document. JavaScript also includes an object called navigator that you can use to

read information about the user’s browser. Knowing more about the browser can help your scripts

determine whether to use certain elements of JavaScript—for example, if your script can tell that

an older browser like Internet Explorer 8 is in use, it might try to implement code written specifi-

cally for that browser rather than generic code that might fail.

The navigator object isn’t part of the DOM, so you can refer to it directly. It includes several

properties, each of which tells you something about the browser:

 N navigator.appCodeName—Specifies the browser’s internal code name, such as Mozilla.

You should be aware that all modern browsers will return Mozilla for this property,

regardless of whether they are a Mozilla-based browser or not.

 N navigator.appName—Specifies the browser’s name, such as Firefox or

Microsoft Edge.

 N navigator.appVersion—Specifies the version of the browser being used—for example,

5.0 (Windows).

 N navigator.userAgent—Specifies the user agent header, a string that the browser sends

to the web server when requesting a web page. It includes all of the version information—

for example, Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:59.0)
Gecko/20100101 Firefox/59.0.

 N navigator.language—Specifies the language (such as English or Spanish) of the brows-

er. This is stored as a code, such as en-US for U.S. English.

 N navigator.platform—Specifies the computer platform of the current browser. This is

a short string, such as Linux i686, Win32, and MacIntel. You can use this to enable

any platform-specific features—for example, ActiveX components for Internet Explorer on

Windows machines.

NOTE

The navigator object is named after Netscape Navigator, the browser that originally supported
JavaScript. Fortunately, this object is also supported by all modern browsers, despite its name.

Reading Browser Information 667

Many other properties of the navigator object can be useful. You can learn more about the

navigator object at https://developer.mozilla.org/en-US/docs/Web/API/Navigator.

Displaying Browser Information
As an example of how to read the navigator object’s properties, Listing 25.1 shows a script that

displays a list of the properties and their values for the current browser.

LISTING 25.1 A Script to Display Information About the Browser

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Browser Information</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Browser Information</h1>
 <p>
 The navigator object contains the
 following information about the browser you are using:
 </p>
 <ul id="info">

 <script>
 var txt = "";
 txt += "Code Name: " + navigator.appCodeName;
 txt += "App Name: " + navigator.appName;
 txt += "App Version: " + navigator.appVersion;
 txt += "User Agent: " + navigator.userAgent;
 txt += "Language: " + navigator.language;
 txt += "Platform: " + navigator.platform;

 document.getElementById("info").innerHTML = txt;
 </script>
 </body>
</html>

This script is wrapped inside a basic HTML document. JavaScript is used to display each of

the properties of the navigator object with the innerHTML property of the element with the

id info.

To try this script, load it into the browser of your choice. If you have more than one browser or

browser version handy, try it in each one. Firefox’s display of the script is shown in Figure 25.1.

https://developer.mozilla.org/en-US/docs/Web/API/Navigator

668 LESSON 25: JavaScript Best Practices

FIGURE 25.1
Firefox displays the browser information script.

Dealing with Dishonest Browsers
If you tried the browser information script in Listing 25.1 using certain versions of Internet

Explorer, you probably got a surprise. Figure 25.2 shows how Internet Explorer 6.0 displays the

script.

FIGURE 25.2
How Internet Explorer 6 displays the browser information script.

Cross-Browser Scripting 669

There are several unexpected things about this display. First, the navigator.language

 property is listed as undefined. This isn’t much of a surprise because this property isn’t supported

by Internet Explorer.

More importantly, notice that the word Mozilla appears in the Code Name and User Agent

fields. The full user agent string reads as follows:

Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)

Believe it or not, Microsoft did have a good reason for this. At the height of the browser wars,

about the time Netscape 3.0 and Internet Explorer 3.0 came out, it was becoming common to see

“Netscape only” pages. Some webmasters who used features such as frames and JavaScript set

their servers to turn away browsers without Mozilla in their user agent string. The problem with

this was that most of these features were also supported by Internet Explorer.

Microsoft solved this problem in Internet Explorer 4.0 by making Internet Explorer’s user agent

read Mozilla, with the word compatible in parentheses. This allowed Internet Explorer users

to view those pages and still included enough details to tell web servers which browser was in use.

You’ve probably already noticed the other problem with Internet Explorer 6.0’s user agent string:

the portion reading Mozilla/4.0. Not only is Internet Explorer claiming to be Netscape, but it’s

also masquerading as version 4.0. Why?

As it turns out, this was another effort by Microsoft to stay one step ahead of the browser wars,

although this one doesn’t make quite as much sense. Because poorly written scripts were checking

specifically for “Mozilla/4” for dynamic HTML pages, Microsoft was concerned that its 5.0 version

would fail to run these pages. Because changing it later on would only create more confusion, this

tradition continued with Internet Explorer 6.0.

These are two interesting episodes in the annals of the browser wars, but what does all this

mean to you? Well, you’ll need to be careful when your scripts are trying to differentiate between

Internet Explorer and Netscape and between different versions. You’ll need to check for specific

combinations instead of merely checking the navigator.appVersion value. Fortunately,

there’s a better way to handle this situation, as you’ll learn in the next section.

Cross-Browser Scripting
If all the details about detecting different browser versions seem confusing, here’s some good

news: In most cases, you can write cross-browser scripts without referring to the navigator

object at all. This is not only easier but better because browser-checking code is often confused by

new browser versions and has to be updated each time a new browser is released.

670 LESSON 25: JavaScript Best Practices

Feature Sensing
Checking browser versions is sometimes called browser sensing. A better way of dealing with

 multiple browsers is called feature sensing. In feature sensing, rather than check for a specific

browser, you check for a specific feature. For example, suppose your script needs to use the

 document.getElementById function. You can begin a script with an if statement that

checks for the existence of this function:

if (document.getElementById) {
 // do stuff
}

If the getElementById function exists, the block of code between the brackets is executed.

Another common way to use feature sensing is at the beginning of a function that makes use

of a feature:

function changeText() {
 if (!document.getElementById) return;
 // the rest of the function executes if the feature is supported
}

NOTE

The getElementById method is widely supported by all modern browsers. You need to set up
 feature sensing for it only if your scripts are breaking and you’ve investigated every other possibility.

You don’t need to check for every feature before you use it—for example, there’s not much point in

verifying that the window object exists in most cases. You can also assume that the existence of

one feature means others are supported: If getElementById is supported, chances are the rest

of the W3C DOM functions are supported.

Feature sensing is a very reliable method of keeping your JavaScript unobtrusive: If a browser

supports the feature, it works, and if the browser doesn’t, your script stays out of the way. It’s also

much easier than trying to keep track of hundreds of different browser versions and what they

support.

NOTE

Feature sensing is also handy when you’re working with third-party libraries, as discussed in
Lesson 26. You can check for the existence of an object or a function belonging to a library to verify
that the library file has been loaded before your script uses its features.

Supporting Non-JavaScript-Enabled Browsers 671

Dealing with Browser Quirks
So if feature sensing is better than browser sensing, why do you still need to know about the

 navigator object? There’s one situation in which it still comes in handy, although if you’re lucky

you won’t find yourself in that situation.

As you develop a complex script and test it in multiple browsers, you might run across a situation

in which your perfectly standard code works as it should in one browser and fails to work in

another. Assuming that you’ve eliminated the possibility of a problem with your script, you’ve

probably run into a browser bug or a difference in features between browsers at the very least.

Here are some tips for this situation:

 N Double-check for a bug in your own code.

 N If the problem is that a feature is missing in one browser, use feature sensing to check for

that feature.

 N When all else fails, use the navigator object to detect a particular browser and substitute

some code that works in that browser. This should be your last resort.

NOTE

Peter-Paul Koch’s QuirksMode, at www.quirksmode.org, is a good place to start when you’re looking
for specific information about browser bugs.

Supporting Non-JavaScript-Enabled Browsers
Some visitors to your site will be using browsers that don’t support JavaScript at all. As hinted a

few times in this lesson, these aren’t just a few holdouts using ancient browsers. Actually, there are

more non-JavaScript browsers than you might think:

 N Most modern browsers, such as Safari, Firefox, and Chrome, include an option to turn off

JavaScript, and some users do so. More often, the browser might have been set up by the

user’s ISP or employer with JavaScript turned off by default, usually in a misguided attempt

to increase security.

 N Some corporate firewalls and personal antivirus software block JavaScript.

 N Some ad-blocking software mistakenly prevents scripts from working even if they aren’t

related to advertising.

 N Some older mobile phones support little to no JavaScript.

 N Some visually impaired users use special-purpose browsers or text-only browsers that do not

support JavaScript.

http://www.quirksmode.org

672 LESSON 25: JavaScript Best Practices

As you can see, it would be foolish to assume that all your visitors will support JavaScript even

though 99% of traffic is through JavaScript-enabled devices. Two techniques you can use to make

sure these users can still use your site are discussed in the following sections.

NOTE

Search engines are another “browser” that will visit your site frequently, and they usually don’t pay
any attention to JavaScript. If you want search engines to fully index your site, it’s critical that you
avoid making JavaScript a requirement to navigate the site.

Using the <noscript> Tag
One way to be friendly to non-JavaScript browsers is to use the <noscript> tag. Supported in all

modern browsers, this tag displays a message to non-JavaScript browsers. Browsers that support

JavaScript ignore the text between the <noscript> tags, whereas others display it. Here is a

simple example:

<noscript>
This page requires JavaScript. You can either switch to a browser
that supports JavaScript, turn your browser's script support on,
or switch to the Non-JavaScript version of
this page.
</noscript>

Some older browsers don’t support <noscript>. An alternative to using <noscript> is to send

users with JavaScript support to another page. This can be accomplished with a single JavaScript

statement:

<script>
window.location="JavaScript.html";
</script>

This script redirects the user to a different page. If the browser doesn’t support JavaScript, of

course, the script won’t be executed, and the rest of the page can display a warning message

to explain the situation. This is a pretty drastic option, so you should avoid using it unless you

 absolutely have to.

Keeping JavaScript Optional
Although you can detect JavaScript browsers and display a message to non-JavaScript-enabled

browsers, the best choice is to simply make your scripts unobtrusive. This means using JavaScript

to enhance rather than as an essential feature: If you keep JavaScript in separate files and

assign event handlers in the JavaScript file rather than in the HTML, browsers that don’t support

JavaScript will simply ignore your script.

http://"nojs.html">Non-JavaScript</a
http://"JavaScript.html"

Supporting Non-JavaScript-Enabled Browsers 673

In rare cases when you absolutely need JavaScript—for example, with a JavaScript game—you can

warn users that JavaScript is required. However, it’s a good idea to offer an alternative, JavaScript-

free, way to use your site, especially if it’s an e-commerce or business site that your business relies on.

Don’t turn away customers by succumbing to lazy programming.

One place you should definitely not require JavaScript is in the navigation of your site.

Although you can create drop-down menus and other fancy navigation tools using JavaScript,

they prevent users’ non-JavaScript browsers from viewing all of your site’s pages. They also

 prevent search engines from viewing the entire site, which compromises your chances of getting

search traffic.

NOTE

Google’s Gmail application (https://mail.google.com), requires JavaScript for its elegant interface.
However, Google offers a Basic HTML View that can be used without JavaScript. This enables Google
to support older browsers and mobile phones without compromising the user experience for those
with modern browsers.

Avoiding Errors
If you’ve made sure that JavaScript is only an enhancement to your site, rather than a

 requirement, those with browsers that don’t support JavaScript for whatever reason will still be

able to navigate your site. One last thing to worry about: It’s possible for JavaScript to cause an

error or confuse these browsers into displaying your page incorrectly. This is a particular concern

with browsers that partially support JavaScript, such as older mobile phone browsers. They might

interpret a <script> tag and start the script but might not support the full JavaScript language

or DOM.

Here are some guidelines for avoiding errors:

 N Use a separate JavaScript file for each script. This is the best way to guarantee that a brows-

er will ignore a script completely if it does not have JavaScript support.

 N Use feature sensing whenever your script tries to use the newer DOM features.

 N Test your pages with your browser’s JavaScript support turned off. Make sure nothing looks

strange and make sure you can still navigate the site.

NOTE

The developer’s toolbars for Firefox and Chrome include a convenient way to turn off JavaScript
for testing.

https://mail.google.com

674 LESSON 25: JavaScript Best Practices

Creating an Unobtrusive Script
As an example of unobtrusive scripting, you can create a script that adds functionality to a page

with JavaScript without compromising its performance in older browsers—in this case, a script

that creates graphic check boxes as an alternative to regular check boxes.

Let’s start with the final result: Figure 25.3 shows this example as it appears in Chrome. The

first check box is an ordinary HTML one, and the second is a graphic check box managed by

JavaScript.

FIGURE 25.3
The graphic check box example in action, with the graphic check box checked.

The graphic check box is just a larger graphic that you can click on to display the checked or

unchecked version of the graphic. Although this could just be a simple JavaScript simulation that

acts like a check box, the implementation here is a bit more sophisticated. Take a look at the

HTML for this example in Listing 25.2.

LISTING 25.2 The HTML File for the Graphic Check Box Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Graphic Checkboxes</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Graphic Checkbox Example</h1>
 <form name="form1">
 <p>
 <input type="checkbox" name="check1" id="check1">
 An ordinary checkbox.
 </p>

Creating an Unobtrusive Script 675

 <p>
 <input type="checkbox" name="check2" id="check2">
 A graphic checkbox, created with unobtrusive JavaScript.
 </p>
 </form>

 <script src="checkbox.js"></script>
 </body>
</html>

If you look closely at the HTML, you’ll see that the two check boxes are defined in exactly the

same way, using a standard <input> element. Rather than substitute for a check box, this script

actually replaces the regular check box with the graphic version. The script for this example is

shown in Listing 25.3.

LISTING 25.3 The JavaScript File for the Graphic Check Box Example

function graphicBox(box) {
 // be unobtrusive
 if (!document.getElementById) return;

 // find the object and its parent
 obj = document.getElementById(box);
 parentobj = obj.parentNode;

 // hide the regular checkbox
 obj.style.display = "none";

 // create the image element and set its onclick event
 img = document.createElement("img");
 img.addEventListener("click", Toggle);
 img.src = "images/unchecked.png";

 // save the checkbox id within the image ID
 img.id = "img" + box;

 // display the graphic checkbox
 parentobj.insertBefore(img,obj);
}

function Toggle(e) {
 if (!e) var e=window.event;

 // find the image ID
 img = (e.target) ? e.target : e.srcElement;

676 LESSON 25: JavaScript Best Practices

 // find the checkbox by removing "img" from the image ID
 checkid = img.id.substring(3);
 checkbox = document.getElementById(checkid);

 // "click" the checkbox
 checkbox.click();

 // display the right image for the clicked or unclicked state
 if (checkbox.checked) {
 file = "images/checked.png";
 } else {
 file="images/unchecked.png";
 }
 img.src=file;
}

// replace the second checkbox with a graphic
graphicBox("check2");

This script has three main components:

 N The graphicBox function converts a regular check box to a graphic one. It starts by hiding

the existing check box by changing its style.display property and then creates a new

image node containing the unchecked.png graphic and inserts it into the DOM next to

the original check box. It gives the image an id attribute containing the text img plus the

check box’s id attribute to make it easier to find the check box later.

 N The Toggle function is specified by graphicBox as the event handler for the new image’s

click event. This function removes the text img from the image’s id attribute to find the

id of the real check box. It executes the click method on the check box, toggling its value.

Finally, it changes the image to unchecked.gif or checked.gif, depending on the state

of the real check box.

 N The last line of the script file runs the graphicBox function to replace the second check

box with the id attribute check2.

Using this technique has three important advantages. First, it’s an unobtrusive script, in that the

HTML has been kept simple, and browsers that don’t support JavaScript will simply display the

ordinary check box. Second, because the real check box is still on the page but hidden, it will work

correctly when the form is submitted to a server-side script. Last but not least, you can use it to

create any number of graphic check boxes simply by defining regular ones in the HTML file and

adding a call to graphicBox to transform each one.

Workshop 677

To try this example, save the JavaScript file as checkbox.js and ensure that the HTML file

is in the same folder. You also need to have two graphics the same size, unchecked.gif and

checked.gif, in the same folder.

Summary
In this lesson, you learned many guidelines for creating scripts that work in as many browsers as

possible and learned how to avoid errors and headaches when working with different browsers.

Most importantly, you learned how you can use JavaScript while keeping your pages small,

efficient, and valid by using web standards.

Q&A
 Q. Is it possible to create 100% unobtrusive JavaScript that can enhance a page without

causing any trouble for anyone?

 A. Not quite. For example, the unobtrusive script in the last section of this lesson is close: It
will work in the latest browsers, and the regular check box will display and work fine in even
ancient browsers. However, it can still fail if someone with a modern browser has images
turned off: The script will hide the check box because JavaScript is supported, but the
image won’t be there. This is a rare circumstance, but it’s an example of how any feature
you add can potentially cause a problem for some small percentage of your users.

 Q. Can I detect the user’s email address by using the navigator object or another technique?

 A. No. There is no reliable way to detect users’ email addresses by using JavaScript. (If there
were, you would get hundreds of advertisements in your mailbox every day from companies
that detected your address as you browsed their pages.)

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. Which of the following is the best place to put JavaScript code?

 a. In an HTML file

 b. In a JavaScript file

 c. In a CSS file

678 LESSON 25: JavaScript Best Practices

 2. Which of the following is something you can’t do with JavaScript?

 a. Send browsers that don’t support a feature to a different page

 b. Send users of Internet Explorer to a different page

 c. Send users of non-JavaScript browsers to a different page

 3. What is the term for modularization of code into reusable blocks for more general use?

 a. Abstraction

 b. Inheritance

 c. Unobtrusive JavaScript

 4. Where is the best place to call a script in your HTML?

 a. In the <head> element

 b. At the top of the <body> element

 c. At the bottom of the <body> element

 d. It doesn’t matter where you call your scripts

 5. If you can either build something as a script or with CSS or HTML, which is the better
choice?

 a. HTML first then add CSS

 b. HTML alone

 c. JavaScript

 d. There is no difference

 6. Which is better: graceful degradation or progressive enhancement?

 a. Graceful degradation

 b. Progressive enhancement

 c. Use both

 d. Use neither

 7. Why is attaching events like this: window.onload=start; less effective than using event
listeners?

 a. These events are slower than event listeners.

 b. You can add only one event to the element, which can get in the way if other libraries
need to attach events too.

 c. Not all browsers can understand event listeners.

 d. It’s not less effective. This is how you should attach events.

Workshop 679

 8. Is doing browser detection with the navigator object a good idea?

 a. Yes, it is very effective.

 b. No. It’s too slow to be effective.

 c. No. Some modern browsers don’t support it.

 d. No. Browsers all send the same value.

 9. What is a better way to solve the cross-browser scripting problem than using the
navigator object?

 a. Feature detection

 b. Method detection

 c. Object detection

 d. There is no better way

 10. Why should you test your pages with JavaScript turned off?

 a. Because many customers don’t use JavaScript

 b. Because mobile browsers don’t use JavaScript

 c. To ensure JavaScript isn’t required

 d. You don’t need to do this.

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book:
If you go to www.informit.com/register and register this book (using ISBN 9780672338083), you
can receive free access to an online Web Edition that not only contains the complete text of this
book but also features an interactive version of this quiz.

Answers
 1. b. The best place for JavaScript is in a separate JavaScript file.

 2. c. You can’t use JavaScript to send users of non-JavaScript browsers to a different page
because the script won’t be executed at all.

 3. a. Abstraction.

 4. c. You should place all scripts last in the HTML document to ensure that the page is fully
loaded before the scripts start.

 5. a. You should try to create as much as possible with basic HTML and then use CSS.
JavaScript should be a last resort.

http://www.informit.com/register

680 LESSON 25: JavaScript Best Practices

 6. c. People who use the Mobile First technique would claim that progressive enhancement is
better, but both progressive enhancement and graceful degradation make your web pages
more usable, so you should use both where it makes sense.

 7. b. You can add only one event to the element, and if you’re using multiple third-party scripts
along with your own, this will become a problem.

 8. d. This is not a good idea because while all modern browsers support the navigator
object, they support the object by returning the same value (“Mozilla”), regardless of the
browser being used.

 9. a. A better way to deal with multiple browsers is to do feature detection. If a feature
doesn’t work on the browser, the script will fail gracefully, and the user will be left with the
fallback option or with just HTML and CSS.

 10. c. You should test your pages with JavaScript turned off to ensure that the pages don’t
require JavaScript to work.

Exercises
 N Add several check boxes to the HTML document in Listing 25.2 and add the

 corresponding function calls to the script in Listing 25.3 to replace all of those check
boxes with graphic check boxes.

 N Modify the script in Listing 25.3 to convert all check boxes with a class value
of graphic into graphic check boxes. You can use getElementsByTagName and
then check each item for the right className property. You can also use
getElementsByClassName and then step through the array, as you learned to do
in Lesson 23, “Controlling Flow with Conditions and Loops.”

LESSON 26
Using Third-Party JavaScript
Libraries and Frameworks

What You’ll Learn in This Lesson:

 N Why you might use a third-party JavaScript library or framework

 N The differences between libraries and frameworks

 N How and when you might use Angular, jQuery, React, and other third-party libraries

 N How to download and use a popular third-party JavaScript library in your applications

 N The benefits of JavaScript frameworks

Third-party JavaScript libraries—that is, code libraries written and maintained by another party

for easy implementation in your own code—offer many advantages over always writing your

own code. First and foremost, using these libraries enables you to avoid reinventing the wheel for

 common tasks. In addition, these libraries allow you to implement cross-browser scripting and

sophisticated user interface elements without first having to become an expert in JavaScript.

There are many third-party JavaScript libraries out there, and this lesson provides a brief

 introduction to a few popular ones. In addition, you’ll learn a little about JavaScript frameworks,

which—as the name suggests—provide you with some underlying structure for your development,

as opposed to just building your own structure and using pieces (libraries) from elsewhere.

Using Third-Party JavaScript Libraries
When you use JavaScript’s built-in and often-used Math and Date functions, JavaScript does

most of the work; you don’t have to figure out how to convert dates between formats or calculate

a cosine but can just use the function that JavaScript provides. Third-party libraries are libraries

that are not directly included with JavaScript, but they serve a similar purpose: They enable you

to do complicated things with only a small amount of code because that small amount of code

refers to something bigger under the hood that someone else has already created.

682 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

Although in general most people are big fans of third-party libraries, you should be aware of

some of the common objections:

 N You won’t ever really know how the code works because you’re simply employing someone

else’s algorithms and functions.

 N JavaScript libraries contain a lot of code you’ll never use but that the browser has to

 download anyway.

Blindly implementing code is never a good thing. You should endeavor to understand what is

happening behind the scenes when you use any library. But that understanding could be limited

to knowing that someone else wrote a complicated algorithm that you could not write; it’s fine

if that’s all you know, as long as you implement it appropriately and understand the possible

 weaknesses.

The fact that libraries contain a lot of extraneous code should be a consideration if you know that

your target users have bandwidth limitations or if the size of the library is disproportionate to the

feature you’re using from it. For example, if your code requires the browser to load a 1MB library

just to use one function, you should look into ways to fork the library (if it is open source) so you

can use just the sections you need, find other features of the library you can use to make it worth-

while, or just look for another library that does what you want but with less overhead.

However, regardless of the objections, there are numerous good reasons for using third-party

JavaScript libraries, which in our opinion outweigh the negative objections:

 N Using a well-written library can really take away some of the headaches of writing cross-

browser JavaScript. You won’t have every browser always at your disposal, but the library

writers—and their communities of users—will have tested using several versions of all major

browsers, both modern and older.

 N Why invent code that somebody else has already written? Popular JavaScript libraries tend

to contain the sorts of abstractions that programmers often need to use—which means

you’ll likely need those functions too from time to time. The thousands of downloads and

pages of online documentation and commentary generated by the most-used libraries

 pretty much guarantee that the code these libraries contain will be more thoroughly tested

and debugged than the ordinary user’s home-cooked code would be.

 N Advanced functionality like drag and drop and JavaScript-based animation is, well, really

advanced. Truly cross-browser solutions for this type of functionality have always been

among the trickiest effects to code for all browsers, and well-developed and -tested libraries

to achieve these types of features are incredibly valuable in terms of the time and effort

they can save you.

Using Third-Party JavaScript Libraries 683

Using a third-party JavaScript library is usually as simple as copying one or more files to your

server (or linking to an external but incredibly stable location) and including a <script> tag

in your document to load the library, thus making its code available to your own scripts. Several

popular JavaScript libraries are introduced in the following sections.

jQuery
jQuery was introduced in 2006 and has grown from an easy, cross-browser means of DOM manip-

ulation to a stable, powerful library. This library contains not just DOM manipulation tools but

many additional features that make cross-browser JavaScript coding much more straightforward

and productive. In fact, many JavaScript frameworks, which you’ll learn about later in this lesson,

rely on the jQuery library for their functionality.

The current version (at this writing) is 3.3.1, and jQuery also has an advanced user interface

extensions library, called jQuery UI, that can be used alongside the existing library to rapidly

build and deploy rich user interfaces or to add various attractive effects to existing components.

In addition, jQuery Mobile is a touch-optimized mobile framework that helps designers make

responsive apps and websites that work on mobile devices as well as laptops and desktops.

NOTE

At jQuery’s home page, http://jquery.com, you can not only download the latest version but also
gain access to extensive documentation and sample code. The companion UI library can be found at
http://jqueryui.com, and jQuery Mobile is at https://jquerymobile.com.

If you don’t want to download and store the jQuery library on your own local development

machine or production server, you can use a remotely hosted version from a content delivery

 network (CDN), such as the one hosted by Google. Instead of referring to a locally hosted .js file

in your HTML files, use the following code to link to a stable and minified version of the code:

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">
</script>

In many cases, this provides better performance than hosting your own version because Google’s

servers are optimized for low-latency, massively parallel content delivery. In addition, anyone vis-

iting your page who has also visited another page that references this same file will have the file

cached in his or her browser and will not need to download it again. Many of the libraries and

frameworks you might want to use are hosted on the Google CDN and other such networks.

http://jquery.com
http://jqueryui.com
https://jquerymobile.com

684 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

jQuery has at its heart a sophisticated, cross-browser method for selection of page elements. The

selectors used to obtain elements are based on a combination of simple CSS-like selector styles,

so with the CSS techniques you learned in Part III, “Advanced Web Page Design with CSS,” you

should have no problem getting up to speed with jQuery. Following are a few brief examples of

jQuery code to illustrate this point.

If you want to get an element that has an id of someElement, you simply use the following:

$("#someElement")

You use the pound sign (#) to select for a specific ID, just as with CSS.

To return a collection of elements that have the someClass class name, you can simply use this:

$(".someClass")

You use the period (.) to indicate that you’re selecting elements with a specific class.

You can very simply get or set values associated with selected elements. Suppose, for example,

that you want to hide all elements having the class name hideMe. You can do that, in a fully

cross-browser manner, with just one line of code:

$(".hideMe").hide();

Manipulating HTML and CSS properties is just as straightforward. To append the phrase “powered

by jQuery” to all paragraph elements, for example, you would simply write the following:

$("p").append(" powered by jQuery");

To then change the background color of those same elements, you can manipulate their CSS

 properties directly, like so:

$("p").css("background-color","yellow");

In addition, jQuery includes simple cross-browser methods for determining whether an element

has a class, adding and removing classes, getting and setting the text or innerHTML of an ele-

ment, navigating the DOM, getting and setting CSS properties, and easily handling events in a

cross-browser way.

The associated UI library adds a huge range of UI widgets (such as date pickers, sliders, dialogs,

and progress bars), animation tools, drag-and-drop capabilities, and much more.

NOTE

You can even extend jQuery yourself by writing further plug-ins, or you can use the thousands
already submitted by other developers. Browse http://plugins.jquery.com to see lots of examples
in searchable categories.

http://plugins.jquery.com

Using Third-Party JavaScript Libraries 685

Prototype
Prototype, created by Sam Stephenson, is a JavaScript library that simplifies tasks such as work-

ing with DOM objects, dealing with data in forms, and remote scripting (AJAX). By including a

single prototype.js file in your document, you have access to many improvements over basic

JavaScript.

For example, in other sections of these lessons, you’ve used the getElementById JavaScript

method to obtain the DOM object for an element within a web page. Prototype includes an

improved version of this: the $ function. Not only is the Prototype function easier to type, but it

also is more sophisticated than the built-in function and supports multiple objects.

Adding Prototype to your pages requires only one file, prototype.js, and one <script> tag,

such as the following:

<script src="prototype.js"></script>

Alternatively, you can get Prototype from a CDN and refer to it, just as in the jQuery example in

the preceding section.

NOTE

Prototype is free, open-source software. You can download it from its official website at
www.prototypejs.org. Prototype is also built into the Ruby on Rails framework for the server-side
language Ruby; see https://rubyonrails.org for more information.

script.aculo.us
By the end of these lessons, you will have learned to do some useful things with JavaScript, often

involving complex code. But you can also include impressive effects in your pages by using

a prebuilt library and only a few lines of code.

script.aculo.us by Thomas Fuchs is one such library. It includes functions to simplify drag-and-

drop tasks, such as rearranging lists of items. It also includes a number of combination effects,

which enable you to use highlighting and animated transitions within your pages. For example,

a new section of the page can be briefly highlighted in yellow to get the user’s attention, or

a portion of the page can fade out or slide off the screen.

CAUTION

While script.aculo.us is still widely used by many designers, it has not been updated since 2010 and
may not have all the modern features you want.

http://www.prototypejs.org
https://rubyonrails.org
http://script.aculo.us
http://code.script.aculo.us
http://code.script.aculo.us
http://script.aculo.us

686 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

After you’ve included the appropriate files, using effects is as easy as using any of JavaScript’s

built-in methods. For example, the following statements use script.aculo.us to fade out an element

of the page with the id value test:

obj = document.getElementById("test");
new Effect.Fade(obj);

script.aculo.us is built on the Prototype framework, described earlier in this lesson, and it includes

all the functions of Prototype; therefore, you could also simplify the preceding example further by

using the $ function, like so:

new Effect.Fade($("test"));

The library’s name, script.aculo.us, is also the URL where you get it.

NOTE

The next section shows a script that demonstrates several script.aculo.us effects.

Other Popular JavaScript Libraries
There are many more JavaScript libraries out there, and more are appearing all the time as

JavaScript is taken more seriously as an application development language. Here are two more

libraries you might want to explore:

 N Dojo (www.dojotoolkit.org)—This is an open-source toolkit that adds power to JavaScript to

simplify building applications and user interfaces. It adds features ranging from extra

string and math functions to animation and AJAX.

 N MooTools (https://mootools.net)—This is an open-source object-oriented JavaScript library.

Its focus is on reusability and modularity.

Adding JavaScript Effects by Using a
Third-Party Library
To see how simple it is to use an external library, in this section you’ll create a sample script

that includes the script.aculo.us library and uses event handlers to demonstrate several of the

available effects.

CAUTION

This example was created using version 1.9.0 of script.aculo.us and version 1.7.3.0 of Prototype.
The script should work with later versions because developers tend to ensure backward
 compatibility, but the underlying code might have changed since this lesson was written. If you
have trouble, you might need to use these specific versions.

http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://www.dojotoolkit.org
https://mootools.net
http://script.aculo.us
http://script.aculo.us

Adding JavaScript Effects by Using a Third-Party Library 687

This example shows how to include script.aculo.us and Prototype in an HTML document by

leveraging the Google CDN. To do this, simply use <script> tags to reference the code:

<script
 src="http://ajax.googleapis.com/ajax/libs/prototype/1.7.2.0/prototype.js">
</script>
<script
 src="http://ajax.googleapis.com/ajax/libs/scriptaculous/1.9.0/scriptaculous.js">
</script>

NOTE

Of course, you could download script.aculo.us and Prototype to your local development machine
or web server and reference it accordingly. If you go down that path, try to keep all your assets in
separate directories, such as a js folder that contains all JavaScript libraries, and ensure that your
<script> tag references the path accordingly.

If you include these statements in the <head> section of your document, the library functions will

be available to other scripts or event handlers anywhere in the page. But remember that when

you place the scripts first, the browser won’t load anything until those scripts are loaded—one at a

time. Most developers include libraries in the <head> of their documents but place them last. But

it’s not required to place them there. As long as the link to the library is placed above any scripts

that use it, you can place it below all your HTML, just as you would any other script.

After you have included the external code, you simply need to include a bit of JavaScript to

trigger the effects. This section uses a section of the page wrapped in a <p> tag with the id value

testarea to demonstrate some of the effects that script.aculo.us makes possible. Each effect is

triggered by a simple event handler on a button. For example, this code defines the Fade Out

button:

<button onclick="new Effect.Fade($('testarea'))">Fade Out</button>

This code uses the $ function that is built in to Prototype to obtain the object for the element with

the id value testarea and then passes it to the Effect.Fade function that is built in to

script.aculo.us.

NOTE

This example demonstrates 6 effects: Fade, Appear, SlideUp, SlideDown, Highlight, and
Shake. There are more than 16 effects in the library, plus methods for supporting drag-and-drop and
other features. See script.aculo.us for details.

Once you have included the script.aculo.us library, you can combine effects with event handlers

and some sample text to see a complete demonstration of script.aculo.us effects. The complete

HTML document for this example is shown in Listing 26.1.

http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us

688 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

LISTING 26.1 The Complete Library Effects Example

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Testing script.aculo.us effects</title>
 <style>
 #testarea {
 background-color:#CCC; margin:20px; padding:10px;
 }
 </style>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <script
src="https://ajax.googleapis.com/ajax/libs/prototype/1.7.3.0/prototype.js">
 </script>
 <script
src="https://ajax.googleapis.com/ajax/libs/scriptaculous/1.9.0/scriptaculous.js">
 </script>
 </head>
 <body>
 <h1>Testing script.aculo.us Effects</h1>
 <button onclick="new Effect.Fade($('testarea'))">Fade Out</button>
 <button onclick="new Effect.Appear($('testarea'))">Fade In</button>
 <button onclick="new Effect.SlideUp($('testarea'))">Slide Up</button>
 <button onclick="new Effect.SlideDown($('testarea'))">Slide Down</button>
 <button onclick="new Effect.Highlight($('testarea'))">Highlight
 </button>
 <button onclick="new Effect.Shake($('testarea'))">Shake</button>
 <hr>
 <h2>Testing Effects</h2>
 <p id="testarea">
 This section of the document is within a <p> element with
 the id value of testarea. The
 event handlers on the buttons above send this object to the
 script.aculo.us library
 to perform effects. Click the buttons to see the effects in action.
 </p>
 </body>

</html>

This document starts with two <script> tags to include the third-party files that contain the

JavaScript code that your own scripts will reference. The effects themselves are triggered by the

event handlers defined for each of the six buttons. The <p> section at the end defines the

testarea element that will be used to demonstrate the effects.

http://script.aculo.us

Using JavaScript Frameworks 689

When you load this script in your web browser, the display should look as shown in Figure 26.1.

After it has been loaded, you should be able to click on any of the six buttons at the top of the

page to trigger the effects provided by the script.aculo.us JavaScript library.

FIGURE 26.1
The JavaScript effects example, ready for action.

Using JavaScript Frameworks
There’s a big difference between JavaScript libraries and JavaScript frameworks: Simple libraries

tend to be smaller and provide ready-made pieces of code that provide functionality meant to

enhance your custom architecture, and frameworks are larger, are more complicated, and impose

an architectural pattern upon your application, such as the model-view-controller (MVC) pattern. In

an MVC pattern, an application is conceived of as having three interconnected components:

 N Model—Acts as the central component, even though it’s listed first in the name, holding

application data, business rules, functions, and other logical elements

 N View—Requests information from the model to show to the user

 N Controller—Sends information to the model for processing through user interactions

You can think of it this way: In a web-based application, the user interacts with a controller that

manipulates the underlying model, which updates the view, which the user then sees in the web

browser.

In a traditional web-based application, you will likely have experienced it this way: Both the

model and the controller components sit on the back end, away from the browser, and are

invoked through form elements or other interactions by the user that say, “Hey, back-end script,

http://script.aculo.us

690 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

go do something with logic and data based on this input I’m giving you, and send the result back

to the screen.” The screen, in this case, would contain dynamically generated HTML (the view).

In a JavaScript-based MVC application, which most likely has been developed using one of the

frameworks you’ll learn about in a moment, all three components can sit on the client side; that

is to say, a user can interact with data that is stored and manipulated entirely within the front

end, never touching a back-end script or database. Or most of the three components can sit on the

front end and use AJAX requests to invoke a script on the back end, which then sends results back

into the view.

NOTE

AJAX (Asynchronous JavaScript and XML), also known as remote scripting, enables JavaScript to
communicate with a program running on the web server. This means JavaScript can do things that
were traditionally not possible, such as dynamically loading information from a database or storing
data on a server without refreshing a page.

AJAX requires some complex scripting, particularly because the methods you use to communicate
with the server vary depending on the browser in use. Fortunately, many libraries have been created
to fill the need for a simple way to use AJAX.

By the end of these introductory lessons in HTML, CSS, and JavaScript, we wouldn’t expect you or

anyone else to be prepared to create a JavaScript framework of your very own—and please don’t,

because there are already 30 or more competing frameworks out there in the wild! But we would

expect you to be able to start thinking about how a framework might be helpful in your work and

to be able to begin understanding one or more of the major frameworks in use today.

If you are building a predominantly read-only website and using a little JavaScript or jQuery

for some display features, a framework would be considerable overkill. But if you begin to think

about ways to extend that website to include user interactivity, you might think about laying a

framework in to handle that work for you. Following are some major JavaScript frameworks in use

today, all of which would be fine starting points for further exploration:

 N Angular (https://angular.io)—This is a very powerful and flexible framework, but it involves

a steep learning curve. However, it has a very active user community that is ready to

help new developers understand the framework. It is a complete makeover of the equally

 popular original framework, AngularJS (https://angularjs.org).

 N Backbone.js (backbonejs.org)—This framework has been around for quite some time

 (relatively speaking) and served as the inspiration for many other frameworks. It enables

a new developer to get started quickly, but the downside of that, for some, is that the

 applications will contain a lot of unused templating code.

https://angular.io
https://angularjs.org
http://backbonejs.org

Q&A 691

 N Ember (https://emberjs.com)—Like Backbone.js, Ember enables a new developer to get

started quickly. Although it appears “too magical” to some, Ember’s strong adherence to

common programming idioms can be a benefit to new developers.

 N Knockout (knockoutjs.com)—Less popular than the frameworks previously listed, Knockout

nonetheless provides a strong alternative as well as several nice tutorials for new developers.

 N React (https://reactjs.org)—There is some debate over whether React is a library or

a framework, but whatever it is, it’s a popular tool for creating interactive web pages and

applications, and it has been growing in popularity.

There are many more than these few JavaScript frameworks out there at the time of this writing,

and we fully expect that there will be more in years to come. To stay up to date or to get an over-

view of the core features of JavaScript frameworks and libraries, you can start by bookmarking

and revisiting JavaScripting (www.javascripting.com).

Summary
In this lesson, you learned about some of the many third-party libraries available for JavaScript,

which offer many advantages, including easy cross-browser scripting, selection and editing of

HTML and CSS values, animation, and more sophisticated user-interface tools, such as drag-and-

drop. You used the script.aculo.us and Prototype libraries to put some basic JavaScript effects like

this into action.

In addition, you learned about some of the popular JavaScript frameworks, and how you can take

advantage of them to develop feature-rich web applications following standard software architec-

ture patterns such as the model-view-controller (MVC) pattern.

Q&A
 Q. Can I use more than one third-party library in the same script?

 A. Yes, in theory: If the libraries are well written and designed not to interfere with each other,
there should be no problem with using them both in the same script. In practice, this will
depend on the libraries you need and how they were written, but many JavaScript libraries
can be used together or will include a warning about incompatibilities.

 Q. Can I build my own library to simplify scripting?

 A. Yes. As you deal with more complicated scripts, you’ll find yourself using the same
 functions over and over, and if they’re functions you have created, then storing them in a
separate library file may be a good idea. This process is as simple as creating a .js file
with your code, placing it on your server, and referencing it in a <script> tag as you would
any other library.

https://emberjs.com
http://knockoutjs.com
https://reactjs.org
http://www.javascripting.com
http://script.aculo.us

692 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. Which of the following objects is not a JavaScript library?

 a. script.aculo.us

 b. Yahoo! UI

 c. AJAX

 2. How can you extend jQuery yourself?

 a. jQuery can’t be extended.

 b. You can write server-side scripts.

 c. You can write a plug-in or use a prewritten one.

 3. What other JavaScript third-party library does script.aculo.us employ?

 a. Prototype

 b. Dojo

 c. jQuery

 4. What is a drawback to using JavaScript libraries?

 a. You don’t know how the code works because you didn’t write it.

 b. The code often has more in it than you need, bloating your pages.

 c. Many libraries have malicious code in them.

 d. Both A and B

 5. What is your option if you don’t want to download and store a library on your own server?

 a. Use a CDN

 b. Use a hosting provider

 c. Use another library

 d. Use PHP

http://script.aculo.us
http://script.aculo.us

Workshop 693

 6. What does the following jQuery snippet do?

$("em.bright").css("background-color","pink");

 a. Select all elements with the em and bright classes and change their background
 colors to pink.

 b. Select all elements with the class bright and change their background color
to pink.

 c. Select all elements with the bright class and make them elements with a pink
background.

 d. Select the first element with the class bright and change its background color
to pink.

 7. What Prototype function replaces getElementById?

 a. There is no Prototype function that replaces getElementById.

 b. The getElement function

 c. The byId function

 d. The $ function

 8. Why do you include script libraries in the <head> of your documents?

 a. Then they can be accessed by any script on the page.

 b. This is where they are required to be.

 c. Libraries load asynchronously, so they can be placed first.

 d. You should never include them in the <head>.

 9. What does MVC stand for in programming architecture?

 a. Massive version change

 b. Multiuse-view-controller

 c. Model-view-controller

 d. Mobile-view-controller

 10. What are three popular JavaScript frameworks in use today?

 a. Angular, JSEmber, and React

 b. AngularJS, Ember, and React

 c. AngularJS, Backbone.js, and Knockact

 d. Backbone.js, Ember, and Knockact

694 LESSON 26: Using Third-Party JavaScript Libraries and Frameworks

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. c. AJAX is a programming technique that enables your scripts to use resources hosted on

your server. There are many libraries to help you employ AJAX functionality, but AJAX itself is
not a library.

 2. c. jQuery has a well-documented method for writing and using plug-ins.

 3. a. script.aculo.us uses the Prototype library.

 4. d. You don’t know how the code works because you didn’t write it, and libraries often
 contain a lot of extra code that you don’t need but that the browser has to download
 anyway.

 5. a. You can use a content delivery network (CDN).

 6. b. This snippet selects all the tags with the class bright and gives them the
 background color pink.

 7. d. The $ function is an improved version in Prototype.

 8. a. Most designers include them there because then they can be accessed by any script.

 9. c. MVC is the model-view-controller pattern.

 10. b. Some popular frameworks include Angular (and AngularJS), Backbone.js, Ember,
Knockout, and React.

Exercises
 N Visit the script.aculo.us website at script.aculo.us to find the complete list of effects

and then modify Listing 26.1 to add buttons for one or more of these additional effects.

 N Much as you practiced in this lesson using script.aculo.us, pick another third-party
JavaScript library such as Dojo or MooTools and implement one or more of the library’s
custom features on your own. If you don’t want to use either of those, you can pick one
from the list at www.javascripting.com.

http://www.informit.com/register
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://script.aculo.us
http://www.javascripting.com

LESSON 27
Working with Web-Based Forms

What You’ll Learn in This Lesson:

 N How HTML forms work

 N How to create the front end of an HTML form

 N How to name pieces of form data

 N How to include hidden data in forms

 N How to choose the correct form input controls for different situations

 N How to validate form data

 N How to submit form data

 N How to use the form object with JavaScript

To this point, pretty much everything in these lessons has focused on getting information out to

others. But you can also use your web pages to gather information from the people who read and

interact with them.

Web forms enable you to receive feedback, orders, and other information from the users who

visit your web pages. If you’ve ever used a search engine such as Google or Bing, you’re familiar

with HTML forms—those single-field entry forms, each with a single button that, when clicked,

gives you all the information you are looking for and then some. Product order forms are also

an extremely popular use of forms; if you’ve ordered anything from Amazon.com or purchased

 something from an eBay seller, you’ve used forms. In this lesson, you’ll learn how to create your

own forms, but you’ll learn only how to create the front end of those forms. Working with the

server-side handling of forms requires knowledge of a programming language and is beyond the

scope of these lessons.

How HTML Forms Work
An HTML form is part of a web page that includes areas where users can enter information to be

sent back to you, to another email address that you specify, to a database that you manage, or

to another system altogether, such as a third-party management system for your company’s lead

generation forms, such as Salesforce.com.

http://Amazon.com
http://Salesforce.com

696 LESSON 27: Working with Web-Based Forms

Before you learn the HTML elements that are used to make your own forms, you should at least

conceptually understand how the information from those forms makes its way back to you. The

actual behind-the-scenes (the server-side or back-end) process requires knowledge of at least one

programming language—or at least the ability to follow specific instructions when using someone

else’s server-side script to handle the form input. At that point in the process, you should either

work with someone who has the technical knowledge or learn the basics on your own. Simple

form processing is not difficult, and your web hosting provider likely has several back-end scripts

that you can use with minimal customization.

NOTE

PHP is the most popular server-side programming language, and it is supported by any web hosting
provider that’s worth its salt. You can learn more about PHP at www.php.net, or you can just dive
right in to learning this programming language (plus database interactivity) from the ground up in
Sams Teach Yourself PHP, MySQL, and JavaScript All in One (ISBN: 978-0-672-33770-3). It is geared
toward absolute beginners with PHP or any other programming language.

A form includes a button for the user to submit the form; that button can be an image that you

create yourself or a standard HTML form button that is created when a form <input> element

is created and given a type value of submit. When someone clicks a form submission button,

all the information typed in the form is sent to a URL specified in the action attribute of the

<form> element. That URL should point to a specific script that will process your form, sending

the form contents via email or performing another step in an interactive process (such as request-

ing results from a search engine or placing items in an online shopping cart).

When you start thinking about doing more with form content than simply emailing results

to yourself, you need additional technical knowledge. For example, if you want to create an

online store that accepts credit cards and processes transactions, there are some well-established

 practices for doing so, all geared toward ensuring the security of your customers’ data. That is not

an operation that you’ll want to enter into lightly; you’ll need more knowledge than these lessons

provide.

Before you put a form online, you should look in the user guide for your web hosting provider to

see what it offers in the way of form-processing scripts. You are likely to find a readily available

Perl or PHP script that you can use with only minimal configuration.

Creating a Form
Every form must begin with an opening <form> tag, which can be located anywhere in the

body of the HTML document. The <form> tag typically has three attributes, name, method,

and action:

<form name="my_form" method="post" action="myprocessingscript.php">

http://www.php.net

Creating a Form 697

The most common method is post, which sends the form entry results as a document. In some

situations, you need to use method="get", which submits the results as part of the URL query

string instead. For example, get is sometimes used when queries are submitted to search engines

from a web form. Because you’re not yet an expert on forms, just use post unless your web

 hosting provider’s documentation tells you to do otherwise.

NOTE

The URL query string is the part of the URL after a question mark (?). It is made up of name=value
pairs, separated by an ampersand (&) character, as in this example:

https://www.yourdomain.com/path/to/page.html?this=that&a=anything

The action attribute specifies the address for sending the form data. You have two options here:

 N You can type the location of a form-processing program or script on a web server, and the

form data will then be sent to that program. This is by far the most common scenario.

 N You can type mailto: followed by your email address, and the form data will be sent

directly to you whenever someone fills out the form. Here’s an example:

<form name="my_form" method="post" action="mailto:me@mysite.com">

However, this approach is completely dependent on the user’s computer being properly

 configured with an email client. People accessing your site from a public computer without

an email client will be left out in the cold.

The form created in Listing 27.1 and shown in Figure 27.1 includes just about every type of user

input component you can currently use in HTML forms in modern browsers. Refer to this listing

and figure as you read the following explanations of the types of input element.

LISTING 27.1 A Form with Various User-Input Components

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Guest Book</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <style>
 fieldset {
 width: 75%;
 border: 2px solid #9435d4;
 }
 legend {
 font-weight: bold;
 font-size: 125%;
 }

https://www.yourdomain.com/path/to/page.html?this=that&a=anything

698 LESSON 27: Working with Web-Based Forms

 label.question {
 width: 225px;
 float: left;
 text-align: left;
 font-weight: bold;
 }
 span.question {
 font-weight: bold;
 }
 input, textarea, select, button {
 border: 1px solid #000;
 padding: 3px;
 }
 #buttons {
 margin-top: 12px;
 }
 #errors {
 color: red;
 font-weight: bold;
 font-size: larger;
 }
 </style>
 </head>
 <body>
 <h1>My Guest Book</h1>
 <form name="gbForm" method="post" action="URL_to_script">
 <output id="errors"></output>
 <fieldset>
 <legend>Personal Information</legend>
 <p>
 <label class="question" for="the_name">
 What is your name?</label>
 <input type="text" id="the_name" name="the_name"
 placeholder="Enter your full name."
 size="50" required autofocus>
 </p>
 <p>
 <label class="question" for="the_email">What is your email
 address?</label>
 <input type="email" id="the_email" name="the_email"
 placeholder="Please use a real one!"
 size="50" required>
 </p>
 </fieldset>
 <fieldset>
 <legend>Survey Questions</legend>
 <p>
 Please check all that apply:

Creating a Form 699

 <input type="checkbox" id="like_it" name="some_statements[]"
 value="I really like your web site.">
 <label for="like_it">I really like your web site.</label>

 <input type="checkbox" id="the_best" name="some_statements[]"
 value="It's one of the best sites I've ever seen">
 <label for="the_best">It's one of the best sites I've ever
 seen.</label>

 <input type="checkbox" id="jealous" name="some_statements[]"
 value="I sure wish my site looked as good as yours.">
 <label for="jealous">I sure wish my site looked as good as
 yours.</label>

 <input type="checkbox" id="no_taste" name="some_statements[]"
 value="I have no taste and I'm pretty dense, so your
 site didn't do much for me.">
 <label for="no_taste">I have no taste and I'm pretty dense, so
 your site didn't do much for me.</label>
 </p>
 <p>
 <label for="choose_scale">Please
 rate my site on a scale of 1 (poor) to 10
 (awesome):</label>
 <input type="number" id="choose_scale" name="choose_scale"
 min="1" max="10" step="1" value="5">
 </p>
 <p>
 Please choose the one thing you love
 Best about my web site:

 <input type="radio" id="the_picture" name="best_thing"
 value="me">
 <label for="the_picture">That amazing picture of you</label>

 <input type="radio" id="the_animals" name="best_thing"
 value="animals">
 <label for="the_animals">All the animal photos, of course</label>

 <input type="radio" id="the_dandelions" name="best_thing"
 value="dandelions">
 <label for="the_dandelions">The comprehensive dandelion
 facts, by far</label>

 <input type="radio" id="the_story" name="best_thing"
 value="childhood story">
 <label for="the_story">The inspiring recap of your suburban
 childhood</label>

 <input type="radio" id="the_treasures" name="best_thing"
 value="Elvis treasures">
 <label for="the_treasures">The detailed list of all your Elvis
 memorabilia</label>
 </p>

700 LESSON 27: Working with Web-Based Forms

 <p>
 <label for="the_worst">
 Please indicate the one thing I could improve about my web site:
 </label>

 <input type="text" id="the_worst" name="the_worst"
 placeholder="There's nothing bad, is there?"
 list="listOfBadChoices" size="50">
 </p>
 <p>
 <label for="how_improve">What else
 would you like to see on my web site?</label>

 <select id="how_improve" name="how_improve" size="4" multiple>
 <optgroup label="Preferred">
 <option value="Nothing. It's perfect.">Nothing. It's
 perfect.</option>
 </optgroup>
 <optgroup label="Likely">
 <option value="More about the animals.">More about the
 animals.</option>
 <option value="More about the dandelions.">More about the
 dandelions.</option>
 </optgroup>
 <optgroup label="Unlikely">
 <option value="More about Elvis.">More about Elvis.
 </option>
 </optgroup>
 </select>
 </p>
 </fieldset>
 <fieldset>
 <legend>Free for All!</legend>
 <p>
 <label for="message">Feel free to send
 more praise, gift offers, etc.:</label>
 <textarea id="message" name="message" rows="7" cols="55">
 </textarea>
 </p>
 </fieldset>
 <div id="buttons">
 <input type="submit" value="Click Here to Submit"> or
 <input type="reset" value="Erase and Start Over"> or
 <button type="button" id="standardValues">Fill in Standard
 Values</button>
 </div>
 </form>
 <datalist id="listOfBadChoices">
 <option value="nothing"></option>
 <option value="nada"></option>
 <option value="zip"></option>

Creating a Form 701

 <option value="zilch"></option>
 <option value="I can't think of anything"></option>
 </datalist>
 </body>
</html>

FIGURE 27.1
The code in Listing 27.1 uses many common HTML form elements.

The code in Listing 27.1 uses a <form> element that contains quite a few <input> tags. Each

<input> tag corresponds to a specific user input component, such as a check box or radio button.

702 LESSON 27: Working with Web-Based Forms

The input, select, text area, and button elements contain borders in the stylesheet, so it is easy to

see the outline of each element in the form. Keep in mind that you can apply all sorts of CSS to

those elements.

The next few sections dig into the details of the <input> tag and other form-related tags.

Accepting Text Input
To ask the user for a specific piece of information within a form, use the <input> tag. Although

this tag does not explicitly need to appear between the <form> and </form> tags, putting it

there is good practice and makes your code easier to follow. You can place <input> elements

anywhere on the page alongside text, images, and other HTML tags. For example, to ask for

someone’s name, you could type the following text followed immediately by an <input> field:

<p><label class="question" for="the_name">What is your name?</label>
<input type="text" id="the_name" name="the_name"
 placeholder="Enter your full name."
 size="50" required autofocus></p>

The type attribute indicates what type of form element to display—in this case a simple, one-

line text entry box. (Each element type is discussed individually in this lesson.) In this example,

note the use of the placeholder, required, and autofocus attributes. You’ll learn about the

required attribute later in this lesson; the autofocus attribute automatically focuses the user’s

cursor in this text field as soon as the browser renders the form. A form can have only one

autofocus field. The placeholder attribute enables you to define some text that appears in

the text box but disappears when you begin to type. Using this attribute, you can give the user

a bit more guidance in completing your form.

NOTE

If you want the user to enter text without having the text displayed on the screen, you can use
<input type="password"> instead of <input type="text">. Asterisks (***) are then dis-
played in place of the text the user types. The size, maxlength, and name attributes work exactly
the same for type="password" as they do for type="text". Keep in mind that this technique
of hiding a password provides only minimal protection against people reading the screen; no encryp-
tion or other protection is associated with the password being transmitted.

The size attribute indicates approximately how many characters wide the text input box should

be. If you are using a proportionally spaced font, the width of the input will vary depending on

what the user enters. If the input is too long to fit in the box, most web browsers automatically

scroll the text to the left. This attribute is often left off of most modern forms, as designers define

the width and height of the boxes in the CSS.

703Labeling Each Piece of Form Data

The maxlength attribute determines the number of characters the user is allowed to type into

the text box. If a user tries to type beyond the specified length, the extra characters won’t appear.

You can specify a length that is longer, shorter, or the same as the physical size of the text box.

The size and maxlength attributes are used only for the input fields meant for text values, such

as type="text", type="email", type="URL", and type="tel", but not check boxes and

radio buttons since those have fixed sizes.

Naming Each Piece of Form Data
No matter what type an input element is, you must give a name to the data it gathers. You can

use any name you like for each input item, as long as each one on the form is different (except in

the case of radio buttons and check boxes, discussed later in this lesson). When the form is pro-

cessed by a back-end script, each data item is identified by name. This name becomes a variable,

which is filled with a value. The value is either what the user typed in the form or the value asso-

ciated with the element the user selected.

For example, if a user enters Jane Doe in the text box defined previously, a variable is sent to the

form-processing script; the variable is user_name, and the value of the variable is Jane Doe.

Form-processing scripts work with these types of variable names and values.

NOTE

Form-processing scripts are oversimplified here for the sake of explanation within the scope of these
lessons. The exact appearance (or name) of the variables made available to your processing script
depends on the programming language of that script. But conceptually, it’s valid to say that the
name of the input element becomes the name of the variable, and the value of the input element
becomes the value of that variable on the back end.

To use this text field (or others) in JavaScript, remember that the text object uses the name

attribute; you refer to the value of the field in the previous snippet like this:

document.formname.user_name.value

Labeling Each Piece of Form Data
Labeling your form data is not the same as using a name or id attribute to identify the form ele-

ment for later use. Instead, the <label></label> tag pair surrounds text that acts as a sort of

caption for a form element. A form element <label> provides additional context for the element,

which is especially important for screen-reader software.

704 LESSON 27: Working with Web-Based Forms

You can see two different examples in Listing 27.1. First, you can see the <label> surrounding

the first question a user is asked (What is your name?). The use of the for attribute ties this

label to the <input> element with the same id (in this case, the_name):

<p><label class="question" for="the_name">What is your name?</label>
<input type="text" id="the_name" name="the_name"
 placeholder="Enter your full name."
 size="50" required autofocus></p>

NOTE

The <label> element is used for more than just screen readers. It makes form fields more usable
because when the user clicks the label, the focus is moved to that form field.

A screen reader would read to the user, “What is your name?” and then also say “text box” to

alert the user to complete the text field with the appropriate information. In another example

from Listing 27.1, you see the use of <label> to surround different options in a check box list

(and also a list of radio buttons, later in the listing):

<p>Please check all that apply:

<input type="checkbox" id="like_it" name="some_statements[]"
 value="I really like your web site.">
<label for="like_it">I really like your web site.</label>

<input type="checkbox" id="the_best" name="some_statements[]"
 value="It's one of the best sites I've ever seen">
<label for="the_best">It's one of the best sites I've ever
 seen.</label>

<input type="checkbox" id="jealous" name="some_statements[]"
 value="I sure wish my site looked as good as yours.">
<label for="jealous">I sure wish my site looked as good as
 yours.</label>
<input type="checkbox" id="no_taste" name="some_statements[]"
 value="I have no taste and I'm pretty dense, so your site
 didn't do much for me.">
<label for="no_taste">I have no taste and I'm pretty dense, so your
 site didn't do much for me.</label></p>

In this situation, the screen reader would read the text surrounded by the <label> tag, fol-

lowed by “check box,” to alert the user to choose one of the given options. Labels should be used

for all form elements and can be styled using CSS in the same manner as other container ele-

ments; the styling does not affect the screen reader, but it does help with layout aesthetics and

readability.

Grouping Form Elements 705

Grouping Form Elements
In Listing 27.1, you can see the use of the <fieldset> and <legend> elements three different

times, to create three different groups of form fields. The <fieldset> element surrounds groups

of form elements to provide additional context for the user, whether the user is accessing the form

directly in a web browser or with the aid of screen-reader software. The <fieldset> element just

defines the grouping; the <legend> element contains the text that will display or be read aloud

to describe this grouping, such as the following from Listing 27.1:

<fieldset>
 <legend>Personal Information</legend>
 <p>
 <label class="question" for="the_name">
 What is your name?</label>
 <input type="text" id="the_name" name="the_name"
 placeholder="Enter your full name."
 size="50" required autofocus>
...
</fieldset>

In this situation, when the screen reader reads the <label> associated with a form element, as

you learned in the preceding section, it also appends the <legend> text. In the example above,

it would be read as “Personal Information. What is your name? Text box.” The <fieldset> and

<legend> elements can be styled using CSS, so the visual cue of the grouped elements can easily

be made visible in a web browser (as you saw previously in Figure 27.1).

Including Hidden Data in Forms
Want to send certain data items to the server script that processes a form, but don’t want the user

to see those data items? Use an <input> tag with a type="hidden" attribute. This attribute

has no effect on the display; it just adds any name and value you specify to the form results when

they are submitted.

If you are using a form-processing script provided by your web hosting provider, you might be

directed to use this attribute to tell a script where to email the form results. For example, includ-

ing the following code causes the results to be emailed to me@mysite.com after the form is

 submitted:

<input type="hidden" name="mailto" value="me@mysite.com">

You sometimes see scripts using hidden input elements to carry additional data that might be

useful when you receive the results of the form submission; some examples of hidden form fields

include an email address and a subject for the email. If you are using a script provided by your

web hosting provider, consult the documentation provided with that script for additional details

about potential required hidden fields.

706 LESSON 27: Working with Web-Based Forms

Exploring Form Input Controls
Various input controls are available for retrieving information from the user. You’ve already seen

one text-entry option; the next few sections introduce you to most of the remaining form-input

options you can use to design forms.

Check Boxes
Besides the text field, one of the simplest input types is the check box, which appears as a small

square. Users can click check boxes to select or deselect one or more items in a group. For exam-

ple, the check boxes in Listing 27.1 display after text that reads “Please check all that apply,”

implying that the user could indeed check all that apply.

The HTML for the check boxes in Listing 27.1 shows that the value of the name attribute is the

same for all of them:

 Please check all that apply:

 <input type="checkbox" id="like_it" name="some_statements[]"
 value="I really like your web site.">
 <label for="like_it">I really like your web site.</label>

 <input type="checkbox" id="the_best" name="some_statements[]"
 value="It's one of the best sites I've ever seen">
 <label for="the_best">It's one of the best sites I've ever
 seen.</label>

 <input type="checkbox" id="jealous" name="some_statements[]"
 value="I sure wish my site looked as good as yours.">
 <label for="jealous">I sure wish my site looked as good as
 yours.</label>

 <input type="checkbox" id="no_taste" name="some_statements[]"
 value="I have no taste and I'm pretty dense, so your
 site didn't do much for me.">
 <label for="no_taste">I have no taste and I'm pretty dense, so
 your site didn't do much for me.</label>
</p>

The use of the brackets ([]) in the name attribute indicates to the back-end processing script that

a series of values will be placed into this one variable instead of using just one value. (Well, it

might be just one value if the user selects only one check box.) If a user selects the first check box,

the text string I really like your web site. is placed in the website_response[]

bucket. If the user selects the third check box, the text string I sure wish my site looked
as good as yours. also is put into the website_response[] bucket. The processing script

then works with that variable as an array of data rather just a single entry.

Exploring Form Input Controls 707

NOTE

If you find that the label for an input element is displayed too close to the element, just add a space
between the close of the <input> tag and the start of the label text, like this:

<input type="checkbox" name="mini">
<label>Mini Piano Stool</label>

However, you might see groups of check boxes that do use individual names for the variables in

the group. For example, the following is another way of writing the check box group:

<p>
 Please check all that apply:

 <input type="checkbox" id="like_it" name="liked_site" value="yes"
 value="I really like your web site.">
 <label for="like_it">I really like your web site.</label>

 <input type="checkbox" id="the_best" name="best_site" value="yes"
 value="It's one of the best sites I've ever seen">
 <label for="the_best">It's one of the best sites I've ever
 seen.</label>

 <input type="checkbox" id="jealous" name="my_site_sucks" value="yes"
 value="I sure wish my site looked as good as yours.">
 <label for="jealous">I sure wish my site looked as good as
 yours.</label>

 <input type="checkbox" id="no_taste" name="am_dense" value="yes"
 value="I have no taste and I'm pretty dense, so your site
 didn't do much for me.">
 <label for="no_taste">I have no taste and I'm pretty dense, so your
 site didn't do much for me.</label>
</p>

In this second list of check boxes, the variable name of the first check box is "liked_site", and

the value (if checked) is "yes" when handled by a back-end processing script.

If you want a check box to be checked by default when the web browser renders the form, include

the checked attribute. For example, the following code creates two check boxes, and the first one

is checked by default:

<input type="checkbox" id="like_it" name="liked_site" value="yes"
 value="I really like your web site." checked>
<label for="like_it">I really like your web site.</label>

<input type="checkbox" id="the_best" name="best_site" value="yes"
 value="It's one of the best sites I've ever seen">
<label for="the_best">It's one of the best sites I've ever
seen.</label>

708 LESSON 27: Working with Web-Based Forms

The check box labeled I really like your web site. is checked by default in this exam-

ple. The user must click the check box to uncheck it and thus indicate that he or she has another

opinion of your site. The check box marked It’s one of the best sites I've ever
seen. is unchecked to begin with, so the user must click it to select it. Check boxes that are not

selected do not appear in the form output.

To handle values from the checkbox object in JavaScript, you can use the following four

 properties:

 N name—Specifies the name of the check box and also the object name.

 N value—Specifies the “true” value for the check box—usually on. This value is used by

server-side programs to indicate whether the check box was checked or unchecked. In

JavaScript, you should use the checked property instead.

 N defaultChecked—Specifies the default status of the check box, assigned by the checked

attribute in HTML.

 N checked—Specifies the current value. This is a Boolean value: true for checked and

false for unchecked.

To manipulate the check box or use its value, you use the checked property. For example, this

statement turns on a check box called same_address in a form named order:

document.order.same_address.checked = true;

The check box has a single method: click. This method simulates a click on the box. It also has

a single event, onClick, that occurs whenever the check box is clicked. This happens whether

the box was turned on or off, so you need to examine the checked property via JavaScript to see

what action really happened.

Radio Buttons
Radio buttons, for which only one choice can be selected at a time, are almost as simple to

 implement as check boxes. The simplest use of a radio button is for yes/no questions or for voting

when only one candidate can be selected.

To create a radio button, use type="radio" and give each option its own <input> tag. You use

the same name for all the radio buttons in a group, but you don’t use the [] as you do with the

check boxes because you don’t have to accommodate multiple answers:

<input type="radio" id="vote_yes" name="vote" value="yes" checked>
<label for="vote_yes">Yes</label>

<input type="radio" id="vote_no" name="vote" value="no">
<label for="vote_no">No</label>

Exploring Form Input Controls 709

The value attribute can be any name or code you choose. If you include the checked attribute,

that button is selected by default. No more than one radio button with the same name can be

checked.

When designing your form and choosing between check boxes and radio buttons, determine

whether the question being asked or implied could be answered in only one way. If so, use a radio

button.

NOTE

Radio buttons are named for their similarity to the buttons on old push-button radios. Those buttons
used a mechanical arrangement so that when you pushed one button in, any other pressed button
popped out.

In terms of scripting, radio buttons are similar to check boxes, except that an entire group of them

shares a single name and a single object. You can refer to the following properties of the radio

object:

 N name—Specifies the name common to the radio buttons

 N length—Specifies the number of radio buttons in the group

To access the individual buttons in JavaScript, you treat the radio object as an array. The buttons

are indexed, starting with 0. Each individual button has the following properties:

 N value—Specifies the value assigned to the button

 N defaultChecked—Indicates the value of the checked attribute and the default state of

the button

 N checked—Specifies the current state.

For example, you can select the first radio button in the radio1 group on the form1 form with

this statement:

document.form1.radio1[0].checked = true;

However, if you do this, be sure you set the other values to false as needed. This is not done

automatically. You can use the click method to do both of these actions in one step.

Like a check box, a radio button has a click method and an onClick event handler. Each radio

button can have a separate statement for this event.

710 LESSON 27: Working with Web-Based Forms

Selection Lists
You can create both scrolling lists and pull-down pick lists with the <select> tag. You use this tag

together with the <option> tag, as shown in the following example (taken from Listing 27.1):

<p>
 <label for="how_improve">What else
 would you like to see on my web site?</label>

 <select id="how_improve" name="how_improve" size="4" multiple>
 <optgroup label="Preferred">
 <option value="Nothing. It's perfect.">Nothing. It's
 perfect.</option>
 </optgroup>
 <optgroup label="Likely">
 <option value="More about the animals.">More about the
 animals.</option>
 <option value="More about the dandelions.">More about the
 dandelions.</option>
 </optgroup>
 <optgroup label="Unlikely">
 <option value="More about Elvis.">More about Elvis.
 </option>
 </optgroup>
 </select>
</p>

Unlike the text input type that you learned about briefly in a previous section, the size attri-

bute here determines how many items show at once on the selection list. If size="2" were used

in the preceding code, only the first two options would be visible, and a scrollbar would appear

next to the list so the user could scroll down to see the third and fourth options.

Including the multiple attribute enables users to select more than one option at a time; the

selected attribute makes an option initially selected by default. When the form is submitted,

the text specified in the value attribute for each option accompanies the selected option.

NOTE

If you leave out the size attribute or specify size="1", the list creates a simple drop-down
pick list. A pick list doesn’t allow for multiple choices; it is logically equivalent to a group of radio
 buttons. The following example shows another way to choose yes or no for a question:

<select name="vote">
 <option value="yes">Yes</option>
 <option value="no">No</option>
</select>

Exploring Form Input Controls 711

The object for selection lists is the select object. This object has the following properties:

 N name—Specifies the name of the selection list.

 N length—Specifies the number of options in the list.

 N options—Specifies the array of options. Each selectable option has an entry in this array.

 N selectedIndex—Returns the index value of the currently selected item. You can use this

to check the value easily. In a multiple-selection list, this indicates the first selected item.

The options array has a single property of its own, length, which indicates the number of

selections. In addition, each item in the options array has the following properties:

 N index—Specifies the index of the array.

 N defaultSelected—Indicates the state of the selected attribute.

 N selected—Specifies the current state of the option. Setting this property to true selects

the option. The user can select multiple options if the multiple attribute is included in the

<select> tag.

 N name—Specifies the value of the name attribute. This is used by the server.

 N text—Specifies the text that is displayed in the option.

The select object has two methods—blur and focus—that perform the same purposes as

the corresponding methods for text objects. The event handlers are onBlur, onFocus, and

onChange, also similar to the event handlers of other objects.

NOTE

You can change selection lists dynamically; for example, choosing a product in one list could
 determine which options are available in another list. You can also add and delete options from
the list.

Reading the value of a selected item is a two-step process. You first use the selectedIndex

 property and then use the value property to find the value of the selected choice. Here’s an

example:

ind = document.mvform.choice.selectedIndex;
val = document.mvform.choice.options[ind].value;

This example uses the ind variable to store the selected index and then assigns the val variable

to the value of the selected choice. Things are a bit more complicated with a multiple selection:

You have to test each option’s selected attribute separately.

712 LESSON 27: Working with Web-Based Forms

No HTML elements other than <option> and <optgroup> should appear between the

<select> and </select> tags. The use of <optgroup>, as in the following snippet, enables

you to create a group of options with a label that shows up in the list but can’t be selected as an

“answer” to the form field:

<select name="grades" size="8">
 <optgroup label="Good Grades">
 <option value="A">A</option>
 <option value="B">B</option>
 </optgroup>
 <optgroup label="Average Grades">
 <option value="C">C</option>
 </optgroup>
 <optgroup label="Bad Grades">
 <option value="D">D</option>
 <option value="F">F</option>
 </optgroup>
</select>

This snippet produces a drop-down list that looks like the example in Figure 27.2.

FIGURE 27.2
A drop-down list with options separated by the <optgroup> element.

In this situation, only A, B, C, D, and F are selectable, but the <optgroup> labels are visible.

Exploring Form Input Controls 713

Text Fields, Text Areas, and Other Input Types
The <input type="text"> attribute mentioned earlier in this lesson allows the user to enter

only a single line of text. When you want to allow multiple lines of text in a single input item, use

the <textarea> and </textarea> tags to create a text area instead of just a text field. Any

text you include between these two tags is displayed as the default entry in that box. Here’s the

example from Listing 27.1:

<textarea id="message" name="message" rows="7" cols="55">
</textarea>

NOTE

If you’re adding a text input element, you don’t need the type="text" attribute. If you leave it off,
web browsers will by default assume that it’s a text field.

As you have probably guessed, the rows and cols attributes control the number of rows and

columns of text that fit in the input box. The cols attribute is a little less exact than rows and

approximates the number of characters that fit in a row of text. Text area boxes do have a scroll-

bar, however, so the user can enter more text than can fit in the display area.

The text and textarea objects also have a few JavaScript methods you can use:

 N focus—Sets the focus to the field. This positions the cursor in the field and makes it the

 current field.

 N blur—Removes the focus from the field; the opposite of focus.

 N select—Selects the text in the field, just as a user can do with the mouse. All the text is

selected; there is no way to select only part of the text.

You can also use event handlers to detect when the value of a text field changes. The text and

textarea objects support the following event handlers:

 N onFocus—Occurs when the text field gains focus.

 N onBlur—Occurs when the text field loses focus.

 N onChange—Occurs when the user changes the text in the field and then moves out of it.

 N onSelect—Occurs when the user selects some or all of the text in the field. Unfortunately,

there’s no way to tell exactly which part of the text was selected. (If the text is selected with

the select method described previously, this event is not triggered.)

714 LESSON 27: Working with Web-Based Forms

If these event handlers are used, they should be included in the <input> tag declaration. For

example, the following is a text field including an onChange event that displays an alert:

<input type="text" name="text1" onChange="window.alert('Changed.');">

Let’s turn back to the basic <input> element for a minute, however, because HTML5 provides

many more type options for input than simply "text", such as built-in date pickers. Here are a

few of the different input types (some new, some not) that are fully supported but that we haven’t

discussed in any detail in this lesson:

 N type="email"—This appears as a regular text field, but when form validation is used, the

built-in validator checks that it is a well-formed email address. Some mobile devices display

relevant keys (the @ sign, for example) by default instead of requiring additional user

 interactions.

 N type="file"—This input type opens a dialog box to enable you to search for a file on your

computer to upload.

 N type="number"—Instead of creating a <select> list with <option> tags for each num-

ber, this type enables you to specify min and max values and the step between numbers to

automatically generate a list on the browser side. You can see this in use in Listing 27.1.

 N type="range"—Much like the number type just covered, this type enables you to specify

min and max values and the step between numbers, but in this case, it appears as

a horizontal slider.

 N type="search"—This appears as a regular text field, but with additional controls that

are sometimes displayed to allow the user to clear the search box such as an x or a similar

character.

 N type="url"—This input type appears as a regular text field, but when form validation is

used, the built-in validator checks that it is a well-formed URL. Some mobile devices display

relevant keys (the .com virtual key, for instance) by default instead of requiring additional

user interactions.

You can stay up to date with the status of these and other <input> types by using the chart at

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input.

Adding Data to Text Fields
Once you have a text field, you can add data to that field to provide customers with a list of

 suggested values. They can fill in the field with their own value instead, but either way, it gives

them options.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

Exploring Form Input Controls 715

To add data, you need to add a <datalist> to the page and then link to that list with the list

attribute in the field where you want the data to appear. Here’s how it is done in Listing 27.1:

<p>
 <label for="the_worst">
 Please indicate the one thing I could improve about my web site:
 </label>

 <input type="text" id="the_worst" name="the_worst"
 placeholder="There's nothing bad, is there?"
 list="listOfBadChoices" size="50">
</p>
...
<datalist id="listOfBadChoices">
 <option value="nothing"></option>
 <option value="nada"></option>
 <option value="zip"></option>
 <option value="zilch"></option>
 <option value="I can't think of anything"></option>
</datalist>

<datalist> is made up of a list of <option> elements. The <option> elements are a list of

values that could be used in the input field. The id of the <datalist> matches the list value in

the <input> field.

When the user gets to that <input> field, supporting browsers will show a drop-down of the

options, as in Figure 27.3. The beauty of the <datalist> element is that browsers that don’t

support it simply display a text field as usual.

FIGURE 27.3
A drop-down list appears on an element with <datalist> applied to it.

716 LESSON 27: Working with Web-Based Forms

Using HTML5 Form Validation
Many features in HTML5 have made web developers very happy people. One of the simplest

yet most life-changing might be the inclusion of form validation. Before HTML5 form validation

existed, we had to create convoluted JavaScript-based form validation, which caused headaches

for everyone involved.

But no more! HTML5 validates forms by default, unless you use the novalidate attribute in the

<form> element. Of course, if you do not use the required attribute in any form fields them-

selves or if you don’t use specific input type options, like email or url, there’s nothing to vali-

date. As you learned in a previous section, not only are fields validated for content (any content

at all), they are validated according to the type that they are. For example, Listing 27.1 includes a

required field for an email address:

<p>
 <label class="question" for="the_email">What is your email
 address?</label>
 <input type="email" id="the_email" name="the_email"
 placeholder="Please use a real one!"
 size="50" required>
</p>

In Figures 27.4 and 27.5, you can see that the form automatically validates for the presence of

content but then also slaps you on the wrist when you try to enter a junk string in the field instead

of an email address.

FIGURE 27.4
Attempting to submit a form with no content in a required field causes a validation error.

Using HTML5 Form Validation 717

FIGURE 27.5
Attempting to submit a form with badly formed content in a field expecting an email address causes
a validation error.

NOTE

Validation of email addresses begins and ends with the entry simply looking like an email address.
This sort of pattern matching is really the only type of “validation” that you can do with email
addresses, short of a time-consuming back-end processing script.

You can use the pattern attribute of the <input> field to specify your own pattern-matching

requirements. The pattern attribute uses regular expressions, which is a large enough topic

to warrant its own book, but here we consider a basic example. If you want to ensure that your

<input> element contains only numbers and letters (no special characters), you could use the

following:

<input type="text" id="the_text" name="the_text"
 placeholder="Please enter only letters and numbers!"
 size="50" pattern="[a-z,A-Z,0-9]" required>

The pattern here says that if the field contains any letter between a and z, letter between A and Z

(case matters), and number between 0 and 9, it’s valid. To learn more about regular expressions

without buying an entire book, take a look at the online tutorial at http://regexone.com.

http://regexone.com

718 LESSON 27: Working with Web-Based Forms

Submitting Form Data
It is common for a form to include a button that submits the form data to a script on the server

or invokes a JavaScript action. You can use the value attribute to put any label you like on the

Submit button:

<input type="submit" value="Place My Order Now!">

Unless you change the style using CSS, a gray button is sized to fit the label you put in the value

attribute. When the user clicks it, all data items on the form are sent to the email address or script

specified in the form’s action attribute.

You can also include a Reset button that clears all entries on the form so that users can start over

if they change their minds or make mistakes. Use the following:

<input type="reset" value="Clear This Form and Start Over">

If the standard Submit and Reset buttons look a little bland to you, remember that you can use

CSS to style them. If that’s not good enough, you’ll be glad to know that there’s an easy way to

substitute your own graphics for these buttons. To use an image of your choice for a Submit but-

ton, use the following:

<input type="image" src="button.gif" alt="Order Now!">

The button.gif image displays on the page, and the form is submitted when a user clicks the

button.gif image. You can include any attributes normally used with the tag, such as

alt and style.

Another form element is a generic button type. When using type="button" in the <input>

tag, you get a button that performs no action on its own but can have an action assigned to it by

a JavaScript event handler (such as onclick).

Understanding the <button> Element
When working with forms, you can use the HTML <button></button> element to create a

clickable button on the page that includes whatever content is inside the element. The <button>

can have any of three type values: button, reset, or submit. The reset and submit

values make the button work like the corresponding values for <input type="reset"> and

<input type="submit"> elements. And the type="button" value is used to create stand-

alone buttons that work with JavaScript. The button in Listing 27.1 looks like this:

<button type="button" id="standardValues">Fill in Standard Values</button>

Submitting Form Data 719

This creates a button with the text Fill in Standard Values. If you leave it like this, it does

nothing when it’s clicked, but you can add JavaScript to have the form filled in with the values

you’d prefer, and then all the user has to do is submit the form. Listing 27.2 shows the JavaScript

for this.

LISTING 27.2 Populate the Form with Values

document.getElementById("standardValues").addEventListener("click",
 function() {
 document.getElementById("the_name").value = "Your Name";
 document.getElementById("the_email").value= "you@yourdomain.com";
 document.gbForm.like_it.checked = true;
 document.gbForm.choose_scale.value = "10";
 document.gbForm.the_best.checked = true;
 document.gbForm.best_thing[2].checked = true;
 document.getElementById("the_worst").value = "Nothing";
 document.gbForm.how_improve.value = "More about the dandelions."
 document.getElementById("errors").innerHTML =
 "<p>Don't forget to give your feedback and submit the form.</p>";
document.gbForm.message.focus();
});

This script tells the browser that when the standardValues button is clicked, it should change

the values of the various form fields. The last line places the cursor in the message field so the

user can fill in a personal message and then submit the form.

You may also notice that this form attaches content to the errors field. This field is an

<output></output> element, and it is intended to describe the output of forms. Error messages

might not seem like an output of a form, exactly, but if you have something you’d like to add to

a form dynamically, this is the element you should use. In Listing 27.1, the <output> element is

at the top of the form, but you can place it anyplace you’d like the information to display.

CAUTION

Internet Explorer and Edge browsers do not support the <output> element. So, to use this most
effectively, you should add a <div> or other element inside it and place your output inside that.

Using JavaScript for Form Events
The form object has two methods: submit and reset. You can use these methods to submit

data or reset the form yourself, without requiring the user to click a button. You might want to do

this, for example, to submit the form when the user clicks an image or performs another action

that would not usually submit the form.

720 LESSON 27: Working with Web-Based Forms

CAUTION

If you use the submit method to send data to a server or by email, most browsers will prompt the
user to verify that he or she wants to submit the information. There’s no way to do this behind the
user’s back.

The form object has two event handlers, onSubmit and onReset. You can specify a group of

JavaScript statements or a function call for these events within the <form> tag that defines

the form.

If you specify a statement or a function for the onSubmit event, the statement is called before

the data is submitted to the server-side script. You can prevent the submission from happening by

returning the value false from the onSubmit event handler. If the statement returns true, the

data will be submitted. In the same fashion, you can prevent a Reset button from working with an

onReset event handler.

Accessing Form Elements with JavaScript
The most important property of the form object is the elements array, which contains an object

for each of the form elements. You can refer to an element by its own name or by its index in

the array. For example, the following two expressions both refer to the first element in the form

shown in Listing 27.1:

document.gbForm.elements[0]
document.gbForm.the_name

NOTE

Both forms and elements can be referred to by their own names or as indices in the forms and
elements arrays. For clarity, the examples in this lesson use individual form and element names
rather than array references. You’ll also find it easier to use names in your own scripts.

If you do refer to forms and elements as arrays, you can use the length property to determine

the number of objects in the array: document.forms.length is the number of forms in

a document, and document.gbForm.elements.length is the number of elements in the

gbForm form.

You can also access form elements by using the W3C DOM. In this case, you use an id attribute

on the form element in the HTML document and use the document.getElementById method

to find the object for the form. For example, this statement finds the object for the text field called

the_name and stores it in the name variable:

name = document.getElementById("the_name");

Accessing Form Elements with JavaScript 721

This enables you to quickly access a form element without first finding the form object. You can

assign an id to the <form> tag and find the corresponding object if you need to work with the

form’s properties and methods.

Displaying Data from a Form
As a simple example of interacting with forms purely on the client side, Listing 27.3 shows a form

with name, address, and phone number fields, as well as a JavaScript function that displays the

data from the form in a pop-up window.

LISTING 27.3 A Form That Displays Data in a Pop-up Window

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Form Display Example</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 </head>
 <body>
 <h1>Form Display Example</h1>
 <p>
 Enter the following information. When you press the Display
 button, the data you entered will be displayed in a pop-up.
 </p>
 <form name="form1" method="get" action="">
 <p>NAME: <input name="name" size="50"></p>
 <p>ADDRESS: <input name="address" size="50"></p>
 <p>PHONE: <input name="phone" size="50"></p>
 <p><input type="button" value="Display" id="display"></p>
 </form>
 <script>
 function display() {
 dispWin = window.open('','NewWin',
 'menubar=no,toolbar=no,status=no,width=400,height=100');

 message = "NAME:" +
 document.form1.name.value;
 message += "ADDRESS:" +
 document.form1.address.value;
 message += "PHONE:" +
 document.form1.phone.value;
 message += "";
 dispWin.document.write(message);
 }

722 LESSON 27: Working with Web-Based Forms

 document.getElementById("display").addEventListener("click", display);
 </script>
 </body>
</html>

Here is a breakdown of how this simple HTML document and script work:

 N The <script> section at the bottom of the document defines a function called display

that opens a new window and displays the information from the form. It also includes the

event listener on the display element to run the display function when it’s clicked.

 N The <form> tag begins the form. Because this form is handled entirely by JavaScript, the

form action has no value. The method is post to ensure that no data is added to

the URL.

 N The <input> tags define the form’s three fields: yourname, address, and phone.

The last <input> tag defines the Display button, which is set to run the display function

in the event listener in the script.

Figure 27.6 shows this form in action. The Display button has been clicked, and the pop-up

window shows the results. Although this is not the most exciting example of client-side form

interaction, it clearly shows the basics that provide a foundation for later work.

FIGURE 27.6
Displaying data from a form in a pop-up window.

723Summary

Summary
In this lesson you learned how to create HTML forms in which visitors can provide information

that is sent to you when the forms are hooked up to a back-end processing script (which is beyond

the scope of these lessons).

You learned about all the major form elements, including a little about how form-processing

scripts interpret the names and value attributes of those elements. When you are ready to try a

back-end form-processing script, you’ll be well versed in the front-end details, including how to

access the form object in JavaScript.

This lesson stopped short of covering back-end form processing because server-side form handling

requires an external script to process a form. However, there is plenty to do to set up a form that

looks and acts just the way you want it to, including form validation, so you have a lot to practice

before taking that next step into form interactivity.

Table 27.1 summarizes the HTML tags and attributes covered in this lesson.

TABLE 27.1 HTML Tags and Attributes Covered in Lesson 27

Tag/Attribute Function

<form>…</form> Indicates an input form.

Attribute Function

action="scripturl" Gives the address of the script to process this form input.

method="post/get" Indicates how the form input will be sent to the server. Normally
set to post rather than get.

<label>…</label> Provides information for the form element to which it is
associated.

<fieldset>…</fieldset> Groups a set of related form elements.

<legend>…</legend> Provides a label to a set of related form elements.

<input> Indicates an input element for a form.

Attribute Function

type="controltype" Gives the type for this input widget. Some possible values
are checkbox, hidden, radio, reset, submit, text, and
image, among others.

name="name" Gives the unique name of this item, as passed to the script.

value="value" Gives the default value for a text or hidden item. For a check box
or radio button, it’s the value to be submitted with the form. For
Reset or Submit buttons, it’s the label for the button.

src="imageurl" Shows the source file for an image.

724 LESSON 27: Working with Web-Based Forms

Tag/Attribute Function

Attribute Function

checked Is used for check boxes and radio buttons. Indicates that this
item is checked.

autofocus Puts focus on the element when the form is loaded.

required Indicates that the field should be validated for content, according
to type (where appropriate).

pattern="pattern" Indicates that the content of this field should be validated
against this regular expression.

size="width" Specifies the width, in characters, of a text input region.

maxlength="maxlength" Specifies the maximum number of characters that can be
entered into a text region.

<textarea>…</textarea> Indicates a multiline text entry form element. Default text
can be included.

Attribute Function

name="name" Specifies the name to be passed to the script.

rows="numrows" Specifies the number of rows this text area displays.

cols="numchars" Specifies the number of columns (characters) this text area
displays.

autofocus Puts focus on the element when the form is loaded.

required Indicates that the field should be validated for content according
to type (where appropriate).

pattern="pattern" Indicates that the content of this field should be validated
against this regular expression.

<select>…</select> Creates a menu or scrolling list of possible items.

Attribute Function

name="name" Shows the name that is passed to the script.

size="numelements" Indicates the number of elements to display. If size is
indicated, the selection becomes a scrolling list. If no size is
given, the selection is a drop-down pick list.

multiple Allows multiple selections from the list.

required Indicates that the field should be validated for a selection.

<optgroup>…</optgroup> Indicates a grouping of <option> elements.

Attribute Function

label="label" Provides a label for the group.

<option>…</option> Indicates a possible item within a <select> element.

Workshop 725

Tag/Attribute Function

Attribute Function

selected Selects the <option> by default in the list when this attribute
is included.

value="value" Specifies the value to submit if this <option> is selected when
the form is submitted.

<button>…</button> Creates a clickable button in the form.

Attribute Function

name="name" Gives the unique name of this item, as passed to the script.

<output>…</output> Represents the output or results of a form.

Q&A
 Q. Is there any way to create a large number of text fields without dealing with different names

for all of them?

 A. Yes. If you use the same name for several elements in the form, their objects form an array.
For example, if you defined 20 text fields with the name member, you could refer to them
as member[0] through member[19]. This also works with other types of form elements.

 Q. Since HTML5 contains form validation, do I ever have to worry about validation again?

 A. Yes, you do. Although HTML5 form validation is awesome, you should still validate the form
information that is sent to you on the back end. Back-end processing is beyond the scope
of these lessons, but as a rule, you should never trust any user input; always check it
before performing an action that uses it (especially when interacting with a database).

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. What HTML elements do you use to create a guestbook form that asks someone for his or

her name and gender?

 a. <input type=name> for the name and <input type=gender> for the gender

 b. <input type=text> for the name and <input type=radio> for the gender

 c. <input type=name> for the name and <input type=radio> for the gender

 d. <input type=text> for the name and <input type=gender> for the gender

726 LESSON 27: Working with Web-Based Forms

 2. If you created an image named submit.gif, how would you use it as the Submit button
for a form?

 a. <input type="button" src="submit.gif">

 b. <input type="image" src="submit.gif">

 c.

 d. <submit type="submit" src="submit.gif">

 3. Which of these attributes of a <form> tag determines where the data will be sent?

 a. action

 b. method

 c. name

 4. What are the two possible values of the method attribute of a form?

 a. action and get

 b. action and post

 c. post and get

 d. get and action

 5. Is the following a valid input field?

<input name="thisField">

 a. Yes.

 b. No. It needs a type attribute.

 c. No. It needs a value attribute.

 d. No. It needs a width attribute.

 6. What does the novalidate attribute of a form do?

 a. Indicates there are no valid form fields

 b. Directs the browser to not validate the HTML of the form

 c. Directs the browser to not validate the HTML of the page

 d. Directs the browser to not validate the form fields

 7. What is the <label> element used for?

 a. Creates a label style

 b. Indicates where the form field starts

 c. Indicates where the form field ends

 d. Defines the text to be read aloud by screen readers

Workshop 727

 8. Why are there brackets in the name of this form field?

<input type="checkbox" id="cb1" name="answers[]" value="one">

 a. Indicates that the field will take multiple values

 b. Indicates that the field is a required field

 c. Indicates that the field should be validated with an external regular expression

 d. No reason other than that the designer wanted to name the field with brackets.

 9. What does the following JavaScript do?

document.entries.homeAddress.checked = true;

 a. Checks the box called entries in the homeAddress form

 b. Checks the box called homeAddress in the entries form

 c. Makes the element entries in the homeAddress form a checkbox

 d. Makes the element homeAddress in the entries form a checkbox

 10. How do you write a field that will collect a lot of text and is 10 rows high and
60 columns wide?

 a. <textarea id="text" name="text" rows="10" columns="60">
</textarea>

 b. <textarea id="text" name="text" rows="10" cols="60"></textarea>

 c. <input type="text" id="text" name="text" rows="10" columns="60">
</input>

 d. <text id="text" name="text" rows="10" cols="60"></text>

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. b. You use a text field for the name and radio buttons for the gender. The HTML code for

the whole form would be similar to the following (with the appropriate doctype and other
structural markup, of course):

<form name="form1" method="post" action="/scripts/formscript">
<input type="hidden" name="mailto" value="you@yoursite.com">
<p><label for="name">Your Name:</label>

http://www.informit.com/register

728 LESSON 27: Working with Web-Based Forms

<input type="text" id="name" name="name" size="50"></p>
<p>Your Gender:
<input type="radio" id="male" name="gender"
 value="male"> <label for="male">male</label>
<input type="radio" id="female" name="gender"
 value="female"> <label for="female">female</label>
<input type="radio" id="go_away" name="gender"
 value="mind your business"><label for="go_away">
 mind your business</label></p>
<p><input type="submit" value="Submit Form"></p>
</form>

 2. b. Use this code:

<input type="image" src="submit.gif">

 3. a. The action attribute determines where the data is sent.

 4. c. They are post and get.

 5. a. Yes, it’s valid. If the <input> tag has no type, it defaults to text.

 6. d. It tells the browser not to perform any validation actions.

 7. d. It defines the text read aloud by screen readers and gives users a larger area to click to
focus on the form field.

 8. a. The brackets tell the processing script that a series of values will be placed in this value
rather than just one.

 9. b. It checks the box called homeAddress in the entries form.

 10. b. Write the following:

<textarea id="text" name="text" rows="10" cols="60"></textarea>

Exercises
 N Create a form using all the different types of input elements and selection lists to make

sure you understand how each of them works.

 N Learn a little bit about regular expressions and implement some custom validation by
using the pattern attribute.

 N Investigate the form-handling options at your web hosting provider and use a script that
the web hosting provider made available to you to process the form you created in the
first exercise.

LESSON 28
Organizing and Managing

a Website

What You’ll Learn in This Lesson:

 N How to determine whether one page is enough to handle all your content

 N How to organize a simple site

 N How to organize a larger site

 N How to write maintainable code

 N How to optimize your site for search engines

 N How to get started with version control

The bulk of these lessons have led you through the design and creation of static and dynamic web

content, from text to graphics and multimedia, with a little JavaScript interactivity thrown in for

good measure. Along the way, we’ve noted some of the ways you can think about the life cycle of

that content. In this lesson, you’ll learn how to look at your work as a whole.

This lesson shows you how to think about organizing and presenting multiple web pages so that

visitors will be able to navigate among them without confusion. You’ll also learn ways to make

your website memorable enough to visit again and again. Web developers use the term sticky to

describe pages that people don’t want to leave. Hopefully this lesson will help you make your

websites downright gooey! You’ll also learn techniques to give your pages better exposure in

search engine results so that your visitors can find your pages in the first place.

Because websites can be (and usually should be) updated frequently, it’s essential to create pages

that can be easily maintained. This lesson shows you how to add comments and other documen-

tation to your pages so that you—or anyone else on your staff—can understand and modify your

pages. It also introduces you to version control so that you can innovate individually or as part of

a team without overwriting work that you might want to have saved.

730 LESSON 28: Organizing and Managing a Website

By this point in the lessons, you should have enough HTML and CSS knowledge to produce most

of your website. You have probably created a number of pages already, and perhaps you have

even published them online.

As you proceed through this lesson, think about how your pages are organized now and how you

can improve that organization. Have you used comments in your HTML or created a document

for future website maintainers regarding your content organization? If not, now is a good time

to start. Along the way, don’t be surprised if you decide to do a redesign that involves changing

almost all your pages. The results are likely to be well worth the effort!

When One Page Is Enough
Building and organizing an attractive and effective website doesn’t always need to be a complex

task. If you are creating a web presence for a single entity (such as a local event) that requires

only a small amount of very specific information, you can effectively present that information on

a single page with or without a lot of flashy graphics and interactivity. In fact, there are several

positive features to a single-page web presence:

 N All the information on the site downloads more quickly than on more extensive sites.

 N The whole site can be printed on paper with a single print command, even if it is several

paper pages long.

 N Visitors can easily save the site on their hard drives for future reference, especially if it uses

a minimum of graphics.

 N Links between different parts of the same page usually respond more quickly than links to

other pages.

Figure 28.1 shows the first part of a web page that serves its intended audience better as a single

lengthy page than it would as a multipage site. The page begins, as most introductory pages

should, with a succinct explanation of what the page is about and who would want to read it. A

detailed table of contents enables visitors to skip directly to the section containing the material

they find most interesting. If this “page” were printed, it would contain about six paper pages’

worth of text about driving traffic to websites—something a visitor might think about printing and

reading later, perhaps while also taking notes.

When One Page Is Enough 731

FIGURE 28.1
A good table of contents can make long pages easier to navigate.

When pages contain a table of contents to separate sections of information, it is also common for

each short section to contain a link back up to the table of contents so that navigating around

the page feels much the same as navigating around a multipage site. Because the contents

of these types of longer pages are intended as a handy reference, visitors will definitely prefer

the convenience of bookmarking or saving a single page over having to save 8 or 10 separate

pages. The most common examples of single-page information websites are encompassed within

Wikipedia, at www.wikipedia.org. If you consider each entry full of rich content to be its own

“site,” the single-page sites within Wikipedia—with their own tables of contents—represent millions

of printed pages.

Having experienced many beautiful and effective graphical layouts online, you might be tempted

to forget that using a good, old-fashioned outline is often the clearest and most efficient way to

organize long web pages full of text-based content within a site. This is especially true with the

influx of single-page interfaces (also called single-page applications) that attempt to bring all the

interactivity of desktop applications into a web browsing experience. These applications are often

built using HTML and JavaScript frameworks and include significant visual design elements;

in fact, these sites are often used to publish design portfolios rather than the type of text-based

 content you see here.

http://www.wikipedia.org

732 LESSON 28: Organizing and Managing a Website

Organizing a Simple Site
With the exception of the aforementioned special cases of single-page applications and portfolio

sites, single-page websites tend to serve merely “coming soon” or placeholder purposes. If you

spend any time at all on the Web, you’ll quickly learn that most companies and individuals best

serve their readers by dividing their sites into short, quickly-read pages surrounded by graphical

navigation that enables them to gather almost all the information they could want within a few

clicks. Furthermore, using multiple pages instead of a series of very long pages minimizes scroll-

ing on the page, which can be especially bothersome for visitors who are using mobile devices to

view the full site or who have relatively low-resolution monitors (less than 800 × 600).

The fundamental goal of a website is to make the individual or organization visible on the

Internet, but another important—and more important—goal is to act as a portal to the informa-

tion within the site itself. The main page of a site should give the user enough information to

provide a clear picture of the organization, as well as traditional contact information and an

email address to submit questions or feedback. It should also provide clear pathways into the

highly structured information within other pages in the site. The main page shown in Figure 28.2

 provides examples of all these good features: basic information, contact information, and paths to

information for multiple audiences.

FIGURE 28.2
This university main page uses a basic design, minimal but useful graphics, and a clear structure to entice
users to explore for more information.

Organizing a Simple Site 733

NOTE

Regardless of how large your site is, it’s a good idea to carefully organize your resources. For
example, placing the images for your web pages in a separate folder named images is one step
toward organization. Similarly, if you have files that are available for download, place them in a
folder called downloads. This makes it much easier to keep track of web page resources based
on their particular types (HTML pages, PNG images, and so on). In addition, if you organize your site
into sections, such as Company, Products, and Press, put the individual pages into similarly named
 directories (company, products, press, and so on)—for the same organizational reasons.

One of the most common mistakes beginning website developers make is creating pages that look

fundamentally different from other pages on the site. An equally serious mistake is using the same

publicly available clip art that thousands of other web authors are also using. Remember that, on

the Internet, one click can take you around the world. The only way to make your pages memo-

rable and recognizable as a cohesive site is to have all your pages adhere to a unique, unmistak-

able visual theme. In other words, strive for uniqueness compared to other websites yet uniformity

within the site itself.

As an example of how uniformity can help make a site more cohesive, think about large,

popular sites you might have visited, such as ESPN.com. If you visit the MLB section at ESPN.com

(see Figure 28.3) and then visit the NFL section (see Figure 28.4), you’ll notice a very similar

structure.

FIGURE 28.3
The MLB section at ESPN.com.

http://ESPN.com
http://ESPN.com
http://ESPN.com

734 LESSON 28: Organizing and Managing a Website

FIGURE 28.4
The NFL section at ESPN.com.

In both examples, you see navigation elements at the top of the page (including some sub-

navigation elements), a large area in the middle of the page for the featured item graphic,

a rectangle on the right side containing links to top stories, and a set of secondary rectangles

under the primary image, leading readers to additional stories. The only difference between the

MLB section and the NFL section is the content. However, in both sections, you know that if you

want to read the popular news stories, you look to the right of the page. If you want to navigate

to another section in the site or to the site’s main page, you look to a navigational element at

the top of the page.

The presence of consistent design and organizational elements helps ensure that your users will

be able to navigate throughout your content with confidence. From a maintenance perspective,

the consistent structural template enables you to reuse pieces of the underlying code. This type

of code reuse typically happens through dynamic server-side programming that is beyond the

scope of these lessons, but in general, it means that instead of copying and pasting the same

HTML, CSS, and JavaScript over and over, that client-side code exists in only one place and is

applied dynamically to the content. Therefore, instead of making changes to thousands of files

to make a background change from blue to green, for example, you would need to make a

change only once.

http://ESPN.com

Organizing a Larger Site 735

Organizing a Larger Site
For a more complex site, sophisticated layout and graphics can help organize and improve the

looks of the site when used consistently throughout all your pages. To see how you can make

aesthetics and organization work hand in hand, let’s look at examples of navigation (and, thus,

underlying organization) for a few sites that present a large volume of information to several dif-

ferent audiences.

Figure 28.5 shows the main page of Amazon.com, specifically with the navigation selected.

Amazon is in the business of selling products, plain and simple. Therefore, it makes sense for

Amazon to show product categories as the main navigational elements.

FIGURE 28.5
Amazon.com shows product categories as primary navigation elements.

Although Amazon is in the business of selling products, it also has to provide information regard-

ing who it is, how to contact it, and other ancillary yet important information to enhance the

business-to-consumer relationship. Links to this sort of information appear in the footer, or bottom

portion, of the Amazon.com website—outside the viewing area of this screenshot. When creating

your site template, you must determine the most important content areas and how to organize

that content; also remember to provide users with basic information—especially if that informa-

tion will enhance your image and make users feel as if you value what they have to say.

http://Amazon.com
http://Amazon.com
http://Amazon.com

736 LESSON 28: Organizing and Managing a Website

The next example is of a secondary page within the Peet’s Coffee website (www.peets.com). All

the pages in the Peet’s website follow one of the common types of presenting navigation and

sub-navigation: a horizontal strip for main navigation, with secondary elements for that section

placed in a vertical column on the left. As Figure 28.6 shows, the secondary navigation changes

depending upon what page the user visits—and it disappears completely in some cases. These

types of visual indicators help users orient themselves within the site. Using a visual indicator like

a color change or change in content is a useful tactic because your users might arrive at a page

via a search engine or by a link from another website. After your users arrive, you want them to

feel at home—or at least feel as if they know where they are in relationship to your site.

FIGURE 28.6
This Peet’s Coffee secondary page shows a main navigation element with different secondary navigation on
the left side of the page.

As you can see from the different main navigation elements—Craft, Coffee, Tea, Cold Brew, Gear,

Gifts, Subscriptions, and Coffeebars—the Peet’s website has to serve the needs of many different

types of people who come to the website for many different reasons. As you organize your own

site content, determine the information that is most important to you, as well as the information

that is most important to your users, and create a navigation scheme that finds a happy medium

between the two.

http://www.peets.com

Organizing a Larger Site 737

Figure 28.7 shows another example of a navigation style, this time with a twist on the standard

top navigation/left-side navigation scheme. In this example, the left-side navigation (the second-

ary navigation, in this case) also appears in a drop-down menu under the main navigation (refer

to Lesson 11, “Using CSS to Do More with Lists, Text, and Navigation,” for information on how

to do something like this). Hovering the mouse over any of the other main navigation elements

brings up similar menus. This scheme gives users an entire site map at their fingertips because

they can reach any part of the site within one click of any other page.

FIGURE 28.7
The BAWSI.org website shows sub-navigation attached to each main navigation element.

Also notice that the About Us link in the navigation is styled differently—with bright orange text—

from the other links on the page, indicating to visitors which page they are on. This visual detail

is an unobtrusive way to give users a sense of where they are within the current navigational

scheme. You can also use other style features, like background colors, changing font sizes, or even

using different font families. Some sites also use icons to indicate the location on the site.

You can choose among many types of navigation styles and ways of indicating to users where

they are and where they might want to go next. Keep in mind the following fact: Studies have

repeatedly shown that people become confused and annoyed when presented with more than

seven choices at a time, and people feel most comfortable with five or fewer choices. Therefore,

http://BAWSI.org

738 LESSON 28: Organizing and Managing a Website

you should avoid presenting more than five links (either in a list or as graphical icons) next to

one another, if at all possible—and you should definitely avoid presenting more than seven at

once. Amazon.com gets a pass here because it is an Internet superstore, and users expect a lot of

“departments” in which to shop when they get there. But when you need to present more than

seven links in a navigation list, break them into multiple lists with a separate heading for each of

the five to seven items.

It will also help your readers navigate your site without confusion if you avoid putting any page

more than two (or, at most, three) links away from the main page. You should also always send

readers back to a main category page (or the home page) after they’ve read a subsidiary page. In

other words, try to design a somewhat flat link structure in which most pages are no more than

one or two links deep. You don’t want visitors to have to rely heavily, if at all, on their browser’s

Back button to navigate your site.

Optimizing Your Site for Search Engines
One major part of managing a website is getting it search engine ready. While not all sites rely on

search engines for traffic, the majority do, so it’s a good idea to understand the basics of search
engine optimization (SEO) so you don’t make mistakes that will hurt your traffic.

What you need to do is make sure that your site provides the information that both your custom-

ers and search engines can use to find your site.

There are dozens of search engines out there, and they all use a different method for determining

what sites show up first in the results. But there are a few things you can do that will help improve

your site rankings no matter what search engine your customers use:

 N Interesting content—This is the most important feature of a search engine–friendly site.

You need to have text, multimedia, and images that people want to read and view.

 N Easy-to-use navigation—You want visitors to your site to stay as long as they want, no

 matter what page they end up on.

 N Mobile friendliness—Mobile-friendly sites are critical for search engine placement. More

and more people use mobile devices, and Google and other search engines are switching to

an index that prioritizes mobile-friendly designs.

Creating Interesting Content
It used to be that to get good placement in search engines, your content had to be full of key-

words. While keywords have some importance, they are not as important as the content itself. The

content needs to be interesting, easy to read, and comprehensive. You can’t get by with short, dull

articles on your site. You need to write fully formed documents that cover whatever topic you’re

writing about in depth.

http://Amazon.com

Optimizing Your Site for Search Engines 739

CAUTION

Not all your pages need to be optimized for search or have long form content on them. Pages like
your home page and navigation pages can be short and provide links and information to other parts
of your site. Focus your SEO efforts on the actual content articles (and videos and images) that you
post on the site.

The following are some tips for making sure your pages have enough in-depth content:

 N Write long articles—2000 words or more.

 N Use headings like <h2>, <h3>, and <h4> with the correct numbered level to create

a document outline.

 N Include good internal navigation.

 N Don’t forget tables, figures, and graphs.

If you are determined to use keywords in your documents, focus on latent semantic indexing (LSI)

keywords. These are keyword phrases that tend to have the same meaning in different contexts. If

that sounds too technical, don’t worry too much about it: Just write your articles. But if you really

want to make sure you’re covering it, you can use a tool like LSIGraph (https://lsigraph.com) to

generate keywords for you.

Keeping Your Navigation Usable
Search engines navigate your site very much like human users (although they are often much

faster). So, you need to make sure that your site navigation works and can get users to any page

available. Don’t ever use JavaScript as the only way to get to navigation on your site—especially

the primary navigation.

But don’t forget about internal navigation. Since you’re writing long, in-depth articles, you should

have a form of navigation within the document. This could be a table of contents or just extra

links to other parts of the page. If you don’t remember how to do that, now is a good time to go

back and review Lesson 7, “Using External and Internal Links.”

Writing for Mobile Devices
Google and other search engines are prioritizing mobile devices and mobile-friendly pages more

and more. If your pages break, are hard to read, or look bad on mobile devices, then you’re not

going to rank well in search engines. More and more people use mobile devices either first or as

their only access to the web; by making your site mobile friendly, you will get better ranking and

have happier customers.

https://lsigraph.com

740 LESSON 28: Organizing and Managing a Website

If you’ve been following the instructions in previous lessons about how to write for mobile, and

especially the Mobile First information from Lesson 17, “Designing for Mobile Devices,” then you

are well on your way to creating a site that works for mobile and for search engines. But keep in

mind these key tips:

 N Write valid HTML, CSS, and JavaScript.

 N Make your pages responsive.

 N Remember that download speeds matter a lot, so keep your pages as small as possible—but

no smaller.

 N Never hide content from mobile users. It’s fine to change how things are displayed, but

content should be available no matter what device your customer uses.

 N Use the Mobile-Friendly Test tool from Google (https://search.google.com/test/

mobile-friendly) to see how easy your site is for a mobile customer to use.

Writing Maintainable Code
If you’ve done any coding before reading these lessons, you already know how important it is to

write code that can be maintained—that is, you or someone else should be able to look at your

code later and not be utterly confused by it. The challenge is to make your code as immediately

understandable as possible. A time will come when you’ll look back on a page that you wrote,

and you won’t have a clue what you were thinking or why you wrote the code the way you did.

Fortunately, there is a way to combat this problem of apparent memory loss.

Documenting Code with Comments
Whenever you develop an HTML page, CSS snippet, or JavaScript function, keep in mind that you

or someone else will almost certainly need to make changes to it someday. Simple text web pages

are usually easy to read and revise, but complex pages with graphics, tables, and other layout

tricks can be quite difficult to decipher.

NOTE

To include comments in a style sheet, begin comments with /* and end them with */ (with your
commented code between these characters).

The HTML <!-- and --> comment syntax does not work in style sheets.

To see what I’m talking about, visit just about any page in a web browser and view its source

code. Using Microsoft Edge, right-click a page and select View Source. Using Chrome or Firefox,

https://search.google.com/test/mobile-friendly
https://search.google.com/test/mobile-friendly

Writing Maintainable Code 741

right-click a page and select View Page Source. In Safari, right-click a page and select Show Page

Source. You might see a jumbled bunch of code that is as tough to decipher as pure HTML. This

might be because content management software systems have generated the markup dynami-

cally, or it might be because its human maintainer has not paid attention to structure, ease of

reading, code commenting, and other methods for making the code readable by humans. For the

sake of maintaining your own pages, I encourage you to impose a little more order on your HTML

markup, style sheet entries, and JavaScript code. And remember: Proper indentation is your (and

your future development partner’s) friend.

NOTE

Some designers use minify programs to compress their HTML, CSS, and JavaScript to make sure
that it’s as small as possible. These speed up download for pages, but can make the code difficult
to read. One solution is to use a tool like CodeKit (https://codekitapp.com) to minify your code
after you’ve written it, immediately before delivering it to the live site. CodeKit is for Mac only. If
you’re looking for a Windows alternative, one possibility is Prepros (https://prepros.io). You minify
your code to make the pages faster, but you only do it once you’re done developing and ready to
publish.

As you have seen in several of these lessons, you can enclose comments to yourself or your

 coauthors by using the HTML beginning and ending comment syntax: <!-- and -->. These

 comments will not appear on the web page when viewed with a browser but can be read by

 anyone who examines the HTML code in a text editor or via the web browser’s View Source (or

View Page Source or Show Page Source) function. The following example provides a little refresher

of how a comment is coded:

<!-- This image needs to be updated daily. -->

NOTE

One handy use of comments is to hide parts of a web page that are currently under construction.
Instead of making the text and graphics visible and explaining that they’re under construction, you
can hide them from view entirely with some carefully placed opening and closing comment indicators
around the HTML that you do not want to appear. This is a great way to work on portions of a page
gradually and show only the end result to the world when you’re finished.

As this code reveals, the comment just before the tag provides a clue to how the image is

used. Anyone who reads this code knows immediately that this is an image that must be updated

every day. Web browsers completely ignore the text in the comment.

https://codekitapp.com
https://prepros.io

742 LESSON 28: Organizing and Managing a Website

You can also comment your CSS and JavaScript in a similar fashion. This is a CSS comment:

/* these are the main reset styles */

And this is a JavaScript comment:

This line is commented out

Indenting Code for Clarity
We have to make a confession. Throughout these lessons, we’ve been carefully indoctrinating you

into an HTML code development style without really letting on. It’s time to spill the beans. You’ve

no doubt noticed a consistent pattern with respect to the indentation of all the HTML code in the

lessons. More specifically, each child tag is indented to the right two spaces from its parent tag.

Furthermore, content within a tag that spans more than one line is indented within the tag.

The best way to learn the value of indentation is to see some HTML code without it. You know how

the song goes—“You don’t know what you’ve got 'til it’s gone.” Anyway, here’s a very simple table

coded without any indentation:

<table><tr><td>Cell One</td><td>Cell Two</td></tr>
<tr><td>Cell Three</td><td>Cell Four</td></tr></table>

 TRY IT YOURSELF

Commenting Your Code

It will be well worth your time now to go through all the web pages and style sheets you’ve
 created so far and add any comments that you or others might find helpful when revising them
in the future. Here’s what to do:

 1. Insert a comment explaining any fancy formatting or layout technique before the tags that
make it happen.

 2. Use a comment just before an tag to briefly describe any important graphic whose
function isn’t obvious from the alt message.

 3. Consider using a comment (or several comments) to summarize how the cells of a
<table> are supposed to align.

 4. If you use hexadecimal color codes (such as <div style=”color: #8040B0;”>),
insert a comment indicating what the color actually is (bluish-purple).

 5. Indent your comments to help them stand out and make both the comments and the HTML
or CSS easier to read. Don’t forget to use indentation in the HTML, CSS, or JavaScript itself
to make it more readable, too, as discussed in the next section.

Thinking About Version Control 743

Not only is there no indentation, but there is also no space between rows and columns within the

table. Now compare the code above code with the following code, which describes the same table:

<table>
 <tr>
 <td>Cell One</td>
 <td>Cell Two</td>
 </tr>
 <tr>
 <td>Cell Three</td>
 <td>Cell Four</td>
 </tr>
</table>

This heavily indented code makes it plainly obvious how the rows and columns are divided up via

<tr> and <td> tags.

Consistent indentation might even be more important than comments when it comes to making

your HTML code understandable and maintainable. And you don’t have to buy into this specific

indentation strategy. If you’d rather use three or four spaces instead of two, that’s fine. And if you

want to tighten things up a bit and not indent content within a tag, that also works. The main

point to take from this section is that it’s important to develop a coding style of your own (or your

team’s own) and then ruthlessly stick to it.

NOTE

If you work with other people (or plan to) in developing a website or a web-based application, con-
sider getting together as a group to formulate a consistent coding style. That way, everyone is on the
same page—pun intended.

Thinking About Version Control
If you’ve ever used Google Docs, you have encountered a form of version control; when you’re

using Google Docs, Google automatically saves revisions of your work as you are typing. This is

different from simply automatically saving your work (although it does that, too) because you

can revert to any revision along the way. You might have encountered this concept when using

popular blog-authoring software such as Blogger or WordPress, or even when editing wikis—both

of these types of applications also enable users to revise their work without overwriting, and thus

deleting for all time, their previous work.

You might be wondering, “Well, what does that have to do with developing HTML, CSS, or

JavaScript? You’re just talking about documents.” The answer is simple: Just as you might want to

revert to a previous edition of an article or a letter, you might want to revert to a previous edition

of your HTML, CSS, or JavaScript code. This could be because you followed a good idea to the end,

744 LESSON 28: Organizing and Managing a Website

but your markup just proved untenable and you don’t want to start over entirely—you just want

to back up to a certain point along your revision path. Or, let’s say you developed a particularly

involved bit of JavaScript and discovered that something in the middle of it just doesn’t work with

some browsers; you’ll want to build on and extend the work you did, not throw it away completely,

and knowing what you did in the past will help you in the future. We use version control for every

website we manage and every book or lesson we write.

Version control involves more than just revision history. When you start using version control

 systems to maintain your code, you will hear terms like these:

 N Commit/check in and check out—When you put an object into the code repository, you

are committing that file; when you check out a file, you are grabbing it from the repository

(where all the current and historical versions are stored) and working on it until you are

ready to commit or check in the file again.

 N Branch or fork—The files you have under version control can branch or fork at any point,

thus creating two or more development paths. Suppose you want to try some new display

layouts or form interactivity, but you don’t want an existing site to appear to be modified in

any way. You might have started with one master set of files but then forked that set of files

for the new site, continuing to develop them independently. If you continued developing the

original set of files, that would be working with the trunk.

 N Change or diff—The terms change and diff both refer to a modification made under ver-

sion control. You might also hear diff used as a verb, as in “I diffed the files,” to refer to the

action of comparing two versions of an object (and there is an underlying UNIX command

called diff).

 N Fork, push, pull, and fetch—When you find an open-source GitHub repository that you

want to use as the basis for your own work (or that you want to contribute to), you fork

the repository to then create a copy of it that you can work on at your own pace. From the

forked repository, you can push commits to your own version, fetch changes from the original

repository, and issue pull requests to the owner of the original if you would like to contribute

your changes to the original repository that you forked.

You will hear many more terms than just the few listed here, but if you can conceptualize the

repository, the (local) working copy, and the process of checking in and checking out files, you are

well on your way to implementing version control for your digital objects.

Using a Version Control System
Several version control systems are available for use, some free and open source, and some

 proprietary. Some popular systems are Subversion (subversion.apache.org), Mercurial

(www.mercurial-scm.org), and Git (www.git-scm.com). If you have a web hosting service that

enables you to install any of these tools, you could create your own repository and use a GUI or

http://subversion.apache.org
http://www.mercurial-scm.org
http://www.git-scm.com

Using HTML and CSS Frameworks 745

command-line client to connect to it. However, for users who want to get started with a repository

but don’t necessarily want, need, or understand all the extra installation and maintenance over-

head that goes with it, there are plenty of hosted version control systems that can even be used

free for personal and open-source projects. These hosted solutions aren’t just for individuals; all

sorts of companies and organizations both big and small use hosted version control systems, such

as GitHub (www.github.com) or Bitbucket (www.bitbucket.org). For a few dollars, you can turn

your free, public account into a private account and keep your code to yourself.

For anyone wanting to get started with version control, I highly recommend GitHub for relative

ease of use and free, cross-platform tools. The GitHub Help site is a great place to start: See http://

help.github.com. An added benefit of the already-free GitHub account is the capability to use Gist

(gist.github.com) to share code snippets (or whole pages) with others (those snippets themselves

are Git repositories and, thus, are versioned and forkable in their own right). Using GitHub reposi-

tories, including Gists, is also an excellent way to get started with version control of your work.

Using HTML and CSS Frameworks
If you use a content management system (CMS) such as WordPress (www.wordpress.org) or

Drupal (www.drupal.org) to power your website, you will end up using a presentation template

designed for one of those systems. But what if you do not want to use a CMS but would like a

starting point for an advanced HTML and CSS presentation? Over the past few years, the web

development world has seen the rise of HTML and CSS (or “front-end”) frameworks that can help

solve this problem. Many of these frameworks are open source and available for download or

forking from GitHub repositories. These frameworks often also include advanced JavaScript librar-

ies, like the ones you learned about in Lesson 26, “Using Third-Party JavaScript Libraries and

Frameworks.”

I recommend three popular HTML and CSS frameworks:

 N Bootstrap—Developed internally by engineers at Twitter, this framework is open-source

software for anyone who wants to use it to get started with modern design elements.

Learn more at http://getbootstrap.com, which includes a simple “Get Started” section that

explains what is included and how to use it. Or you can get Jennifer’s book Sams Teach
Yourself Bootstrap in 24 Hours.

 N Foundation—Another open-source framework, Foundation emphasizes responsive design

so that people with all kinds of devices, from desktops to phones, can enjoy and use your

website. Learn more at http://foundation.zurb.com, which includes an extensive “Getting

Started” section that details the components of the display templates you can use.

 N HTML5 Boilerplate—One of the leanest frameworks out there, this might be the most use-

ful for beginners because it provides the basics of what you need without overwhelming you

with the possibilities. Learn more at http://html5boilerplate.com and see the documenta-

tion maintained within the GitHub repository.

http://www.github.com
http://www.bitbucket.org
http://help.github.com
http://help.github.com
http://gist.github.com
http://www.wordpress.org
http://www.drupal.org
http://getbootstrap.com
http://foundation.zurb.com
http://html5boilerplate.com

746 LESSON 28: Organizing and Managing a Website

Although front-end frameworks can be incredibly useful for speeding up some of the foundational

work of web development, you run the risk of falling into the “cookie cutter” trap, in which your

site looks like all the others out there (at least the ones using the same framework). However, with

a little creativity, you can avoid that trap.

Summary
This lesson gave you examples and explanations to help you organize your web pages into a

coherent site that is informative, attractive, easy to find in search engines, and easy to navigate.

Web users have become quite savvy and expect well-designed websites, and they will quickly

abandon your site if they experience a poor design that is difficult to navigate.

This lesson also discussed the importance of making your code easy to maintain by making lib-

eral use of comments and indentation. Comments are important not only as a reminder for you

when you revisit code later but also as instructions for someone who someday inherits your code.

Indentation might seem like a minor aesthetic issue, but it can help you quickly analyze and

understand the structure of a web page at a glance.

Because you likely will soon need code-management tools either for yourself or for yourself and

other developers in your group, this lesson introduced you to a few version control concepts.

Version control enables you to innovate without losing your solid, production-quality work and

also provides more opportunities for other developers to work within your code base.

Finally, you learned a little bit about HTML and CSS frameworks, of which there are many. These

frameworks can help you speed up your web development project by giving you templates that

already contain modern and validated markup.

Q&A
 Q. Won’t adding a lot of comments and spaces make my pages load more slowly when

 someone views them?

 A. The short answer is not really because text is small and doesn’t add much to the file
size. But you should still think about this because it is something that search engines
consider when evaluating a page. If your site is 1/10 of a second slower than another,
equally ranked site, that other site will be given precedence over yours in the search
engine index. One thing you can do is minify your code by removing all the comments and
extraneous spaces before you publish. You can learn more about the concept of minifying
your HTML, CSS, and JavaScript at https://developers.google.com/speed/docs/insights/
MinifyResources.

https://developers.google.com/speed/docs/insights/MinifyResources
https://developers.google.com/speed/docs/insights/MinifyResources

Workshop 747

 Q. Using version control seems like overkill for my tiny personal website. Do I have to use it?

 A. Of course not. Websites of any type, personal or otherwise, are not required to be under
version control or other backup systems. However, most people have experienced some
data loss or a website crash, so if you don’t use version control, I highly recommend at
least performing some sort of automated backup of your files to an external system. By
“external system,” I mean any external drive, whether a physical drive attached to your
computer or a cloud-based backup service such as Google Drive (https://drive.google.com),
Microsoft OneDrive (https://onedrive.live.com), or Apple iCloud (https://www.apple.com/
icloud/).

Workshop
The Workshop contains quiz questions and activities to help you solidify your understanding of the
material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
 1. How can you ensure that all your pages form a single cohesive website?

 a. Use consistent backgrounds, colors, and fonts.

 b. Repeat words or graphics at the top of your pages.

 c. Avoid repeating images.

 d. Both A and B

 2. What types of information should you always include in your home page?

 a. Site name and descriptive information

 b. Site name and contact form

 c. Contact form and product list

 d. Both A and C

 3. You want to say to future editors of a web page, “Don’t change this image of me. It’s
my only chance at immortality.” But you don’t want users who view the page to see that
 message. How can you do this?

 a. Put the message in CSS

 b. Put the message in JavaScript

 c. Put the message in a comment

 d. You can’t. Everything you post will appear on the page.

https://drive.google.com
https://onedrive.live.com
https://www.apple.com/icloud/
https://www.apple.com/icloud/

748 LESSON 28: Organizing and Managing a Website

 4. What is a benefit of a single-page website?

 a. More mobile friendly

 b. Downloads quickly

 c. People prefer to link to them

 d. Both A and B

 5. What is the largest number of links you should have in a navigation bar for maximum
 usability?

 a. Seven

 b. Six

 c. Five

 d. Four

 6. What is an important aspect of SEO?

 a. Interesting content

 b. Easy-to-use navigation

 c. Mobile friendly

 d. All of the above

 7. What is a way to write maintainable code?

 a. Use comments

 b. Use a code template

 c. Use user-friendly tags

 d. Both A and B

 8. What does it mean to diff a version-controlled file?

 a. Add a new version to the repository

 b. Compare the version to the copy in the repository

 c. Modify the version in the repository

 d. Roll back to a previous version

 9. How can you write mobile-friendly websites?

 a. Make pages as large as needed.

 b. Write valid HTML.

 c. Optimize images for quality over speed.

 d. Both B and C

Workshop 749

 10. Why use an HTML framework like Bootstrap?

 a. To speed up page loading.

 b. To make your code easier to read.

 c. To take advantage of a system for writing advanced designs.

 d. Both A and B

NOTE

Just a reminder for those of you reading these words in the print or e-book edition of this book: If
you go to www.informit.com/register and register this book (using ISBN 9780672338083), you can
receive free access to an online Web Edition that not only contains the complete text of this book
but also features an interactive version of this quiz.

Answers
 1. d. Use consistent background, colors, fonts, and styles. Repeat the same link words or

graphics on the top of the page that the link leads to. Repeat the same small header,
 buttons, or other elements on every page of the site.

 2. a. Use enough identifying information that users can immediately see the name of the site
and understand what it is about. Also, whatever is the most important message that you
want to convey to your intended audience, state it directly and concisely. Whether it’s your
mission statement or a trademarked marketing slogan, make sure it is in plain view here.

 3. c. Put the following comment immediately before the tag:

<!-- Don't change this image of me.
 It's my only chance at immortality. -->

 4. b. A single-page website downloads quickly, it can be fully printed, it can be saved on a hard
drive, and internal links tend to respond more quickly than external links.

 5. a. Most people struggle if there are more than seven links in the main navigation, and they
prefer to see five or fewer.

 6. d. Your site should have interesting content, implement easy-to-use navigation, and be
mobile friendly.

 7. d. Use comments to document the code and use a code template (indenting) to format the
code for easier reading.

http://www.informit.com/register

750 LESSON 28: Organizing and Managing a Website

 8. b. It means that you’re comparing it to the version in the repository or another version.

 9. b. Write valid code (HTML, CSS, and JavaScript). Create responsive pages. Make the pages
as small as possible. Never hide content from mobile users just because they are on a
mobile device. Test your pages in the Mobile-Friendly Test tool.

 10. c. HTML frameworks are great when you don’t want to use a full CMS but you do want a
system for writing advanced HTML and CSS presentation.

Exercises
 N Open the HTML, CSS, and JavaScript files that make up your current website and check

them all for comments and code indentation. Are there areas in which the code needs
to be explained to anyone who might look at it in the future? If so, add explanatory
 comments. Is it difficult for you to tell the hierarchy of your code; that is, is it difficult to
see headings and sections? If so, indent your code so that the structure matches the
hierarchy and thus enables you to jump quickly to the section you need to edit.

 N Create an account at GitHub and create a repository for your personal website or other
code-based project. From this point forward, keep your repository in sync with your work
on your personal computer by committing your changes to the GitHub repository.

A

<a> HTML tags, 170–180, 436

absolute links, 169

absolute positioning, 276–277

abstraction, JavaScript, 665

accessibility

JavaScript, 664

tables, 158

adaptive design. See also RWD,

dynamic serving, 467

Adobe Photoshop, 201

AJAX (remote scripting), 85, 690

aligning

cells (tables), 154–156

elements in web pages,
261–262

images in web pages, 219

horizontal image
alignment, 219–221

vertical image alignment,
221–223

text, 136

attributes, HTML tags, 136

block-level elements,
136–139

CSS, 67

alpha transparency (RGB color

values), 198

Amazon.com, 735

Symbols

@media rules, 475–476

defining media type styles,
473–474

not operators, 476–477

.. (double dot), directories, 169

/ (forward slash), HTML directories,

168

< > tags. See individual entries

indexed according to tag names

; (semicolons)

CSS, 61, 63

JavaScript

best practices, 516

statements, 508

Numbers

2D transformations, 383

moving elements, 386–388

multiple transformations,
391–392

rotating elements, 384

scaling elements, 385–386

slanting (skewing) elements,
388–391

3D transformations, 392–393

Index

http://Amazon.com

752 analogous color schemes

analogous color schemes, 193

anchor HTML tags, linking

to anchor locations, 171–174

to email addresses, 179–180

to external web content,
178–179

identifying anchor locations
within web pages, 170–171

to non-HTML files, 177–178

between web content, 174–177

within web pages, 170

anchor objects (DOM), 528

Angular frameworks (JavaScript),

690

animations, 401–402

canvas, 420–424

keyframes, defining, 402–404

naming, 410

pausing, 410

repeating, 408–410

timing, 405–408

anonymous functions, event

handlers (JavaScript) and, 630

applications (HTML5), developing,

501

architectures (site), sample

build, 170

arithmetic mean, 587

arrays (JavaScript), 551

accessing elements of, 565

length of, 565

numeric arrays, 564–565,
567–569

string arrays, 565–566

sorting, 567

splitting, 566–567

<article> HTML tags, 37, 40,

45, 437

<aside> HTML tags, 37, 47–48, 437

attributes, HTML tags, 136, 168

audio, playing in web pages,

240–241, 242

<audio> element, 240–241

<audio> HTML tags, 436

B

 HTML tags, 122, 126

Backbone.js frameworks

(JavaScript), 690

backgrounds (cells)

colors, 157

images, 157

backgrounds (lists), color and, 296

backgrounds (web pages), 353–354

color, 194

alternating colors,
364–365

changing with CSS,
199–201

hexadecimal color codes,
194, 195, 196–197

RGB color values, 194,
197–198

gradients, 365

linear gradients, 366

radial gradients, 367–371

images, 226–227

in multiple backgrounds,
355–359

positioning images, 361

multiple backgrounds,
355–359

placing, 359–360

scrolling, 361–364

sizing, 360

tiled background images,
creating, 212–214

bad website examples, 195

banners, creating, 210–211

BAWSI.org website, 737

Berners-Lee, Sir Tim, 2, 431

block-level elements, aligning text

in, 136–139

blogs, publishing web content

to, 18

<body> HTML tags, 29, 30, 436

body (tables), wrapping, 151

boldface text, 126, 127, 157

Boolean (logical) operators

(JavaScript), 557, 597–598

Bootstrap framework, 745

borders (tables)

collapsing, 149–150

creating, 149

spacing, 157

borders (web pages), 354

color, changing with CSS,
199–201

images as, 373

clipping border images,
373–375

defining image width,
375–376

extending border images
beyond border edge, 376

fitting to borders, 376–377

multiple borders, 355

box model (CSS), 271–275, 318

box-sizing property, changing,
275–276

image maps, creating,
296–299

lists, 290–291

creating, 291–292

image maps, creating,
296–299

margins, 293–294, 295

navigation lists, 299–300

navigation lists, horizontal
navigation, 310–314

navigation lists, multi-
level vertical navigation,
305–310

navigation lists, primary
navigation, 300

navigation lists, single-
level vertical navigation,
303–305

navigation lists, vertical
navigation, 300–303

padding, 292–294, 295

placing list item indicators,
294–296

styling, 291–292

http://BAWSI.org

codecs (video) 753

case sensitivity (text)

color names, 195

JavaScript, 514

web servers, 170

cells (tables)

aligning data, 154–156

backgrounds

colors, 157

images, 157

boldface text, 157

creating, 147

resizing in responsive tables,
456–457

spanning, 156

styling, 147

centering web page elements,

262–263

character entities. See also

special characters, formatting,

123–125

check boxes, web forms, 706–708

child (nested) tags, HTML, 142

children (DOM objects), 533

Chrome (Google), Developer Tools,

101, 114–118

circles, drawing on canvas,

411–413

clarity, indenting code for,

742–743

class attributes, HTML tags, 136

click events, event handlers

(JavaScript) and, 623–627,

631–638

client-side scripting, 488

<closing> HTML tags, 29

closing/opening, browser

windows, 640–643

code (maintainable), writing

documenting code with
comments, 740–742

indenting for clarity, 742–743

version control, 743–745

codecs (video), 237

<noscript> tags, 672

reading browser
information, 666–667

non-JavaScript-enabled
browsers, 671–672

opening links in new browser
windows, 180–181

prefixes, 434

search engines, 672

server interaction, 3–6

testing, 8–10

timeouts, 645–647

web content, displaying, 141

window objects (DOM), 524,
531

windows

creating, 640

dialog boxes, displaying,
648–649

moving, 643–645

opening/closing, 640–643

timeouts, 645–647

built-in objects (JavaScript), 510

<button> element, web forms,

718–719

buttons

creating, 210–211

radio buttons, web forms,
708–709

C

canvas, 410–411

animations, 420–424

drawing

circles, 411–413

lines/polygons, 414–416

rectangles/squares, 411

triangles, 415–416

images, adding to, 417–419

cascading, 434

outline properties, 275

positioning elements in layout,
277–281

absolute positioning,
276–277

relative positioning, 276

web page elements, changing
height/width, 272–274

box-sizing property (CSS),

changing, 275–276

 HTML tags, 32, 129, 436

breakpoints

best practices, 483

debugging, 115, 116–118

defined, 471, 477

defining with media queries,
477–479

large screen-specific styles,
adding with media queries,
482–483

optimal breakpoints, 483

scripting and, 115, 116–118

browsers

dishonest browsers,
JavaScript and, 668–669

distributing, 18

history, accessing, 528–530

history objects (DOM),
528–530

JavaScript

attaching events across
browsers, 660–661

avoiding browser specificity,
661

browser quirks, 671

cross-browser scripting,
669–672

dishonest browsers,
668–669

displaying browser
information, 667–668

feature sensing, 670

non-JavaScript-enabled
browsers, 671–672

754 collapsing borders (tables)

collapsing borders (tables),

149–150

color

analogous color schemes,
193

backgrounds (lists), 296

backgrounds (web pages),
194

alternating colors,
364–365

changing color with CSS,
199–201

hexadecimal color codes,
194, 195, 196–197

RGB color values, 194,
197–198

borders, changing color with
CSS, 199–201

choosing (best practices),
192–194

color wheels, 193

complementary color
schemes, 194

font color, changing, 129,
130, 131–133

graphics software, choosing,
201–202

gray, spelling in CSS, 194

hexadecimal color codes, 194,
195, 196–197

highlighted text, 438

images, tweaking in, 207–208

monochromatic color
schemes, 194

names, case sensitivity, 195

RGB color values, 195,
197–198

screen resolution, 210

text, changing color with CSS,
199–201

text links, changing color, 195

triadic color schemes, 194

websites, bad website
examples, 195

columns

CSS, 158–162

tables, rearranging in respon-
sive tables, 457–460

comma-separated lists, media

query expressions, 476

comments (JavaScript), 515–516,

740–742

compiled scripting languages, 80

complementary color schemes,

194

compression (JPEG), 209

conditional expressions

(JavaScript), 596–597, 599–600

conditional operators (JavaScript),

597

conditional statements

(JavaScript), 511

content/presentation/behavior,

separating (JavaScript), 657

contents, tables of, 730–731

continuing loops (JavaScript), 609

converting

between data types
(JavaScript), 557–558

date formats with Date object
(JavaScript), 590

copyrights, images and, 202

cropping images, 204–206

CSS (Cascading Style Sheets), 55,

57, 62

aligning web page elements,
261–262

animations, 401–402

canvas, 420–424

keyframes, defining,
402–404

naming, 410

pausing, 410

repeating, 408–410

timing, 405–408

backgrounds (web pages),
changing color, 199–201

basic style sheets, 57–60

selectors, 60

style rules, 60–61

borders, changing color,
199–201

box model, 271–275

box-sizing property,
changing, 275–276

changing web page
element height/width,
272–274

outline properties, 275

positioning elements in
layout, 276–281

breakpoints

best practices, 483

defined, 471, 477

defining with media
queries, 477–479

large screen-specific
styles, adding with media
queries, 482–483

optimal breakpoints, 483

browser prefixes, 434

canvas, 410–411

animations, 420–424

drawing circles, 411–413

drawing lines/polygons,
414–416

drawing rectangles/
squares, 411

drawing triangles,
415–416

images, adding to,
417–419

cascading, 434

centering web page elements,
262–263

color

backgrounds (web pages),
changing, 199–201

gray, spelling, 194

text color, changing,
199–201

columns, 158–162

755CSS (Cascading Style Sheets)

creating, 63

debugging with Developer
Tools, 107–112

defined, 56

display: table; property,
335–338

external style sheets, 56

float property and web page
elements, 263–266

font sizes, 60, 61

frameworks, 745–746

HTML documents, linking to,
61–62

hyperlink styles, 182–186

inline styles, 72–73

internal style sheets, 56,
71–73

margins, adding to web page
elements, 249–257

media queries

adding, 473

baseline styles, defining,
479–480

breakpoints, best
practices, 483

breakpoints, defined, 471,
477

breakpoints, defining with
media queries, 477–479

breakpoints, large screen-
specific styles adding
with media queries,
482–483

breakpoints, optimal
breakpoints, 483

defined, 471–472

defining media type styles,
473–474

expressions, 476–477

handheld media type, 472

large screen-specific
styles, adding, 482–483

media features, 474–476

print media type, 472–473

requesting multiple CSS
documents, 474

retina devices and, 484

screen media type, 472

small screen-specific
styles, adding, 481–482

types of, 472–474

ordering elements in layout,
281–284

outlines, 378

padding, adding to web page
elements, 257–261

positioning elements in layout,
63–65

absolute positioning,
276–277

flowing text, 284–285

ordering elements,
281–284

relative positioning, 276

print style sheets, 472–473

requesting multiple CSS
documents with media
queries, 474

RWD, writing for, 438–439

selectors, 60

semicolons (;), 61, 63

style classes, 68–70

style ID, 70–71

style primer, 63

formatting properties, 63,
65–68

layout properties, 63–65

style rules, 56–57, 60–61

tables

accessibility, 158

borders, collapsing,
149–150

cells, aligning data,
154–156

cells, background
colors, 157

cells, background
images, 157

cells, boldface text, 157

cells, spanning, 156

cells, styling, 147

laying out, 156, 157–158

mixing presentation/
content, 158

mobile devices, 158

page layouts, 157–158

pre-planning, 156

sizing, 151–153

unnecessary redesigns,
158

text

aligning, 67

changing color, 199–201

font properties, 67–68

indenting, 67

indenting text, 67

transformations

2D transformations, 383

2D transformations, moving
elements, 386–388

2D transformations,
multiple transformations,
391–392

2D transformations,
rotating elements, 384

2D transformations, scal-
ing elements, 385–386

2D transformations, slant-
ing (skewing) elements,
388–391

3D transformations,
392–393

transitions, 393–396

timing, 396–397

triggering with JavaScript,
397–398

validating, 438–439

style sheets, 73

web content, 99, 109–111

z-index property, ordering ele-
ments in layout, 281–284

756 CSS box model

CSS box model, 318

image maps, creating,
296–299

lists, 290–291

creating, 291–292

image maps, creating,
296–299

margins, 293–294, 295

navigation lists, 299–300

navigation lists, horizontal
navigation, 310–314

navigation lists, multi-
level vertical navigation,
305–310

navigation lists, primary
navigation, 300

navigation lists, single-
level vertical navigation,
303–305

navigation lists, vertical
navigation, 300–303

padding, 292–294, 295

placing list item indicators,
294–296

styling, 291–292

CSS Flexible Box Layout module,

339–345

CSS Grid Layout module,

345–348

custom JavaScript objects, 510

D

data types (JavaScript), 556, 557

Booleans, 557

converting between, 557–558

null data types, 557

number data types, 556

strings, 557

assigning values to,
559–560

calculating length of,
560–561

converting case of, 561

getting single characters,
563

splitting, 566–567

string objects, 558, 559

substrings, 562

substrings, finding,
563–564

substrings, getting single
characters, 563

substrings, using parts of
strings, 562–563

using parts of strings,
562–563

Date object (JavaScript), 587–588

converting date formats, 590

creating, 588

date values

reading, 588–589

setting, 588

time zones, 589

<dd> HTML tags, 139, 141, 290

Debug panel (Firefox), 114–118

Debugger (Safari), 114–118

debugging

breakpoints and, 116–118

CSS with Developer Tools,
107–112

HTML with Developer Tools,
102–107

JavaScript with Developer
Tools, 112–114

definition HTML lists, 139, 141,

290

design patterns, JavaScript,

664–665

Developer Tools

inspector, 99–101

debugging CSS, 107–112

debugging HTML, 102–107

debugging JavaScript,
112–114

Sources panel, 114–118

dialog boxes, displaying, 648–649

directories, 168

absolute links, 169

double dot (..), 169

forward slash (/), 168

levels of, 168

relative addresses, 168, 169

relative-root addresses, 168

site architectures, sample
build, 170

subdirectories, 168

dishonest browsers, JavaScript

and, 668–669

display: table; property (CSS),

335–338

displaying

web content, 141

web form data, 721–722

<div> elements, changing

appearance of with click

events, 631–638

<div> HTML tags, 136, 137, 436

<dl> HTML tags, 139, 141, 290

<!doctype> HTML tags, 435

document objects (DOM), 525,

531–532

getting information about a
document, 525–526

writing text in a document,
527

documenting JavaScript code,

662–663, 740–742

Dojo, 686

DOM (Document Object Model),

495

children, 533

DOM objects (JavaScript), 510

event handlers, mouse events,
623–627

jQuery, 683–684

nodes, 533, 534

basic properties, 534

document methods, 535

methods, 535–536

relationship properties,
534–535

external style sheets 757

objects

anchor objects, 528

children, 533

document objects (DOM),
525–527, 531–532

event object, 621–623

events and, 618

hiding/showing, 541–543

history objects, 528–530

link objects, 527–528

location objects, 530–531

methods of, 524

notation, 524

parents, 533

properties of, 524

siblings, 533

window objects, 524, 531

parents, 533

positionable elements (layers),
536, 537–541

siblings, 533

structure of, 524, 531–533

text

adding to web pages,
545–546

modifying in web pages,
543–545

unobtrusive JavaScript,
496–498

window objects, 638–639

properties of, 639

windows, creating, 640

windows, displaying dialog
boxes, 648–649

windows, moving,
643–645

windows, opening/closing,
640–643

windows, timeouts,
645–647

domains, mobile devices and

RWD, 468

double dot (..), directories, 169

do.while loops (JavaScript), 607

download speeds, mobile inter-

faces and RWD, 449–450

downs/ups, mouse events,

623–627

drawing (canvas)

circles, 411–413

lines/polygons, 414–416

rectangles/squares, 411

triangles, 415–416

<dt> HTML tags, 139, 141, 290

dynamic serving. See also RWD,

adaptive design, 467–468

dynamic websites

HTML5 applications,
developing, 501

images, changing based on
user interaction, 498–500

JavaScript, in HTML, 488–490

scripting

client-side scripting, 488

displaying random content,
491–495

DOM, 495, 496–498

hiding scripts, 490

placement of scripts, 489

server-side scripting, 488

types of, 487–488

unobtrusive JavaScript,
496

unobtrusive JavaScript and
DOM, 496–498

E

else keyword, if statements

(JavaScript), 598–599

 HTML tags, 126, 127, 436

email addresses, linking web

content, 179–180

Ember frameworks (JavaScript),

691

<empty> HTML tags, 29

epochs, 588

error handling, JavaScript,

91–92, 662

escaping loops (JavaScript),

608–609

ESPN.com, 733–734

event handlers

HTML, 511–513

JavaScript, 511–513, 618

adding, 659–661

anonymous functions, 630

attaching events across
browsers, 660–661

click events, 623–627,
631–638

creating, 618–619

defining, 619–620

event object, 621–623

keyboard events,
627–630

load/unload events,
630–631

mouse events, 623–627

multiple event handlers,
supporting, 620–621

objects and events, 618

W3C event model,
659–660

web forms, text fields/text
areas, 713–714

event object (JavaScript),

621–623

events (JavaScript), 84

attaching events across
browsers, 660–661

W3C event model, 659–660

web forms, 719–720

expressions (JavaScript),

555

external style sheets, 56

http://ESPN.com

758 feature sensing, JavaScript cross-browser scripting

F

feature sensing, JavaScript cross-

browser scripting, 670

file management, 14–17

finding, substrings (JavaScript),

563–564

Firefox

Debug panel, 114–118

Developer Tools, 100

JavaScript, error handling, 92

FireFTP, 10-11

fixed web page layouts, 319–322

fixed/liquid hybrid web page

layouts

creating, 324–326

defining two columns in,
326–328

height, setting, 329–335

width, setting, 328–329

Flash, mobile interfaces and RWD,

445

Flexible Box Layout module (CSS),

339–345

flexible-width images, respon-

sive images, mobile design,

461–462

float property, web page elements

and, 263–266

flow control (JavaScript)

conditional expressions,
596–597, 599–600

conditional operators, 597

if statements, 595–596

conditional expressions,
596–597

conditional operators, 597

else keyword, 598–599

logical (Boolean)
operators, 597–598

if.else statements

testing multiple conditions,
600

testing multiple conditions,
HTML file, 600–601

testing multiple conditions,
JavaScript file, 601–602

logical (Boolean) operators,
597–598

loops

continuing, 609

do.while loops, 607

escaping, 608–609

infinite loops, 608

looping through object
properties, 609–612

for loops, 604–606

while loops, 606–607

shorthand conditional
expressions, 599–600

switch statements, multiple
conditions and, 602–604

flowing text in web pages,

284–285

 HTML tags, 122, 129

fonts

color, changing, 129, 130,
131–133

CSS

properties, 67–68

sizing, 60, 61

font families (typefaces),
changing, 130, 131–133

Google Fonts, 134–135

mobile interfaces and RWD,
447–449

sizing, 60, 61, 129, 130,
131–133

typefaces (font families),
changing, 130, 131–133

web fonts, 133–135

<footer> HTML tags, 37, 39,

48–49, 437

footers (tables), wrapping,

151

formatting properties (CSS), 63,

65–68

formatting text

aligning text, 136

attributes, HTML tags, 136

block-level elements,
136–139

attributes, HTML tags, 136,
168

boldface text, 126, 127, 157

character entities, 123–125

fonts

changing color, 129, 130,
131–133

Google Fonts, 134–135

sizing, 129, 130, 131–133

web fonts, 133–135

italic text, 126–127

monospaced text, 127,
128–129

paragraph breaks, 136

sample text, 122

simple web pages, building
with HTML, 33

special characters, 122–125

subscript text, 127

superscript text, 127

typefaces (font families),
changing, 130, 131–133

underlined text, 127–128

forms (web-based), 695–696

accepting text input,
702–703

accessing elements with
JavaScript, 720–721

<button> element, 718–719

check boxes, 706–708

creating, 696–702

displaying data, 721–722

events, 719–720

form-processing scripts, 703

grouping elements, 705

hidden data, 705

input controls, 706–712

labeling data, 703–704

759HTML (Hypertext Markup Language)

naming data, 703

<output> element, 719

pull-down pick lists,
710–712

radio buttons, 708–709

selection lists, 710–712

submitting data, 718

text fields/text areas,
713–715

validating, 85, 716–717

forward slash (/), HTML

directories, 168

Foundation framework, 745

frameworks

Bootstrap framework, 745

CSS frameworks, 745–746

Foundation framework, 745

HTML frameworks,
745–746

HTML5 Boilerplate framework,
745

JavaScript, 690, 691

AJAX (remote scripting),
690

Angular frameworks, 690

Backbone.js frameworks,
690

Ember frameworks, 691

Knockout frameworks,
691

MVC pattern, 689–690

React frameworks, 691

FTP clients, 10

FireFTP, 10–11

selecting, 10–11

transferring files, 12–14

function calls (JavaScript),

508–509

functions (JavaScript), 570

calling, 571–573

defining, 570–571

naming, 515

returning values, 573–575

G

GIF format (images), 211–212

GIMP graphics software, 201–202

cropping images, 204–205,
206

JPEG compression, 209

resizing images, 206

global variables (JavaScript), 553

Gmail, 673

Google Chrome, Developer Tools,

101, 114–118

Google Developers, 665

Google Docs, version control, 743

Google Fonts, 134–135

graceful degradation, theory of,

428, 431, 658

gradients, backgrounds (web

pages), 365

linear gradients, 366

radial gradients, 367–371

graphics software, 201. See also

images, Adobe Photoshop

choosing, 201–202

GIMP, 201–202

cropping images,
204–205, 206

JPEG compression, 209

resizing images, 206

gray (color), spelling in CSS, 194

Grid Layout module (CSS),

345–348

grouping web form elements, 705

H

<h1> HTML tags, 436

<h2> HTML tags, 436

<h3> HTML tags, 436

handheld media type (media

queries), 472

<head> HTML tags, 30, 435, 489,

514

<header> HTML tags, 37, 39–43,

437

headers (tables), wrapping, 151

headings, simple web pages,

building with HTML, 33–36

height/width

fixed/liquid hybrid web page
layouts, setting in, 329–335

images, specifying in,
218–219

web page elements, changing
in, 272–274

“Hello World!” sample file,

creating, 9–10

helper applications, defined, 234

hexadecimal color codes, 194,

195, 196–197

hiding

content in responsive tables,
460–461

DOM objects, 541–543

JavaScript scripts, 490

web form data, 705

highlighted text, 438

history objects (DOM), 528–530

horizontal image alignment,

219–221

horizontal navigation in navigation

lists, creating, 310–314

HTML (Hypertext Markup

Language)

backgrounds (web pages),
changing color, 199–201

boldface text, 126, 127

borders, changing color,
199–201

<button> element, web forms,
718–719

color

backgrounds (web pages),
changing, 199–201

text color, changing,
199–201

760 HTML (Hypertext Markup Language)

CSS, linking to, 61–62

debugging with Developer
Tools, 102–107

directories, 168

absolute links, 169

double dot (..), 169

forward slash (/), 168

relative addresses, 168,
169

relative-root addresses,
168

site architectures, sample
build, 170

subdirectories, 168

event handlers, 511–513

formatting text

aligning text, 136–139

attributes, HTML tags,
136, 168

boldface text, 126, 127

character entities,
123–125

font color, changing, 129,
130, 131–133

font sizes, 129, 130,
131–133

Google Fonts, 134–135

italic text, 126–127

monospaced text, 127,
128–129

sample text, formatting
example, 122

special characters,
122–125

subscript text, 127

superscript text, 127

typefaces (font families),
changing, 130,
131–133

underlined text, 127–128

web fonts, 133–135

forms, 695–696

accepting text input,
702–703

accessing elements with
JavaScript, 720–721

<button> element,
718–719

check boxes, 706–708

creating, 696–702

displaying data, 721–722

events, 719–720

form-processing scripts,
703

grouping elements, 705

hidden data, 705

input controls, 706–712

labeling data, 703–704

naming data, 703

<output> element, 719

pull-down pick lists,
710–712

radio buttons, 708–709

selection lists,
710–712

submitting data, 718

text fields/text areas,
713–715

validating, 716–717

frameworks, 745–746

history of, 2

if.else statements
(JavaScript), testing multiple
conditions, 600–601

images

creating HTML for image
maps, 230–233

placement in web pages,
214–217

italic text, 126–127

JavaScript and, 81–83,
488–490

linking

to anchor locations,
171–174

CSS styles, 182–186

to email addresses,
179–180

to external web content,
178–179

identifying anchor loca-
tions within web pages,
170–171

naming links, 181–182

to non-HTML files,
177–178

opening links in new
browser windows,
180–181

between web content,
174–177

within web pages, 170

lists, 139–140

definition HTML lists, 139,
141, 290

nested HTML lists,
142–146, 290

ordered HTML lists, 139,
290

unordered HTML lists,
139, 290

monospaced text, 127,
128–129

<output> element, web forms,
719

pseudo-classes, 182

rounding elements, 371–373

RWD, writing for, 435

basic attributes, 437–438

tags every web page
should contain, 435–436

validating HTML, 438–439

web content tags,
436–437

semantic HTML, 432, 433

simple web pages, building,
25–26

creating a basic page,
27–28

formatting text, 33

headings, 33–36

HTML tags, 26–30

line breaks, 31–33

761HTML (Hypertext Markup Language)

paragraph breaks, 31–33

preparing for, 24–25

saving HTML files, 33

semantic elements, 36–42

text editors, choosing, 25

viewing a basic page,
27–28

skeleton pages/templates,
30

subdirectories, 168

subscript text, 127

superscript text, 127

tables

accessibility, 158

body, wrapping, 151

borders, collapsing,
149–150

borders, creating, 149

borders, spacing, 157

cells, aligning data,
154–156

cells, background
colors, 157

cells, background
images, 157

cells, boldface text, 157

cells, creating, 147

cells, spanning, 156

cells, styling, 147

creating, 147–151

footers, wrapping, 151

headers, wrapping, 151

laying out, 156, 157–158

mixing presentation/
content, 158

mobile devices, 158

page layouts, 157–158

pre-planning, 156

rows, wrapping, 151

sizing, 151–153

unnecessary redesigns,
158

tags, 26–28, 30

<a> HTML tags, 170–174,
436

anchor HTML tags,
170–174

<article> HTML tags, 37,
40, 45, 437

<aside> HTML tags, 37,
47–48, 437

attributes, 136, 168

<audio> HTML tags, 436

 HTML tags, 122, 126

<body> HTML tags, 29,
30, 436

 HTML tags, 32,
129, 436

<closing> HTML tags, 29

<dd> HTML tags, 139,
141, 290

<div> HTML tags, 136,
137, 436

<dl> HTML tags, 139,
141, 290

<!doctype> HTML
tags, 435

<dt> HTML tags, 139,
141, 290

 HTML tags, 126,
127, 436

<empty> HTML tags, 29

 HTML tags,
122, 129

<footer> HTML tags, 37,
39, 48–49, 437

<h1> HTML tags, 436

<h2> HTML tags, 436

<h3> HTML tags, 436

<head> HTML tags, 30,
435, 489, 514

<header> HTML tags, 37,
39–43, 437

<html> HTML tags,
30, 435

<i> HTML tags, 122, 126

 HTML tag, 215–218,
221, 222, 436, 462–463

 HTML tags, 139, 290

<link> HTML tag, 473

<map> HTML tag, 233

<meta charest> HTML
tags, 436

<meta> HTML tags, 29

<nav> HTML tags, 37, 40,
45–46, 437

nested (child) tags, HTML,
142

 HTML tags, 139, 290

<opening> HTML tags, 29

<p> HTML tags, 30, 32,
136, 436, 490

<pre> HTML tags, 127,
128–129

pseudo-classes, 182

required tags, 28–30

<script> HTML tags, 489,
490, 513–514

<section> HTML tags, 37,
39, 44–45, 177, 437

 HTML tags, 436

 HTML tags, 126,
127, 436

<sub> HTML tags, 127

<sup> HTML tags, 127

<tbody> HTML tags, 151

<td> HTML tags, 147,
149, 149, 150, 154

<tfoot> HTML tags, 151

<th> HTML tags, 147,
149, 150, 154

<thead> HTML tags, 151

<title> HTML tags, 29, 30,
436

<tr> HTML tags, 147, 149,
149, 154

<u> HTML tags, 127–128

 HTML tags, 139, 290

<video> HTML tags, 237,
238–239, 436

viewing in other web
pages, 36

762 HTML (Hypertext Markup Language)

templates/skeleton pages, 30

text, changing color, 199–201

underlined text, 127–128

valid HTML, 432

validating, 97–98, 106–107,
109–111, 438–439

well-formed HTML, 432–433

<html> HTML tags, 435

HTML5, applications, developing,

501

HTML5 Boilerplate framework, 745

hyperlinks

absolute links, 169

anchor HTML tags

identifying anchor loca-
tions within web pages,
170–171

linking between web
content, 174–177

linking to anchor locations,
171–174

linking to email addresses,
179–180

linking to external web
content, 178–179

linking to non-HTML files,
177–178

linking within web pages,
170

color, changing, 195

CSS styles, 182–186

effective use of, 186–187

images, turning into links,
223–226

images and, 187

multimedia files, 233–234,
235–236

naming, 181–182

opening in new browser
windows, 180–181

styling, 182–187

tappable links, mobile
interfaces and RWD, 449

hypertext, defined, 2

I

<i> HTML tags, 122, 126

ID attributes, HTML tags, 136

if statements (JavaScript),

595–596

conditional expressions,
596–597

conditional operators, 597

else keyword, 598–599

logical (Boolean) operators,
597–598

if.else statements (JavaScript),

testing multiple conditions, 600

HTML file, 600–601

JavaScript file, 601–602

image maps, list items and

CSS box model, creating with,

296–299

images

aligning in web pages, 219

horizontal image align-
ment, 219–221

vertical image alignment,
221–223

backgrounds (web pages)

multiple images in,
355–359

positioning images in, 361

backgrounds (web pages),
adding to, 226–227

borders (web pages), 373

clipping border images,
373–375

defining image width,
375–376

extending border images
beyond border edge, 376

fitting images to borders,
376–377

canvas, adding to, 417–419

changing based on user
interaction, 498–500

color

reducing/removing,
211–212

tweaking, 207–208

copyrights, 202

cropping, 204–206

flexible-width images,
responsive images, mobile
design, 461–462

GIF format, 211–212

graphics software

Adobe Photoshop, 201

choosing, 201–202

GIMP, 201–202

height/width, specifying,
218–219

hyperlinks and, 187

image maps, 227–228

creating, 230

HTML for image maps,
creating, 230–233

mapping regions within
images, 229–230

needs for, 228–229

JPEG compression, 209

links, turning images into,
223–226

multiple images in back-
grounds (web pages),
355–359

ownership of, 202

placement in web pages,
214–217

PNG format, 211–212

positioning in web page
backgrounds, 361

resizing, 206–207

resolution, 202–203

responsive images, mobile
design, 461

flexible-width images,
461–462

<picture> element, 463

sizes attribute, 462–463

763JavaScript

<srcset> element,
462–463

using different images,
463–464

rights management, 202

screen resolution, 210

text descriptions, 217–218

tiled background images,
creating, 212–214

web pages, adding to,
203–204

backgrounds, 226–227

cropping images, 204–206

GIF format, 211–212

height/width, specifying,
218–219

JPEG compression, 209

placement in web pages,
214–217

PNG format, 211–212

reducing/removing color,
211–212

resizing images, 206–207

text descriptions, 217–218

tiled background images,
creating, 212–214

turning images into links,
223–226

tweaking color, 207–208

web pages, aligning in, 219

horizontal image
alignment, 219–221

vertical image alignment,
221–223

 HTML tags, 215–218, 221,

222, 436

<picture> element, 463

sizes attribute, 462–463

<srcset> element, 462–463

indenting

code for clarity, 742–743

text, CSS, 67

index pages, file management,

16–17

infinite loops (JavaScript), 608

inline styles (CSS), 72–73

input controls, web forms,

706–712

inspector (Developer Tools),

debugging, 99–101

CSS, 107–112

HTML, 102–107

JavaScript, 112–114

interesting web content, creating,

738–739

interfaces (mobile), RWD, 445

design elements, fitting, 447

download speeds, 449–450

fixed-width designs, 446–447

Flash and, 445

font sizes, legibility, 447–449

layouts, simplifying, 449

mobile web pages, testing,
450–451

navigation, simplifying, 449

tappable links, 449

viewports, configuring,
445–446

internal style sheets, 56, 71–73

Internet Explorer, Developer Tools,

100

interpreted scripting languages,

80

italic text, 126–127

J

JavaScript, 80, 488, 507, 523

abstraction, 665

accessibility, 664

AJAX (remote scripting), 690

Angular frameworks, 690

arrays, 551

accessing elements of,
565

length of, 565

numeric arrays, 564–565

numeric arrays, sorting,
567–569

string arrays, 565–566

string arrays, sorting, 567

string arrays, splitting,
566–567

Backbone.js frameworks, 690

best practices, 516–517,
655–656

accessibility, 664

avoiding browser
specificity, 661

avoiding errors, 673

browser quirks, 671

content/presentation/
behavior, separating,
657

cross-browser scripting,
669–672

design patterns, 664–665

dishonest browsers,
668–669

displaying browser
information, 667–668

documenting code,
662–663

error handling, 662

event handlers, 659–661

feature sensing, 670

graceful degradation,
theory of, 658

non-JavaScript-enabled
browsers, 671–672

<noscript> tags, 672

optionality, 672–673

overusing JavaScript,
656–657

progressive enhancement,
658–659

reading browser
information, 666–667

reusing code, 665–666

764 JavaScript

unobtrusive scripting,
674–677

usability, 663–664

web page loading speeds,
657–658

Booleans, 557, 597–598

browsers

attaching events across
browsers, 660–661

avoiding browser
specificity, 661

cross-browser scripting,
669–672

dishonest browsers,
668–669

displaying browser
information, 667–668

feature sensing, 670

non-JavaScript-enabled
browsers, 671–672

<noscript> tags, 672

quirks, 671

reading browser
information, 666–667

case sensitivity, 514

comments, 515–516

conditional expressions,
596–597, 599–600

conditional operators, 597

conditional statements, 511

content/presentation/
behavior, separating, 657

data types, 556, 557

Booleans, 557

converting between,
557–558

null data types, 557

number data types, 556

strings, 557

strings, assigning values
to, 559–560

strings, calculating length
of, 560–561

strings, converting case
of, 561

strings, creating string
objects, 559

strings, finding substrings,
563–564

strings, getting single
characters, 563

strings, splitting, 566–567

strings, string objects, 558

strings, substrings,
562–564

strings, using parts of
strings, 562–563

debugging with Developer
Tools, 112–114

design patterns, 664–665

displaying random content,
491–495

documenting code, 662–663

Dojo, 686

DOM, 495

adding text to web pages,
545–546

controlling positionable
elements (layers),
537–541

event handlers, mouse
events, 623–627

event object, 621–623

modifying text in web
pages, 543–545

objects, events and, 618

unobtrusive JavaScript,
496–498

window objects, 638–639

window objects, creating
windows, 640

window objects, displaying
dialog boxes, 648–649

window objects, moving
windows, 643–645

window objects, opening/
closing windows,
640–643

window objects, properties
of, 639

window objects, timeouts,
645–647

Ember frameworks, 691

epochs, 588

error handling, 91–92, 662

event handlers, 511–513,
618

adding, 659–661

anonymous functions, 630

attaching events across
browsers, 660–661

click events, 623–627

click events, changing
appearance of <div>
elements, 631–638

creating, 618–619

defining with JavaScript,
619–620

event object, 621–623

keyboard events, 627–630

load/unload events,
630–631

mouse events, 623–627

multiple event handlers,
supporting, 620–621

objects and events, 618

W3C event model,
659–660

web forms, text fields/text
areas, 713–714

events, 84

attaching events across
browsers, 660–661

W3C event model,
659–660

web forms, 719–720

expressions, 555

external scripts, 83–84

features of, 81

flow control

conditional expressions,
596–597, 599–600

765JavaScript

conditional operators, 597

if statements, 595–596

shorthand conditional
expressions, 599–600

form validation, 85

frameworks, 690, 691

AJAX (remote scripting),
690

Angular frameworks, 690

Backbone.js frameworks,
690

Ember frameworks, 691

Knockout frameworks, 691

MVC pattern, 689–690

React frameworks, 691

functions, 570

calling, 508–509,
571–573

combining with tasks,
508–509

defining, 570–571

naming, 515

returning values, 573–575

graceful degradation, theory
of, 658

hiding scripts, 490

history of, 81

HTML and, 81–83, 488–490

HTML5 applications,
developing, 501

if statements, 595–596

conditional expressions,
596–597

conditional operators, 597

else keyword, 598–599

logical (Boolean)
operators, 597–598

if.else statements, testing
multiple conditions, 600

HTML file, 600–601

JavaScript file, 601–602

jQuery, 683–684

JSON, 517–518

Knockout frameworks, 691

libraries (third-party),
681–683

Dojo, 686

effects, adding,
686–689

jQuery, 683–684

MooTools, 686

Prototype, 685, 687

script.aculo.us, 685–686,
687, 687–689

loading speeds (web pages),
657–658

logical (Boolean) operators,
557, 597–598

loops, 511

continuing, 609

do.while loops, 607

escaping, 608–609

infinite loops, 608

looping through object
properties, 609–612

for loops, 604–606

while loops, 606–607

methods, text fields/text
areas, 713

modifying scripts, 89–91

MooTools, 686

<noscript> tags, 672

null data types, 557

number data types, 556

objects, 510, 515, 575

built-in objects, 510,
582–583

creating, 576

custom objects, 510

Date object, 587–588

Date object, converting
date formats, 590

Date object, creating, 588

Date object, reading date
values, 588–589

Date object, setting date
values, 588

Date object, time zones,
589

defining, 577–578

DOM objects, 510

event object, 621–623

instances, creating,
579–581

looping through object
properties, 609–612

Math object, 583

Math object, generating
random numbers, 584

Math object, methods,
584–587

Math object, rounding, 584

Math object, truncating,
584

methods, 576, 578–579

properties, 576

simplifying scripting, 577

operators, 555

common operators,
555–556

precedence, 556

output, creating, 87–88

overusing, 656–657

prioritizing scripts, 513–514

progressive enhancement,
434, 658–659

Prototype, 685, 687

React frameworks, 691

remote scripting (AJAX), 85

reserved words, 515

reusing code, 665–666

RWD, writing for, validating
JavaScript, 438–439

script.aculo.us, 685–686,
687, 687–689

semicolons (;), 516

shorthand conditional
expressions, 599–600

spacing, 515

special effects, 85

statements, 507–508

http://script.aculo.us
http://script.aculo.us

766 JavaScript

strings, 551, 557

assigning values to,
559–560

calculating length of,
560–561

converting case of, 561

getting single characters,
563

splitting, 566–567

string objects, 558

string objects, creating,
559

using parts of strings,
562–563

substrings, 562

finding, 563–564

getting single characters,
563

using parts of strings,
562–563

switch statements, multiple
conditions and, 602–604

syntax rules, 514–515

tasks, combining with
functions, 508–509

testing scripts, 89

third-party libraries, 681–683

Dojo, 686

effects, adding, 686–689

jQuery, 683–684

MooTools, 686

Prototype, 685, 687

script.aculo.us, 685–686,
687, 687–689

time, displaying, 85–91

timeouts, 645–647

transitions, triggering,
397–398

unobtrusive scripting,
496–498, 674–677

usability, 663–664

validating, 438–439

variables, 509, 515, 551, 552

assigning values to,
554–555

global variables, 553

local variables, 553

naming, 552

semicolons (;) and, 63

storing data in, 86–87

W3C event model, 659–660

web forms

accessing elements,
720–721

events, 719–720

web pages

adding scripts to, 88

fitting in, 81–83

loading speeds, 657–658

modifying text, 543–545

website navigation, 84–85

window objects (DOM),
638–639

properties of, 639

windows, creating, 640

windows, displaying dialog
boxes, 648–649

windows, moving,
643–645

windows, opening/closing,
640–643

windows, timeouts,
645–647

JPEG compression, 209

jQuery, 683–684

JSON (JavaScript Object Notation),

517–518

K-L

keyboard events, event handlers

(JavaScript) and, 627–630

keyframes (animations), defining,

402–404

Knockout frameworks (JavaScript),

691

Koch, Peter-Paul, 671

labeling web form data, 703–704

large screen-specific styles, adding

with media queries, 482–483

large web pages

navigating, 735–738

organizing, 735–738

layers (positionable elements),

DOM, 536, 537–541

layout properties (CSS), 63–65

layouts

CSS display: table; property,
335–338

CSS Flexible Box Layout
module, 339–345

CSS Grid Layout module,
345–348

examples of, 318

fixed layouts, 319–322

fixed/liquid hybrid web page
layouts

creating, 324–326

defining two columns in,
326–328

height, setting, 329–335

width, setting, 328–329

liquid layouts, 322–324

mobile devices and, 319, 449

progressive enhancement,
318

responsive layouts, mobile
design, 464–466

separating structure from
design/interactivity, 318

 HTML tags, 139, 290

libraries (third-party), JavaScript,

681–683

Dojo, 686

effects, adding, 686–689

jQuery, 683–684

MooTools, 686

Prototype, 685, 687

http://script.aculo.us

Math object (JavaScript) 767

script.aculo.us, 685–686,
687, 687–689

line breaks, simple web pages,

building with HTML, 31–33

linear gradients, backgrounds

(web pages), 366

lines/polygons, drawing on

canvas, 414–416

link objects (DOM), 527–528

<link> HTML tag, 473

links

absolute links, 169

anchor HTML tags

identifying anchor
locations within web
pages, 170–171

linking between web
content, 174–177

linking to anchor locations,
171–174

linking to email addresses,
179–180

linking to external web
content, 178–179

linking to non-HTML files,
177–178

linking within web pages,
170

color, changing, 195

CSS styles, 182–186

effective use of, 186–187

images, turning into links,
223–226

images and, 187

multimedia files, 233–234,
235–236

naming, 181–182

opening in new browser
windows, 180–181

styling, 182–187

tappable links, mobile inter-
faces and RWD, 449

liquid web page layouts, 322–324

liquid/fixed hybrid web page

layouts

creating, 324–326

defining two columns in,
326–328

height, setting, 329–335

width, setting, 328–329

lists

comma-separated lists, media
query expressions, 476

pull-down pick lists, web
forms, 710–712

selection lists, web forms,
710–712

lists (CSS box model), 290–291

background colors, 296

creating, 291–292

image maps, creating,
296–299

margins, 293–294, 295

navigation lists, 299–300

horizontal navigation,
creating, 310–314

multilevel navigation,
styling, 305–310

primary navigation, 300

single-level navigation,
styling, 303–305

vertical navigation,
creating, 300–303

padding, 292–294, 295

placing list item indicators,
294–296

styling, 291–292

lists (HTML), 139–140

definition HTML lists, 139,
141, 290

nested HTML lists, 142–146

nested lists, 290

ordered HTML lists, 139, 290

unordered HTML lists, 139,
290

load/unload events, event

handlers (JavaScript) and,

630–631

loading speeds (web pages),

657–658

local sites, creating, 17–18

local variables (JavaScript), 553

location objects (DOM), 530–531

logical (Boolean) operators

(JavaScript), 557, 597–598

loops (JavaScript), 511

continuing, 609

do.while loops, 607

escaping, 608–609

for loops, 604–606

infinite loops, 608

looping through object
properties, 609–612

for loops, 604–606

while loops, 606–607

M

maintainable code, writing, 740

documenting code with
comments, 740–742

indenting for clarity, 742–743

version control, 743–745

managing files, 14–17

<map> HTML tag, 233

maps

image maps, 227–228

creating, 230

HTML for image maps,
creating, 230–233

mapping regions within
images, 229–230

needs for, 228–229

web pages, adding to,
backgrounds, 226–227

margins

adding to web page elements,
249–257

lists, styling with CSS box
model, 293–294

Math object (JavaScript), 583

http://script.aculo.us

768 Math object (JavaScript)

generating random numbers,
584

methods, 584–587

rounding, 584

truncating, 584

media queries

adding, 473

baseline styles, defining,
479–480

breakpoints

best practices, 483

defined, 471, 477

defining with media
queries, 477–479

large screen-specific
styles, adding with media
queries, 482–483

optimal breakpoints, 483

defined, 471–472

defining media type styles,
473–474

expressions, 476–477

handheld media type, 472

large screen-specific styles,
adding, 482–483

media features, 474–476

print media type, 472–473

requesting multiple CSS
documents, 474

retina devices and, 484

screen media type, 472

small screen-specific styles,
adding, 481–482

types of, 472–474

<meta> HTML tags, 29

<meta charest> HTML tags, 436

methods (JavaScript), text fields/

text areas, 713

MLB section (ESPN.com),

733–734

mobile devices

adaptive design. See also
RWD, dynamic serving, 467

dynamic serving. See also
RWD, adaptive design,
467–468

RWD

alternatives to, 466

difficulties with, 466–467

importance of RWD in
design, 430–431,
443–444

Mobile First design,
451–454

mobile interfaces,
445–451

Mobile Only design,
454–455

responsive images,
461–464

responsive layouts,
464–466

responsive tables,
455–461

separate URL/domains,
468

tables, 158

web page layouts, 319

website optimization,
739–740

Mobile First design, 451–454

mobile interfaces, RWD, 445

design elements, fitting, 447

download speeds, 449–450

fixed-width designs, 446–447

Flash and, 445

font sizes, legibility, 447–449

layouts, simplifying, 449

mobile web pages, testing,
450–451

navigation, simplifying, 449

tappable links, 449

viewports, configuring,
445–446

Mobile Only design, 454–455

mobile web pages, testing, mobile

interfaces and RWD, 450–451

modifying, JavaScript scripts,

89–91

monochromatic color schemes,

194

monospaced text, 127,

128–129

MooTools, 686

mouse events, event handlers

(JavaScript) and, 623

click events, 623–627

click events, changing appear-
ance of <div> elements,
631–638

mouseover/mouseout, 623

ups/downs, 623–627

moving

browser windows, 643–645

elements (2D transforma-
tions), 386–388

multilevel vertical navigation,

styling, 305–310

multimedia files

best practices, 242

creating, 234

defined, 192

embedding into web pages,
237

linking to, 233–234,
235–236

playing audio in web pages,
240–241

playing video in web pages,
237–239

QuickTime, support for, 236

multiple 2D transformations,

391–392

multiple backgrounds in web

pages, 355–359

multiple borders in web pages,

355

multiple images in backgrounds

(web pages), 355–359

MVC pattern, JavaScript

frameworks, 689–690

http://ESPN.com

769photos

N

naming

animations, 410

HTML form data, 703

links, 181–182

variables (JavaScript), 552

web form data, 703

<nav> HTML tags, 37, 40, 45–46,

437

navigating

large web pages, 735–738

website optimization, 739

navigation, mobile interfaces and

RWD, 449

navigation lists, 299–300

horizontal navigation, creating,
310–314

primary navigation, 300

vertical navigation

creating, 300–303

multilevel navigation,
styling, 305–310

single-level navigation,
styling, 303–305

nested (child) tags, HTML, 142

nested lists, 142–146, 290

NFL section (ESPN.com), 733–734

nodes (DOM), 533, 534

basic properties, 534

document methods, 535

methods, 535–536

relationship properties,
534–535

non-JavaScript-enabled browsers,

671–672

<noscript> tags, 672

not operators, @media rules,

476–477

null data types (JavaScript), 557

number data types (JavaScript),

556

numeric arrays (JavaScript),

564–565, 567–569

O

objects (JavaScript), 510, 515,

575

built-in objects, 510, 582–583

creating, 576

custom objects, 510

Date object, 587–588

defining, 577–578

DOM objects, 510

instances, creating, 579–581

looping through object
properties, 609–612

Math object, 583

generating random
numbers, 584

methods, 584–587

rounding, 584

truncating, 584

methods, 576, 578–579

properties, 576

simplifying scripting, 577

 HTML tags, 139, 290

<opening> HTML tags, 29

opening/closing, browser

windows, 640–643

operators (JavaScript), 555

common operators,
555–556

precedence, 556

optionality of JavaScript,

672–673

ordered HTML lists, 139, 290

organizing web pages

large web pages, 735–738

simple web pages, 732–734

outline properties (CSS box

model), 275

outlines (web pages), 378

<output> element, web forms,

719

overusing JavaScript,

656–657

P

<p> HTML tags, 30, 32, 136,

436, 490

padding

adding to web page elements,
257–261

lists, styling with CSS box
model, 292–294, 295

page layouts

CSS display: table; property,
335–338

CSS Flexible Box Layout
module, 339–345

CSS Grid Layout module,
345–348

examples of, 318

fixed layouts, 319–322

fixed/liquid hybrid web page
layouts

creating, 324–326

defining two columns in,
326–328

height, setting, 329–335

width, setting, 328–329

liquid layouts, 322–324

mobile devices and, 319

progressive enhancement,
318

separating structure from
design/interactivity, 318

tables, 157–158

paragraph breaks, simple web

pages, building with HTML,

31–33, 136

parents (DOM objects), 533

pausing animations, 410

Peet’s Coffee website, 736–737

photos

backgrounds (web pages),
adding to, height/width,
specifying, 226–227

screen resolution, 210

web pages, adding to,
203–204

http://ESPN.com

770 photos

cropping images, 204–206

GIF format, 211–212

height/width, specifying,
218–219

JPEG compression, 209

placement in web pages,
214–217

PNG format, 211–212

reducing/removing color,
211–212

resizing images, 206–207

text descriptions, 217–218

tiled background images,
creating, 212–214

turning images into links,
223–226

tweaking color, 207–208

web pages, aligning in, 219

horizontal image
alignment, 219–221

vertical image alignment,
221–223

Photoshop (Adobe), 201

<picture> element, responsive

images, mobile design, 463

plugins, defined, 234

PNG format (images), 211–212

polygons/lines, drawing on

canvas, 414–416

pop-up windows, opening links in,

180–181

positioning elements

controlling positioning with
JavaScript, 537–541

DOM, 536

in layout, 277–281

absolute positioning,
276–277

CSS layout, 63–65

flowing text, 284–285

ordering elements,
281–284

relative positioning, 276

<pre> HTML tags, 127, 128–129

precedence, JavaScript operators,

556

primary navigation (navigation

lists), 300

print media type (media queries),

472–473

print style sheets, 472–473

prioritizing JavaScript scripts,

513–514

progressive enhancement

benefits of, 435

content

adjusting the look of with
CSS, 433–434

separating from
presentation/
functionality, 432

content layer, editing, 432–433

defined, 431

JavaScript interactivity, 434,
658–659

web page design, 318

Prototype, 685, 687

pseudo-classes, HTML tags, 182

publishing web content

blogs, 18

locally, 17–18

pull-down pick lists, web forms,

710–712

Q

QuickTime, support for, 236

quirks (browsers), 671

R

radial gradients, backgrounds

(web pages), 367–371

radio buttons, web forms,

708–709

React frameworks (JavaScript),

691

rectangles/squares, drawing on

canvas, 411

reducing/removing color in

images, 211–212

relative addresses, 168, 169

relative positioning, 276

remote scripting (AJAX), 85

repeating, animations, 408–410

reserved words (JavaScript),

reserved words, 515

resizing

cells in responsive tables,
456–457

images, 206–207

resolution

images, 202–203

screen, 210

responsive images, mobile design,

461

flexible-width images,
461–462

<picture> element, 463

sizes attribute, 462–463

<srcset> element, 462–463

using different images,
463–464

responsive layouts, mobile design,

464–466

responsive tables, mobile design,

455

hiding content, 460–461

rearranging rows/columns,
457–460

resizing cells, 456–457

retina devices and media

queries, 484

reusing JavaScript code, 665–666

RGB color values, 195, 197–198

rights management, images and,

202

rotating elements

(2D transformations), 384

771semicolons (;)

features of, 81

form validation, 85

history of, 81

HTML and, 81–83

modifying scripts, 89–91

objects, simplifying
scripting, 577

output, creating, 87–88

remote scripting (AJAX), 85

special effects, 85

testing scripts, 89

time, displaying, 85–91

variables, semicolons (;)
and, 63

variables, storing data in,
86–87

web pages, fitting in,
81–83

website navigation, 84–85

placement of scripts, 489

server-side scripting, 488

types of, 487–488

scrolling in backgrounds (web

pages), 361–364

search engines, website

optimization, 672, 738

creating interesting content,
738–739

mobile devices, 739–740

navigation, 739

<section> HTML tags, 37, 39,

44–45, 177, 437

selection lists, web forms,

710–712

selectors (CSS), 60

semantic elements

progressive enhancement,
433

simple web pages, building
with HTML, 36–42

semantic HTML, 432, 433

semicolons (;)

CSS, 61, 63

fixed-width designs,
446–447

Flash and, 445

font sizes, legibility,
447–449

layouts, simplifying, 449

mobile web pages, testing,
450–451

navigation, simplifying, 449

tappable links, 449

viewports, configuring,
445–446

need for, 429–430

S

Safari, Debugger, 114–118

sample text, formatting example,

122

saving, HTML files, 33

scaling elements (2D transforma-

tions), 385–386

screen media type (media que-

ries), 472

screen resolution, 210

<script> HTML tags, 489, 490,

513–514

script.aculo.us, 685–686, 687,

687–689

scripting, 80

breakpoints and, 116–118

client-side scripting, 488

compiled scripting languages,
80

hiding scripts, 490

interpreted scripting
languages, 80

JavaScript, 80

adding scripts to, 88

error handling, 91–92

events, 84

external scripts, 83–84

rows (tables)

rearranging in responsive
tables, 457–460

wrapping, 151

RWD (Responsive Web Design).
See also adaptive design,

dynamic serving

alternatives to, 466

CSS, validating, 438–439

defined, 427–428

difficulties with, 466–467

history of, 428

HTML, validating, 438–439

HTML, writing, 435

basic attributes, 437–438

tags every web page
should contain,
435–436

web content tags,
436–437

JavaScript, validating,
438–439

mobile design

importance of RWD in
design, 430–431,
443–444

Mobile First design,
451–454

mobile interfaces,
445–451

Mobile Only design,
454–455

responsive images,
461–464

responsive layouts,
464–466

responsive tables,
455–461

separate URL/domains,
468

mobile interfaces, 445

design elements, fitting,
447

download speeds,
449–450

http://script.aculo.us

772 semicolons (;)

using parts of strings,
562–563

using parts of strings,
562–563

 HTML tags, 126, 127,

436

style attributes, HTML tags, 136

style classes (CSS), 68–70

style ID (CSS), 70–71

style rules (CSS), 56–57, 60–61

style sheets. See CSS

<sub> HTML tags, 127

subdirectories, 168

submitting web form data, 718

subscript text, 127

substrings (JavaScript), 562

finding, 563–564

single characters, getting, 563

using parts of strings,
562–563

<sup> HTML tags, 127

superscript text, 127

switch statements (JavaScript),

multiple conditions and,

602–604

T

tables

accessibility, 158

body, wrapping, 151

borders

collapsing, 149–150

creating, 149

spacing, 157

cells

aligning data, 154–156

background colors, 157

background images, 157

boldface text, 157

creating, 147

small screen-specific styles,

adding with media queries,

481–482

sorting

numeric arrays (JavaScript),
567–569

string arrays (JavaScript), 567

Sources panel (Developer Tools),

114–118

spacing in JavaScript, 515

 HTML tags, 436

spanning, cells (tables), 156

special characters, formatting.

See also character entities,

122–125

splitting, string arrays (JavaScript),

566–567

squares/rectangles, drawing on

canvas, 411

srcset element, responsive

images, mobile design, 462–463

Stephenson, Sam, 685

sticky web pages, 729

storing web content

absolute links, 169

attributes, HTML tags, 168

directories, 168

relative addresses, 168, 169

relative-root addresses, 168

string arrays (JavaScript),

565–566

sorting, 567

splitting, 566–567

strings (JavaScript), 551, 557

assigning values to, 559–560

calculating length of, 560–561

converting case of, 561

getting single characters, 563

splitting, 566–567

string objects, 558, 559

substrings, 562

finding, 563–564

getting single characters,
563

JavaScript

best practices, 516

statements, 508

servers

browser interaction, 3–6

case sensitivity (text) and,
170

file management, 14–16

scripting, 488

shorthand conditional expressions

(JavaScript), 599–600

siblings (DOM objects), 533

simple web pages

building with HTML, 25–26

creating a basic page,
27–28

formatting text, 33

headings, 33–36

HTML tags, 26–30

line breaks, 31–33

paragraph breaks, 31–33

preparing for, 24–25

saving HTML files, 33

semantic elements, 36–42

text editors, choosing, 25

viewing a basic page,
27–28

organizing, 732–734

single-level vertical navigation,

styling, 303–305

single-page interfaces, 730–731

site architectures, sample build,

170

sizes attribute, responsive images,

mobile design, 462–463

sizing

backgrounds (web pages),
360

fonts, 129, 130, 131–133

tables, 151–153

skeleton pages/templates, HTML,

30

skewing (slanting) elements (2D

transformations), 388–391

773time, displaying with JavaScript

italic text, 126–127

links, changing color, 195

monospaced text, 127,
128–129

sample text, formatting
example, 122

special characters, formatting,
122–125

subscript text, 127

superscript text, 127

typefaces (font families),
changing, 130, 131–133

underlined text, 127–128

web forms

accepting text input,
702–703

text fields/text areas,
713–715

web pages

adding text, 545–546

modifying text,
543–545

writing in documents, docu-
ment objects (DOM), 527

text editors, choosing, 9–10

<tfoot> HTML tags, 151

<th> HTML tags, 147, 149,

150, 154

<thead> HTML tags, 151

theory of graceful degradation,

428, 431

third-party JavaScript libraries,

681–683

Dojo, 686

effects, adding, 686–689

jQuery, 683–684

MooTools, 686

Prototype, 685, 687

script.aculo.us, 685–686,
687, 687–689

tiled background images, creating,

212–214

time, displaying with JavaScript,

85–91

JavaScript, 514

web servers, 170

character entities, 123–125

color, changing, 199–201

CSS

aligning text, 67

font properties, 67–68

indenting text, 67

DOM

adding to web pages,
545–546

modifying text in web
pages, 543–545

flowing text in web pages,
284–285

fonts

changing color, 129, 130,
131–133

mobile interfaces and
RWD, 447–449

sizing, 129, 130, 131–133

formatting

aligning text, 136–139

attributes, HTML tags,
136, 168

boldface text, 126, 127,
157

italic text, 126–127

monospaced text, 127,
128–129

paragraph breaks, 136

sample text, 122

simple web pages, building
with HTML, 33

special characters,
122–125

subscript text, 127

superscript text, 127

underlined text, 127–128

highlighted text, 438

HTML forms, accepting text
input, 702–703

images, describing with text,
217–218

spanning, 156

styling, 147

creating, 147–151

CSS display: table; property,
335–338

footers, wrapping, 151

headers, wrapping, 151

laying out, 156, 157–158

mixing presentation/content,
158

mobile devices, 158

page layouts, 157–158

pre-planning, 156

responsive tables, mobile
design, 455

hiding content, 460–461

rearranging rows/columns,
457–460

resizing cells, 456–457

rows, wrapping, 151

sizing, 151–153

unnecessary redesigns, 158

tables of contents, 730–731

tappable links, mobile interfaces

and RWD, 449

<tbody> HTML tags, 151

<td> HTML tags, 147, 149, 149,

150, 154

Technology Review, 431

templates/skeleton pages, HTML,

30

testing

browsers, 8–10

JavaScript scripts, 89

web content, 18–19

text

aligning, 136

attributes, HTML tags, 136

block-level elements,
136–139

boldface text, 126, 127, 157

case sensitivity

color names, 195

http://script.aculo.us

774 time zones, Date object (JavaScript)

playing in web pages,
237–239

<video> element, 237–239

<video> HTML tags, 237,

238–239, 436

viewports, mobile interfaces and

RWD, 445–446

visual editors, 18

W

W3C event model, 659–660

web content

absolute links, 169

color, choosing (best
practices), 192–194

columns (CSS), 158–162

creating, 2–3

defined, 3

delivery, 3–6

displaying, 141

interesting web content,
creating, 738–739

linking

to anchor locations,
171–174

CSS styles, 182–186

to email addresses,
179–180

to external web content,
178–179

identifying anchor
locations within
web pages, 170–171

naming links, 181–182

to non-HTML files,
177–178

opening links in new
browser windows,
180–181

between web content,
174–177

ups/downs, mouse events,

623–627

URL, mobile devices and RWD,

468

usability, JavaScript, 663–664

UTF-8 web pages, formatting text,

special characters, 123

V

valid HTML, 432

validating

CSS, 438–439

forms, JavaScript and, 85

HTML, 438–439

JavaScript, 438–439

style sheets, 73

web content

CSS, 99, 109–111

HTML, 97–98, 106–107,
109–111

web forms, 716–717

variables (JavaScript), 509, 515,

551, 552

assigning values to, 554–555

global variables, 553

local variables, 553

naming, 552

semicolons (;) and, 63

storing data in, 86–87

version control

Google Docs, 743

maintainable code, writing,
743–745

vertical image alignment,

221–223

vertical navigation in navigation

lists, creating, 300–303

video, 242

codecs, 237

hosting services, 242

time zones, Date object

(JavaScript) and, 589

timeouts, 645–647

timing

animations, 405–408

transitions, 396–397

<title> HTML tags, 29, 30, 436

<tr> HTML tags, 147, 149, 149,

154

transformations

2D transformations, 383

moving elements,
386–388

multiple transformations,
391–392

rotating elements, 384

scaling elements,
385–386

slanting (skewing)
elements, 388–391

3D transformations, 392–393

transitions, 393–396

timing, 396–397

triggering with JavaScript,
397–398

triadic color schemes, 194

triangles, drawing on canvas,

415–416

typefaces (font families),

changing, 130, 131–133

U

<u> HTML tags, 127–128

 HTML tags, 139, 290

underlined text, 127–128

unload/load events, event han-

dlers (JavaScript) and, 630–631

unobtrusive JavaScript, 496–498,

674–677

unordered HTML lists, 139, 290

775web pages

adding images to,
226–227

alternating colors,
364–365

color, 194

color, changing with CSS,
199–201

color, hexadecimal color
codes, 194, 195,
196–197

color, RGB color values,
194, 197–198

gradients, 365

gradients, linear gradients,
366

gradients, radial gradients,
367–371

multiple backgrounds,
355–359

placing, 359–360

positioning images in, 361

scrolling, 361–364

sizing, 360

tiled background images,
creating, 212–214

banners, creating, 210–211

borders, 354

color, changing with CSS,
199–201

images, 373

images, clipping, 373–375

images, defining width of,
375–376

images, extending border
images beyond border
edge, 376

images, fitting to borders,
376–377

multiple borders, 355

buttons, creating, 210–211

centering web page elements,
262–263

color, choosing (best
practices), 192–194

columns (CSS), 158–162

unnecessary redesigns,
158

testing, 18–19

validating

CSS, 99, 109–111

HTML, 97–98, 106–107,
109–111

web fonts, 133–135

web forms, 695–696

accepting text input, 702–703

accessing elements with
JavaScript, 720–721

<button> element, 718–719

check boxes, 706–708

creating, 696–702

displaying data, 721–722

events, 719–720

form-processing scripts, 703

grouping elements, 705

hidden data, 705

input controls, 706–712

labeling data, 703–704

naming data, 703

<output> element, 719

pull-down pick lists, 710–712

radio buttons, 708–709

selection lists, 710–712

submitting data, 718

text fields/text areas,
713–715

validating, 716–717

web hosting providers, selecting,

6–8

web pages

absolute links, 169

aligning elements in, 261–262

aligning text, 136

attributes, HTML tags, 136

block-level elements,
136–139

audio, playing in web pages,
240–241

backgrounds, 353–354

within web pages, 170

publishing

blogs, 18

locally, 17–18

relative addresses, 168, 169

relative-root addresses, 168

storing

absolute links, 169

attributes, HTML tags, 168

directories, 168

relative addresses, 168,
169

relative-root addresses,
168

tables

accessibility, 158

body, wrapping, 151

borders, collapsing,
149–150

borders, creating, 149

borders, spacing, 157

cells, aligning data,
154–156

cells, background colors,
157

cells, background images,
157

cells, boldface text, 157

cells, creating, 147

cells, spanning, 156

cells, styling, 147

creating, 147–151

footers, wrapping, 151

headers, wrapping, 151

laying out, 156, 157–158

mixing presentation/
content, 158

mobile devices, 158

page layouts, 157–158

pre-planning, 156

rows, wrapping, 151

sizing, 151–153

776 web pages

between web content,
174–177

within web pages, 170

loading speeds, 657–658

margins, adding to elements,
249–257

mobile web pages, testing,
mobile interfaces and RWD,
450–451

multimedia files

embedding into web
pages, 237

playing audio in web
pages, 240–241

playing video in web pages,
237–239

ordering elements in layout,
281–284

outlines, 378

padding, adding to elements,
257–261

paragraph breaks, 136

positioning elements in layout,
277–281

absolute positioning,
276–277

flowing text, 284–285

ordering elements,
281–284

relative positioning, 276

relative addresses, 168, 169

relative-root addresses, 168

rounding HTML elements,
371–373

simple web pages, organizing,
732–734

simple web pages, building
with HTML, 25–26

creating a basic page,
27–28

formatting text, 33

headings, 33–36

HTML tags, 26–28

HTML tags, required tags,
28–30

CSS Flexible Box Layout
module, 339–342

CSS Flexible Box Layout
module, modifying flex
items, 342–345

CSS Grid Layout module,
345–348

examples of, 318

fixed layouts, 319–322

fixed/liquid hybrid web
page layouts, creating,
324–326

fixed/liquid hybrid web
page layouts, defin-
ing two columns in,
326–328

fixed/liquid hybrid web
page layouts, setting
height, 329–335

fixed/liquid hybrid web
page layouts, setting
width, 328–329

liquid layouts, 322–324

mobile devices and,
319

progressive enhancement,
318

separating structure from
design/interactivity, 318

linking

to anchor locations,
171–174

CSS styles, 182–186

to email addresses,
179–180

to external web content,
178–179

identifying anchor loca-
tions within web pages,
170–171

naming links, 181–182

to non-HTML files,
177–178

opening links in new
browser windows,
180–181

DOM

adding text, 545–546

modifying text, 543–545

float property and web page
elements, 263–266

flowing text in layout,
284–285

highlighted text, 438

HTML tags, viewing, 36

images, adding to, 203–204

cropping images, 204–206

GIF format, 211–212

height/width, specifying,
218–219

JPEG compression, 209

placement in web pages,
214–217

PNG format, 211–212

reducing/removing color,
211–212

resizing images, 206–207

text descriptions, 217–218

tiled background images,
creating, 212–214

turning images into links,
223–226

tweaking color, 207–208

images, aligning in, 219

horizontal image
alignment, 219–221

vertical image alignment,
221–223

JavaScript

adding scripts to web
pages, 88

fitting in web pages,
81–83

large web pages

navigating, 735–738

organizing, 735–738

layouts

CSS display: table;
property, 335–338

777websites

progressive enhancement

adjusting the look of con-
tent with CSS, 433–434

benefits of, 435

content layer, editing,
432–433

defined, 431

JavaScript interactivity, 434

separating content
from presentation/
functionality, 432

RWD

alternatives to, 466

CSS, validating, 438–439

defined, 427–428

difficulties with, 466–467

history of, 428

HTML, validating, 438–439

JavaScript, validating,
438–439

mobile design, importance
in design, 430–431,
443–444

mobile design, Mobile First
design, 451–454

mobile design, mobile
interfaces, 445–451

mobile design, Mobile Only
design, 454–455

mobile design, responsive
images, 461–464

mobile design, responsive
layouts, 464–466

mobile design, responsive
tables, 455–461

mobile design, separate
URL/domains, 468

need for, 429–430

writing HTML, 435

writing HTML, basic attri-
butes, 437–438

writing HTML, tags every
web page should contain,
435–436

text, color, changing with CSS,
199–201

UTF-8 web pages, special
characters, formatting,
122–125

video, playing in web pages,
237–239

web servers, case sensitivity (text)

and, 170

websites

adaptive design. See also
RWD, dynamic serving, 467

bad website examples, 195

color, choosing (best prac-
tices), 192–194

dynamic serving. See also
RWD, adaptive design,
467–468

dynamic websites

changing images based
on user interaction,
498–500

HTML5 applications,
developing, 501

JavaScript in HTML,
488–490

scripting, client-side
scripting, 488

scripting, displaying ran-
dom content, 491–495

scripting, DOM, 495,
496–498

scripting, hiding scripts,
490

scripting, placement of
scripts, 489

scripting, server-side
scripting, 488

scripting, types of,
487–488

scripting, unobtrusive
JavaScript, 496–498

graceful degradation, theory
of, 428, 431

navigating, JavaScript and,
84–85

line breaks, 31–33

paragraph breaks, 31–33

preparing for, 24–25

saving HTML files, 33

semantic elements, 36–42

text editors, choosing, 25

viewing a basic page,
27–28

single-page interfaces,
730–731

sticky web pages, 729

tables

accessibility, 158

body, wrapping, 151

borders, collapsing,
149–150

borders, creating, 149

borders, spacing, 157

cells, aligning data,
154–156

cells, background colors,
157

cells, background images,
157

cells, boldface text, 157

cells, creating, 147

cells, spanning, 156

cells, styling, 147

creating, 147–149

footers, wrapping, 151

headers, wrapping, 151

laying out, 156, 157–158

mixing presentation/
content, 158

mobile devices, 158

page layouts, 157–158

pre-planning, 156

rows, wrapping, 151

sizing, 151–153

unnecessary redesigns,
158

tables of contents,
730–731

778 websites

moving, 643–645

opening/closing, 640–643

timeouts, 645–647

World Wide Web, history of, 2

wrapping, rows (tables), 151

X-Y-Z

XHTML, well-formed XHTML, 433

YUI library, 661

z-index property, ordering

elements in layout, 281–284

images, specifying in, 218–219

web page elements, changing
in, 272–274

window objects (DOM), 524, 531,

638–639

properties of, 639

windows

creating, 640

dialog boxes, displaying,
648–649

moving, 643–645

opening/closing, 640–643

timeouts, 645–647

windows (browsers)

creating, 640

dialog boxes, displaying,
648–649

writing HTML, web content
tags, 436–437

search engine optimization,
738

creating interesting
content, 738–739

mobile devices, 739–740

navigation, 739

single-page interfaces,
730–731

theory of graceful degradation,
428, 431

well-formed HTML, 432–433

well-formed XHTML, 433

while loops (JavaScript), 606–607

width/height,

fixed/liquid hybrid web page
layouts, setting in, 328–329

This page intentionally left blank

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the

corresponding Web Edition, which provides several special features to help you learn:

 N The complete text of the book online

 N Interactive quizzes and exercises to test your understanding of the material

 N Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any

modern web browser that supports HTML5.

To get access to the Web Edition of Sams Teach Yourself HTML, CSS, and JavaScript All in One,

Third Edition, all you need to do is register this book:

 1. Go to www.informit.com/register.

 2. Sign in or create a new account.

 3. Enter the ISBN: 9780672338083.

 4. Answer the questions as proof of purchase.

The Web Edition will appear under the Digital Purchases tab on your Account page.

Click the Launch link to access the product.

http://www.informit.com/register

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Part I: Getting Started on the Web
	LESSON 1: Understanding How the Web Works
	A Brief History of HTML and the World Wide Web
	Creating Web Content
	Understanding Web Content Delivery
	Selecting a Web Hosting Provider
	Testing with Multiple Web Browsers and Devices
	Creating a Sample File
	Using FTP to Transfer Files
	Understanding Where to Place Files on the Web Server
	Distributing Content Without a Web Server
	Tips for Testing Web Content
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 2: Structuring an HTML Document
	Getting Prepared
	Getting Started with a Simple Web Page
	HTML Tags Every Web Page Must Have
	Organizing a Page with Paragraphs and Line Breaks
	Organizing Your Content with Headings
	Understanding Semantic Elements
	Using <header> in Multiple Ways
	Understanding the <section> Element
	Using <article>
	Implementing the <nav> Element
	When to Use <aside>
	Using <footer> Effectively
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 3: Understanding Cascading Style Sheets
	How CSS Works
	A Basic Style Sheet
	A CSS Style Primer
	Using Style Classes
	Using Style IDs
	Internal Style Sheets and Inline Styles
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 4: Understanding JavaScript
	Learning Web Scripting Basics
	How JavaScript Fits into a Web Page
	Exploring JavaScript’s Capabilities
	Displaying Time with JavaScript
	Testing the Script
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 5: Validating and Debugging Your Code
	Validating Your Web Content
	Debugging HTML and CSS Using Developer Tools
	Debugging JavaScript Using Developer Tools
	Summary
	Q&A
	Workshop
	Exercises

	Part II: Building Blocks of Practical Web Design
	LESSON 6: Working with Fonts, Text Blocks, Lists, and Tables
	Working with Special Characters
	Boldface, Italic, and Special Text Formatting
	Tweaking the Font
	Using Web Fonts
	Aligning Text on a Page
	The Three Types of HTML Lists
	Placing Lists Within Lists
	Creating a Simple Table
	Controlling Table Sizes
	Alignment and Spanning Within Tables
	Page Layout with Tables
	Using CSS Columns
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 7: Using External and Internal Links
	Using Web Addresses
	Linking Within a Page Using Anchors
	Linking Between Your Own Web Content
	Linking to Non-HTML Files
	Linking to External Web Content
	Linking to an Email Address
	Opening a Link in a New Browser Window
	Giving Titles to Links
	Using CSS to Style Hyperlinks
	Using Links Effectively
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 8: Working with Colors, Images, and Multimedia
	Best Practices for Choosing Colors
	Understanding Web Colors
	Using Hexadecimal Values for Colors
	Using RGB and RGBa Values for Colors
	Using CSS to Set Background, Text, and Border Colors
	Choosing Graphics Software
	The Least You Need to Know About Graphics
	Preparing Photographic Images
	Creating Banners and Buttons
	Optimizing Images by Reducing or Removing Colors
	Creating Tiled Background Images
	Placing Images on a Web Page
	Describing Images with Text
	Specifying Image Height and Width
	Aligning Images
	Turning Images into Links
	Using Background Images
	Using Image Maps
	Linking to Multimedia Files
	Embedding Multimedia Files
	Additional Tips for Using Multimedia
	Summary
	Q&A
	Workshop
	Exercises

	Part III: Advanced Web Page Design with CSS
	LESSON 9: Working with Margins, Padding, Alignment, and Floating
	Using Margins
	Padding Elements
	Keeping Everything Aligned
	Centering Blocks of Content
	Understanding the float Property
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 10: Understanding the CSS Box Model and Positioning
	The CSS Box Model
	Changing the Box Model
	The Whole Scoop on Positioning
	Controlling the Way Things Stack Up
	Managing the Flow of Text
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 11: Using CSS to Do More with Lists, Text, and Navigation
	HTML List Refresher
	How the CSS Box Model Affects Lists
	Placing List Item Indicators
	Creating Image Maps with List Items and CSS
	How Navigation Lists Differ from Regular Lists
	Creating Vertical Navigation with CSS
	Creating Horizontal Navigation with CSS
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 12: Creating Layouts Using Modern CSS Techniques
	Getting Ready to Do Page Layout
	The Importance of Putting Mobile Devices First
	Understanding Fixed Layouts
	Understanding Liquid Layouts
	Creating a Fixed/Liquid Hybrid Layout
	Using Modern CSS Layout Techniques
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 13: Taking Control of Backgrounds and Borders
	Reviewing Background and Border Basics
	Using Multiple Borders and Backgrounds
	Using Forgotten Background Properties
	Using Gradients as Backgrounds
	Rounding the Corners of HTML Elements
	Using Images as Borders
	Understanding CSS Outlines
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 14: Using CSS Transformations and Transitions
	Understanding CSS 2D Transformations
	Transforming Elements in Three Dimensions
	Working with CSS Transitions
	Using JavaScript to Trigger Transitions
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 15: Animating with CSS and the Canvas
	Understanding CSS Animation
	Using the CSS Canvas
	Choosing Between CSS Animation and Canvas Animation
	Summary
	Q&A
	Workshop
	Exercises

	Part IV: Responsive Web Design
	LESSON 16: Understanding the Importance of Responsive Web Design
	What Is Responsive Web Design?
	What Is Progressive Enhancement?
	Writing HTML for Responsive Web Design
	Validating HTML, CSS, and JavaScript
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 17: Designing for Mobile Devices
	Designing for Mobile Devices
	Understanding Mobile First Design
	Using Responsive Tables and Images
	Creating Responsive Layouts Without Media Queries
	Alternatives for Mobile Design Besides RWD
	Summary
	Q&A
	Workshop
	Exercise

	LESSON 18: Using Media Queries and Breakpoints
	What Is a Media Query?
	Using Media Query Expressions
	What Is a Breakpoint?
	How to Define Breakpoints in Your CSS
	Optimal Breakpoints
	Summary
	Q&A
	Workshop
	Exercises

	Part V: Getting Started with Dynamic Sites
	LESSON 19: Understanding Dynamic Websites and HTML5 Applications
	Understanding the Different Types of Scripting
	Including JavaScript in HTML
	Displaying Random Content
	Understanding the Document Object Model
	Changing Images Based on User Interaction
	Thinking Ahead to Developing HTML5 Applications
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 20: Getting Started with JavaScript Programming
	Basic Concepts
	JavaScript Syntax Rules
	Using Comments
	Best Practices for JavaScript
	Understanding JSON
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 21: Working with the Document Object Model (DOM)
	Understanding the Document Object Model
	Using window Objects
	Working with the document Object
	Accessing Browser History
	Working with the location Object
	More About the DOM Structure
	Working with DOM Nodes
	Creating Positionable Elements (Layers)
	Hiding and Showing Objects
	Modifying Text in a Page
	Adding Text to a Page
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 22: Using JavaScript Variables, Strings, and Arrays
	Using Variables
	Understanding Expressions and Operators
	Data Types in JavaScript
	Converting Between Data Types
	Using String Objects
	Working with Substrings
	Using Numeric Arrays
	Using String Arrays
	Sorting a Numeric Array
	Using Functions
	Introducing Objects
	Using Objects to Simplify Scripting
	Extending Built-in Objects
	Using the Math Object
	Working with Math Methods
	Working with Dates
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 23: Controlling Flow with Conditions and Loops
	The if Statement
	Using Shorthand Conditional Expressions
	Testing Multiple Conditions with if and else
	Using Multiple Conditions with switch
	Using for Loops
	Using while Loops
	Using do...while Loops
	Working with Loops
	Looping Through Object Properties
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 24: Responding to Events and Using Windows
	Understanding Event Handlers
	Using Mouse Events
	Using Keyboard Events
	Using the load and unload Events
	Using click to Change the Appearance of a <div>
	Controlling Windows with Objects
	Moving and Resizing Windows
	Using Timeouts
	Displaying Dialog Boxes
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 25: JavaScript Best Practices
	Scripting Best Practices
	Reading Browser Information
	Cross-Browser Scripting
	Supporting Non-JavaScript-Enabled Browsers
	Creating an Unobtrusive Script
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 26: Using Third-Party JavaScript Libraries and Frameworks
	Using Third-Party JavaScript Libraries
	Adding JavaScript Effects by Using a Third-Party Library
	Using JavaScript Frameworks
	Summary
	Q&A
	Workshop
	Exercises

	Part VI: Advanced Website Functionality and Management
	LESSON 27: Working with Web-Based Forms
	How HTML Forms Work
	Creating a Form
	Accepting Text Input
	Naming Each Piece of Form Data
	Labeling Each Piece of Form Data
	Grouping Form Elements
	Exploring Form Input Controls
	Using HTML5 Form Validation
	Submitting Form Data
	Accessing Form Elements with JavaScript
	Summary
	Q&A
	Workshop
	Exercises

	LESSON 28: Organizing and Managing a Website
	When One Page Is Enough
	Organizing a Simple Site
	Organizing a Larger Site
	Optimizing Your Site for Search Engines
	Writing Maintainable Code
	Thinking About Version Control
	Using HTML and CSS Frameworks
	Summary
	Q&A
	Workshop
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

